The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study propose...The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study proposes a DP algorithm based on node block sequence constraints.The proposed algorithm constrains the traversal process of the parent graph by using the M-sequence matrix to considerably reduce the time consumption and space complexity by pruning the traversal process of the order graph using the node block sequence.Experimental results show that compared with existing DP algorithms,the proposed algorithm can obtain learning results more efficiently with less than 1%loss of accuracy,and can be used for learning larger-scale networks.展开更多
In Elastic Optical Networks(EONs)with flexible bandwidth allocation,the blocking probability is high because of spectral contention.Similar to the functionality of wavelength conversion in Wavelength-Division-Multiple...In Elastic Optical Networks(EONs)with flexible bandwidth allocation,the blocking probability is high because of spectral contention.Similar to the functionality of wavelength conversion in Wavelength-Division-Multiplexing(WDM)networks,waveband conversion has been proposed to solve spectral contention in EONs.In this paper,we discuss the design of node architectures for an EON with waveband conversion.Four node architectures with shared Tuneable Waveband Converters(TWBCs)are proposed,and their blocking performances are evaluated by simulation.Simulation results show that the blocking probability of a node is significantly improved by waveband conversion.The sharing efficiency of waveband converters is also investigated.Simulation results show that at the same blocking rate,the node architecture with converters shared per node can save more than 20% waveband converters compared with that of the one with converters shared per link.展开更多
基金Shaanxi Science Fund for Distinguished Young Scholars,Grant/Award Number:2024JC-JCQN-57Xi’an Science and Technology Plan Project,Grant/Award Number:2023JH-QCYJQ-0086+2 种基金Scientific Research Program Funded by Education Department of Shaanxi Provincial Government,Grant/Award Number:P23JP071Engineering Technology Research Center of Shaanxi Province for Intelligent Testing and Reliability Evaluation of Electronic Equipments,Grant/Award Number:2023-ZC-GCZX-00472022 Shaanxi University Youth Innovation Team Project。
文摘The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study proposes a DP algorithm based on node block sequence constraints.The proposed algorithm constrains the traversal process of the parent graph by using the M-sequence matrix to considerably reduce the time consumption and space complexity by pruning the traversal process of the order graph using the node block sequence.Experimental results show that compared with existing DP algorithms,the proposed algorithm can obtain learning results more efficiently with less than 1%loss of accuracy,and can be used for learning larger-scale networks.
基金supported by the National Key Basic Research Program of China (973 Program) under Grants No. 2010CB328201,No.2010CB328202the National Natural Science Foundation of China under Grants No. 60907030,No. 61275071,No. 60736003,No. 60931160439the National High Technical Research and Development Program of China (863 Program)under Grant No. 2011AA01A106
文摘In Elastic Optical Networks(EONs)with flexible bandwidth allocation,the blocking probability is high because of spectral contention.Similar to the functionality of wavelength conversion in Wavelength-Division-Multiplexing(WDM)networks,waveband conversion has been proposed to solve spectral contention in EONs.In this paper,we discuss the design of node architectures for an EON with waveband conversion.Four node architectures with shared Tuneable Waveband Converters(TWBCs)are proposed,and their blocking performances are evaluated by simulation.Simulation results show that the blocking probability of a node is significantly improved by waveband conversion.The sharing efficiency of waveband converters is also investigated.Simulation results show that at the same blocking rate,the node architecture with converters shared per node can save more than 20% waveband converters compared with that of the one with converters shared per link.