No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Seve...No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Several methods have been proposed to solve this problem, both exact (i.e. integer programming) and metaheuristic methods. Cross entropy (CE), as a new metaheuristic, can be an alternative method to solve NWJSS problem. This method has been used in combinatorial optimization, as well as multi-external optimization and rare-event simulation. On these problems, CE implementation results an optimal value with less computational time in average. However, using original CE to solve large scale NWJSS requires high computational time. Considering this shortcoming, this paper proposed a hybrid of cross entropy with genetic algorithm (GA), called CEGA, on m-machines NWJSS. The results are compared with other metaheuritics: Genetic Algorithm-Simulated Annealing (GASA) and hybrid tabu search. The results showed that CEGA providing better or at least equal makespans in comparison with the other two methods.展开更多
In many practical flowshop production environments, there is no intermediate storage space available to keep partially completed jobs between any two machines. The workflow has to be continuous, implying that the no-w...In many practical flowshop production environments, there is no intermediate storage space available to keep partially completed jobs between any two machines. The workflow has to be continuous, implying that the no-wait conditions must be abided, which is typical in steel and plastic production. We discuss the three-machine no-wait flowshop scheduling problem where the setup times are considered as separated from processing times and sequence independent. The scheduling goal is to minimize the total flowtime. An optimal property and two heuristic algorithms for this problem are proposed. Evaluated over a large number of problems, the proposed heuristics are found that they can yield good solutions effectively with low computational complexity, and have more obvious advantage for the large size problem compared with the existing one.展开更多
The strong non-deterministic polynomial-hard( NP-hard)character of job shop scheduling problem( JSSP) has been acknowledged widely and it becomes stronger when attaches the nowait constraint,which widely exists in man...The strong non-deterministic polynomial-hard( NP-hard)character of job shop scheduling problem( JSSP) has been acknowledged widely and it becomes stronger when attaches the nowait constraint,which widely exists in many production processes,such as chemistry process, metallurgical process. However,compared with the massive research on traditional job shop problem,little attention has been paid on the no-wait constraint.Therefore,in this paper, we have dealt with this problem by decomposing it into two sub-problems, the timetabling and sequencing problems,in traditional frame work. A new efficient combined non-order timetabling method,coordinated with objective of total tardiness,is proposed for the timetabling problems. As for the sequencing one,we have presented a modified complete local search with memory combined by crossover operator and distance counting. The entire algorithm was tested on well-known benchmark problems and compared with several existing algorithms.Computational experiments showed that our proposed algorithm performed both effectively and efficiently.展开更多
The m-machine no-wait flowshop scheduling problem is addressed where setup times are treated as separate from processing times. The objective is to minimize total tardiness. Different dispatching rules have been inves...The m-machine no-wait flowshop scheduling problem is addressed where setup times are treated as separate from processing times. The objective is to minimize total tardiness. Different dispatching rules have been investigated and three were found to be superior. Two heuristics, a simulated annealing (SA) and a genetic algorithm (GA), have been proposed by using the best performing dispatching rule as the initial solution for SA, and the three superior dispatching rules as part of the initial population for GA. Moreover, improved versions of SA and GA are proposed using an insertion algorithm. Extensive computational experiments reveal that the improved versions of SA and GA perform about 95% better than SA and GA. The improved version of GA outperforms the improved version of SA by about 3.5%.展开更多
No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic al...No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic algo-rithm (GA) has the capability of global convergence and has been proven effective to solve NP-hard combinatorial op-timization problems,while simple heuristics have the advantage of fast local convergence and can be easily imple-mented. In order to avoid the defect of slow convergence or premature,a heuristic genetic algorithm is proposed by in-corporating the simple heuristics and local search into the traditional genetic algorithm. In this hybridized algorithm,the structural information of no-wait flowshops and high-effective heuristics are incorporated to design a new method for generating initial generation and a new crossover operator. The computational results show the developed heuristic ge-netic algorithm is efficient and the quality of its solution has advantage over the best known algorithm. It is suitable for solving the large scale practical problems and lays a foundation for the application of meta-heuristic algorithms in in-dustrial production.展开更多
No-wait flow shops with makespan minimization are classified as NP-hard. In this paper, the optimization objective is equivalently transformed to total idle-time minimization. The independence relationship between tas...No-wait flow shops with makespan minimization are classified as NP-hard. In this paper, the optimization objective is equivalently transformed to total idle-time minimization. The independence relationship between tasks is analyzed, and objective increment properties are established for the fundamental operators of the heuristics. The quality of the new schedules generated during a heuristic is judged only by objective increments and not by the traditional method, which computes and compares the objective of a whole schedule. Based on objective increments, the time complexity of the heuristic can be decreased by one order. A seed phase is presented to generate an initial solution according to the transformed objective. Construction and improvement phases are introduced by experimental analysis. The FCH (fast composite heuristic) is proposed and compared with the most effective algorithms currently available for the considered problem. Experimental results show that the effectiveness of the FCH is similar to that of the best methods but requires far less computation time. The FCH can also be efficient in real time scheduling and rescheduling for no-wait flow shops.展开更多
This paper systematically studies the two machine flow-shop scheduling problems with no-wait and deterministic unavailable interval constraints.To minimize the makespan,three integer programming mathematical models ar...This paper systematically studies the two machine flow-shop scheduling problems with no-wait and deterministic unavailable interval constraints.To minimize the makespan,three integer programming mathematical models are formulated for two-machine flow-shop with no-wait constraint,two-machine flow-shop with resumable unavailable interval constraint,and two-machine flow-shop with no-wait and non-resumable unavailable interval constraints problems,respectively.The optimal conditions of solv-ing the two-machine flow-shop with no-wait constraint problem by the permutation schedules,the two-machine flow-shop with resumable unavailable interval constraint problem by the Johnson algorithm,and two-machine flow-shop with no-wait and non-resumable unavailable interval constraints problem by the Gilmore and Gomory Algorithm(GGA)are presented,respectively.And the tight worst-case performance bounds of Johnson and GGA algorithms for these problems are also proved to be 2.Several instances are generated to demonstrate the proposed theorems.Based on the experimental results,GGA obtains the optimal solution for the two-machine flow-shop with no-wait constraint problem.Although it cannot reach the optimal solution for the two-machine flow-shop with resumable unavailable interval constraint problem,the optimal gap is 0.18%on average when the number of jobs is 100.Moreover,under some special conditions,it yields the optimal solution for the two-machine flow-shop with no-wait and non-resumable unavailable interval constraints problem.Therefore,GGA is an efficient heuristic to solve these problems.展开更多
In this paper, we consider the no-wait two-machine scheduling problem with convex resource allocation and learning effect under the condition of common due date assignment. We take the total earliness, tardiness and c...In this paper, we consider the no-wait two-machine scheduling problem with convex resource allocation and learning effect under the condition of common due date assignment. We take the total earliness, tardiness and common due date cost as the objective function, and find the optimal common due date, the resource allocation and the schedule of jobs to make the objective function minimum under the constraint condition that the total resource is limited. The corresponding algorithm is given and proved that the problem can be solved in polynomial time.展开更多
In order to solve the constraint satisfied problem in the genetic algorithm, the partheno-genetic algorithm is designed. And then the schema theorem of the partheno-genetic algorithm is proposed to show that the high ...In order to solve the constraint satisfied problem in the genetic algorithm, the partheno-genetic algorithm is designed. And then the schema theorem of the partheno-genetic algorithm is proposed to show that the high rank schemas at the subsequent generation decrease exponentially even though its fitness is more optimal than the average one in the population and the low rank schemas at the subsequent generation increase exponentially when its fitness is more optimal than the average one in the population. In order to overcome the shortcoming that the optimal high rank schema can be deserted arbitrarily, the HGA (hybrid partheno-genetic algorithm) is proposed, that is, the hill-climbing algorithm is integrated to search for a better individual. Finally, the results of the simulation for facility layout problem and no-wait schedule problem are given. It is shown that the hybrid partheno- genetic algorithm is of high efficiency.展开更多
文摘No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Several methods have been proposed to solve this problem, both exact (i.e. integer programming) and metaheuristic methods. Cross entropy (CE), as a new metaheuristic, can be an alternative method to solve NWJSS problem. This method has been used in combinatorial optimization, as well as multi-external optimization and rare-event simulation. On these problems, CE implementation results an optimal value with less computational time in average. However, using original CE to solve large scale NWJSS requires high computational time. Considering this shortcoming, this paper proposed a hybrid of cross entropy with genetic algorithm (GA), called CEGA, on m-machines NWJSS. The results are compared with other metaheuritics: Genetic Algorithm-Simulated Annealing (GASA) and hybrid tabu search. The results showed that CEGA providing better or at least equal makespans in comparison with the other two methods.
文摘In many practical flowshop production environments, there is no intermediate storage space available to keep partially completed jobs between any two machines. The workflow has to be continuous, implying that the no-wait conditions must be abided, which is typical in steel and plastic production. We discuss the three-machine no-wait flowshop scheduling problem where the setup times are considered as separated from processing times and sequence independent. The scheduling goal is to minimize the total flowtime. An optimal property and two heuristic algorithms for this problem are proposed. Evaluated over a large number of problems, the proposed heuristics are found that they can yield good solutions effectively with low computational complexity, and have more obvious advantage for the large size problem compared with the existing one.
基金National Natural Science Foundations of China(Nos.61174040,61104178)Shanghai Commission of Science and Technology,China(No.12JC1403400)the Fundamental Research Funds for the Central Universities,China
文摘The strong non-deterministic polynomial-hard( NP-hard)character of job shop scheduling problem( JSSP) has been acknowledged widely and it becomes stronger when attaches the nowait constraint,which widely exists in many production processes,such as chemistry process, metallurgical process. However,compared with the massive research on traditional job shop problem,little attention has been paid on the no-wait constraint.Therefore,in this paper, we have dealt with this problem by decomposing it into two sub-problems, the timetabling and sequencing problems,in traditional frame work. A new efficient combined non-order timetabling method,coordinated with objective of total tardiness,is proposed for the timetabling problems. As for the sequencing one,we have presented a modified complete local search with memory combined by crossover operator and distance counting. The entire algorithm was tested on well-known benchmark problems and compared with several existing algorithms.Computational experiments showed that our proposed algorithm performed both effectively and efficiently.
文摘The m-machine no-wait flowshop scheduling problem is addressed where setup times are treated as separate from processing times. The objective is to minimize total tardiness. Different dispatching rules have been investigated and three were found to be superior. Two heuristics, a simulated annealing (SA) and a genetic algorithm (GA), have been proposed by using the best performing dispatching rule as the initial solution for SA, and the three superior dispatching rules as part of the initial population for GA. Moreover, improved versions of SA and GA are proposed using an insertion algorithm. Extensive computational experiments reveal that the improved versions of SA and GA perform about 95% better than SA and GA. The improved version of GA outperforms the improved version of SA by about 3.5%.
基金Project 60304016 supported by the National Natural Science Foundation of China
文摘No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic algo-rithm (GA) has the capability of global convergence and has been proven effective to solve NP-hard combinatorial op-timization problems,while simple heuristics have the advantage of fast local convergence and can be easily imple-mented. In order to avoid the defect of slow convergence or premature,a heuristic genetic algorithm is proposed by in-corporating the simple heuristics and local search into the traditional genetic algorithm. In this hybridized algorithm,the structural information of no-wait flowshops and high-effective heuristics are incorporated to design a new method for generating initial generation and a new crossover operator. The computational results show the developed heuristic ge-netic algorithm is efficient and the quality of its solution has advantage over the best known algorithm. It is suitable for solving the large scale practical problems and lays a foundation for the application of meta-heuristic algorithms in in-dustrial production.
基金the National Natural Science Foundation of China (Grant Nos.60504029 and 60672092)the National High Technology Re-search and Development Program of China (863 Program) (Grant No.2008AA04Z103)
文摘No-wait flow shops with makespan minimization are classified as NP-hard. In this paper, the optimization objective is equivalently transformed to total idle-time minimization. The independence relationship between tasks is analyzed, and objective increment properties are established for the fundamental operators of the heuristics. The quality of the new schedules generated during a heuristic is judged only by objective increments and not by the traditional method, which computes and compares the objective of a whole schedule. Based on objective increments, the time complexity of the heuristic can be decreased by one order. A seed phase is presented to generate an initial solution according to the transformed objective. Construction and improvement phases are introduced by experimental analysis. The FCH (fast composite heuristic) is proposed and compared with the most effective algorithms currently available for the considered problem. Experimental results show that the effectiveness of the FCH is similar to that of the best methods but requires far less computation time. The FCH can also be efficient in real time scheduling and rescheduling for no-wait flow shops.
基金supported in part by the National Natural Sci-ence Foundation of China(NSFC)under Grant No.71801051.
文摘This paper systematically studies the two machine flow-shop scheduling problems with no-wait and deterministic unavailable interval constraints.To minimize the makespan,three integer programming mathematical models are formulated for two-machine flow-shop with no-wait constraint,two-machine flow-shop with resumable unavailable interval constraint,and two-machine flow-shop with no-wait and non-resumable unavailable interval constraints problems,respectively.The optimal conditions of solv-ing the two-machine flow-shop with no-wait constraint problem by the permutation schedules,the two-machine flow-shop with resumable unavailable interval constraint problem by the Johnson algorithm,and two-machine flow-shop with no-wait and non-resumable unavailable interval constraints problem by the Gilmore and Gomory Algorithm(GGA)are presented,respectively.And the tight worst-case performance bounds of Johnson and GGA algorithms for these problems are also proved to be 2.Several instances are generated to demonstrate the proposed theorems.Based on the experimental results,GGA obtains the optimal solution for the two-machine flow-shop with no-wait constraint problem.Although it cannot reach the optimal solution for the two-machine flow-shop with resumable unavailable interval constraint problem,the optimal gap is 0.18%on average when the number of jobs is 100.Moreover,under some special conditions,it yields the optimal solution for the two-machine flow-shop with no-wait and non-resumable unavailable interval constraints problem.Therefore,GGA is an efficient heuristic to solve these problems.
文摘In this paper, we consider the no-wait two-machine scheduling problem with convex resource allocation and learning effect under the condition of common due date assignment. We take the total earliness, tardiness and common due date cost as the objective function, and find the optimal common due date, the resource allocation and the schedule of jobs to make the objective function minimum under the constraint condition that the total resource is limited. The corresponding algorithm is given and proved that the problem can be solved in polynomial time.
文摘In order to solve the constraint satisfied problem in the genetic algorithm, the partheno-genetic algorithm is designed. And then the schema theorem of the partheno-genetic algorithm is proposed to show that the high rank schemas at the subsequent generation decrease exponentially even though its fitness is more optimal than the average one in the population and the low rank schemas at the subsequent generation increase exponentially when its fitness is more optimal than the average one in the population. In order to overcome the shortcoming that the optimal high rank schema can be deserted arbitrarily, the HGA (hybrid partheno-genetic algorithm) is proposed, that is, the hill-climbing algorithm is integrated to search for a better individual. Finally, the results of the simulation for facility layout problem and no-wait schedule problem are given. It is shown that the hybrid partheno- genetic algorithm is of high efficiency.