In order to reduce power consumption of sensor nodes and extend network survival time in the wireless sensor network (WSN), sensor nodes are scheduled in an active or dormant mode. A chain-type WSN is fundamental y ...In order to reduce power consumption of sensor nodes and extend network survival time in the wireless sensor network (WSN), sensor nodes are scheduled in an active or dormant mode. A chain-type WSN is fundamental y different from other types of WSNs, in which the sensor nodes are deployed along elongated geographic areas and form a chain-type network topo-logy structure. This paper investigates the node scheduling prob-lem in the chain-type WSN. Firstly, a node dormant scheduling mode is analyzed theoretical y from geographic coverage, and then three neighboring nodes scheduling criteria are proposed. Sec-ondly, a hybrid coverage scheduling algorithm and dead areas are presented. Final y, node scheduling in mine tunnel WSN with uniform deployment (UD), non-uniform deployment (NUD) and op-timal distribution point spacing (ODS) is simulated. The results show that the node scheduling with UD and NUD, especial y NUD, can effectively extend the network survival time. Therefore, a strat-egy of adding a few mobile nodes which activate the network in dead areas is proposed, which can further extend the network survival time by balancing the energy consumption of nodes.展开更多
In this paper, we focus on the intermediate nodes of network and quantification of level of commodity and its cost on each node because intermediate nodes have stocking capacities which we generally see in the supply ...In this paper, we focus on the intermediate nodes of network and quantification of level of commodity and its cost on each node because intermediate nodes have stocking capacities which we generally see in the supply chain network. The commodity is supplied from a node to node in response to the power form of demand at a particular time. Since the traffic intensity of the demand of commodity also affects the flow of the commodity in the network, hence study of flow of commodity in the network is believed to be a significant contribution in this area. Several cases of quantifying the level of commodity in different situations as well as the cost analysis of incoming and outgoing commodity at a particular node have been thoroughly discussed in the paper. The present problem, presumably seeks to contribute to managerial decision making in supply chain network.展开更多
As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big probl...As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big problem: reserving energy of the node frequently presents the incapacity of directly communicating with the base station, at the same time capacity of data acquisition and transmission as normal nodes. If these nodes were selected as LEADER nodes, that will accelerate the death process and unevenness of energy consumption distribution among nodes.This paper proposed a chain routing algorithm based ontraffic prediction model (CRTP).The novel algorithmdesigns a threshold judgment method through introducing the traffic prediction model in the process of election of LEADER node. The process can be dynamically adjusted according to the flow forecasting. Therefore, this algorithm lets the energy consumption tend-ing to keep at same level. Simulation results show that CRTP has superior performance over EEPB in terms of balanced network energy consumption and the prolonged network life.展开更多
基金supported by the China Doctoral Discipline New Teacher Foundation(200802901507)the Sichuan Province Basic Research Plan Project(2013JY0165)the Cultivating Programme of Excellent Innovation Team of Chengdu University of Technology(KYTD201301)
文摘In order to reduce power consumption of sensor nodes and extend network survival time in the wireless sensor network (WSN), sensor nodes are scheduled in an active or dormant mode. A chain-type WSN is fundamental y different from other types of WSNs, in which the sensor nodes are deployed along elongated geographic areas and form a chain-type network topo-logy structure. This paper investigates the node scheduling prob-lem in the chain-type WSN. Firstly, a node dormant scheduling mode is analyzed theoretical y from geographic coverage, and then three neighboring nodes scheduling criteria are proposed. Sec-ondly, a hybrid coverage scheduling algorithm and dead areas are presented. Final y, node scheduling in mine tunnel WSN with uniform deployment (UD), non-uniform deployment (NUD) and op-timal distribution point spacing (ODS) is simulated. The results show that the node scheduling with UD and NUD, especial y NUD, can effectively extend the network survival time. Therefore, a strat-egy of adding a few mobile nodes which activate the network in dead areas is proposed, which can further extend the network survival time by balancing the energy consumption of nodes.
文摘In this paper, we focus on the intermediate nodes of network and quantification of level of commodity and its cost on each node because intermediate nodes have stocking capacities which we generally see in the supply chain network. The commodity is supplied from a node to node in response to the power form of demand at a particular time. Since the traffic intensity of the demand of commodity also affects the flow of the commodity in the network, hence study of flow of commodity in the network is believed to be a significant contribution in this area. Several cases of quantifying the level of commodity in different situations as well as the cost analysis of incoming and outgoing commodity at a particular node have been thoroughly discussed in the paper. The present problem, presumably seeks to contribute to managerial decision making in supply chain network.
文摘As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big problem: reserving energy of the node frequently presents the incapacity of directly communicating with the base station, at the same time capacity of data acquisition and transmission as normal nodes. If these nodes were selected as LEADER nodes, that will accelerate the death process and unevenness of energy consumption distribution among nodes.This paper proposed a chain routing algorithm based ontraffic prediction model (CRTP).The novel algorithmdesigns a threshold judgment method through introducing the traffic prediction model in the process of election of LEADER node. The process can be dynamically adjusted according to the flow forecasting. Therefore, this algorithm lets the energy consumption tend-ing to keep at same level. Simulation results show that CRTP has superior performance over EEPB in terms of balanced network energy consumption and the prolonged network life.