期刊文献+
共找到56,583篇文章
< 1 2 250 >
每页显示 20 50 100
Synergistic mechanism of corn steep liquor and myo-inositol co-application in alleviating salt stress in Chinese cabbage
1
作者 Xinjun Zhang Fengbo Ma +5 位作者 Xiaojing Ma Jiahong Zuo Xueming Fan Kangguo Mu Wenna Zhang Qing Chen 《Horticultural Plant Journal》 2026年第1期207-211,共5页
Salinization of agricultural land is becoming increasingly severe worldwide,posing a significant threat to food security.The exogenous application of bioactive substances has been widely used to enhance plant resistan... Salinization of agricultural land is becoming increasingly severe worldwide,posing a significant threat to food security.The exogenous application of bioactive substances has been widely used to enhance plant resistance to salt stress.In this study,we used corn steep liquor(CSL),myo-inositol(MI),and their combination to improve salt tolerance in Chinese cabbage(Brassica rapa L.ssp.pekinensis)under salt stress conditions.All three treatments significantly increased plant biomass and nutrient uptake,and improved soil physicochemical properties,while alleviating oxidative damage and ion toxicity. 展开更多
关键词 corn steep liquor exogenous application bioactive substances improve salt tolerance chinese cabbage brassica enhance plant resistance salt stressin salt stress corn steep liquor csl myo inositol mi myo inositol
在线阅读 下载PDF
Revolutionizing titanium production:A comprehensive review of thermochemical and molten salt electrolysis processes
2
作者 Haohang Ji Shenghui Guo +3 位作者 Lei Gao Li Yang Hengwei Yan Hongbo Zeng 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期15-34,共20页
Titanium exhibits outstanding properties,particularly,high specific strength and resistance to both high and low temperatures,earning it a reputation as the metal of the future.However,because of the highly reactive n... Titanium exhibits outstanding properties,particularly,high specific strength and resistance to both high and low temperatures,earning it a reputation as the metal of the future.However,because of the highly reactive nature of titanium,metallic titanium production involves extensive procedures and high costs.Considering its advantages and limitations,the European Union has classified titanium metal as a critical raw material(CRM)of low category.The Kroll process is predominantly used to produce titanium;however,molten salt electrolysis(MSE)is currently being explored for producing metallic titanium at a low cost.Since 2000,electrolytic titanium production has undergone a wave of technological advancements.However,because of the intermediate and disproportionation reactions in the electrolytic titanium production process,the process efficiency and titanium purity according to industrial standards could not be achieved.Consequently,metallic titanium production has gradually diversified into employing technologies such as thermal reduction,MSE,and titanium alloy preparation.This study provides a comprehensive review of research advances in titanium metal preparation technologies over the past two decades,highlighting the challenges faced by the existing methods and proposing potential solutions.It offers useful insights into the development of low-cost titanium preparation technologies. 展开更多
关键词 titanium preparation titanium alloy thermal reduction molten salt electrolysis
在线阅读 下载PDF
Heavy metal risks and policy analysis on using industrial waste salts for making value-added snow-melting agents
3
作者 Yubiao Ma Jiaxin Yin +2 位作者 Yunfei Wang Lei Wang Jianxin Zhu 《Journal of Environmental Sciences》 2026年第1期756-766,共11页
Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may po... Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may pose certain environmental risks.Snow-melting agents and snow samples were collected and analyzed from highways,arterial roads,footbridges,and other locations in Beijing after the snowstorm in December 2023.It was found that the main component of snow-melting agents was sodium chloride with high concentrations of Cu,Mn,and Zn,which are not regulated in the current policies,despite the recent promotion of environmentally friendly snow-melting agents.The Pb,Zn and Cr contents of some snow samples exceeded the limitation value of surface water quality standards,potentially affecting the soil and water environment near roadsides,although the snow-melting agents comply with relevant standards,which indicates the policy gap in the management of recycled industrial salts.We reviewed and analyzed the relevant standards for snow-melting agents and industrial waste salts proposed nationally and internationally over the past 30 years.Through comparative analysis,we proposed relevant policy recommendations to the existing quality standards of snow-melting agents and the management regulations of industrial waste salts,and the formulation of corresponding usage strategies,aimed at reducing the potential environmental release of heavy metals from the use of snow-melting agents,thereby promoting more sustainable green urban development and environmentally sound waste management. 展开更多
关键词 Snow-melting agent Heavy metals Industrial waste salts recycled Comparative analysis
原文传递
Conceptual design and preliminary feasibility study of fluid‑driven suspended control rods for molten salt reactors
4
作者 Jin‑Tong Cao Gui‑Feng Zhu +4 位作者 Chang‑Qing Yu Ya‑Fen Liu Yang Zou Rui Yan Hong‑Jie Xu 《Nuclear Science and Techniques》 2026年第1期225-243,共19页
Molten salt reactors,being the only reactor type among Generation Ⅳ advanced nuclear reactors that utilize liquid fuels,offer inherent safety,high-temperature,and low-pressure operation,as well as the capability for ... Molten salt reactors,being the only reactor type among Generation Ⅳ advanced nuclear reactors that utilize liquid fuels,offer inherent safety,high-temperature,and low-pressure operation,as well as the capability for online fuel reprocessing.However,the fuel-salt flow results in the decay of delayed neutron precursors(DNPs)outside the core,causing fluctuations in the effective delayed neutron fraction and consequently impacting the reactor reactivity.Particularly in accident scenarios—such as a combined pump shutdown and the inability to rapidly scram the reactor—the sole reliance on negative temperature feedback may cause a significant increase in core temperature,posing a threat to reactor safety.To address these problems,this paper introduces an innovative design for a passive fluid-driven suspended control rod(SCR)to dynamically compensate for reactivity fluctuations caused by DNPs flowing with the fuel.The control rod operates passively by leveraging the combined effects of gravity,buoyancy,and fluid dynamic forces,thereby eliminating the need for an external drive mechanism and enabling direct integration within the active region of the core.Using a 150 MWt thorium-based molten salt reactor as the reference design,we develop a mathematical model to systematically analyze the effects of key parameters—including the geometric dimensions and density of the SCR—on its performance.We examine its motion characteristics under different core flow conditions and assess its feasibility for the dynamic compensation of reactivity changes caused by fuel flow.The results of this study demonstrate that the SCR can effectively counteract reactivity fluctuations induced by fuel flow within molten salt reactors.A sensitivity analysis reveals that the SCR’s average density exerts a profound impact on its start-up flow threshold,channel flow rate,resistance to fuel density fluctuations,and response characteristics.This underscores the critical need to optimize this parameter.Moreover,by judiciously selecting the SCR’s length,number of deployed units,and the placement we can achieve the necessary reactivity control while maintaining a favorable balance between neutron economy and heat transfer performance.Ultimately,this paper provides an innovative solution for the passive reactivity control in molten salt reactors,offering significant potential for practical engineering applications. 展开更多
关键词 Molten salt reactor DNP flow-induced reactivity Passive control Suspended control rod
在线阅读 下载PDF
High-temperature oxidation resistance of TiB_(2)coatings on molybdenum produced by molten salt electrophoretic deposition
5
作者 Qian Kou Chuntao Ge +6 位作者 Yanlu Zhou Wenjuan Qi Junjie Xu Weiliang Jin Jun Zhang Hongmin Zhu Saijun Xiao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期282-291,共10页
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti... TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance. 展开更多
关键词 molten salt electrophoretic deposition MOLYBDENUM TiB_(2)coating high-temperature oxidation resistance
在线阅读 下载PDF
MdWRKY71 as a positive regulator involved in 5-aminolevulinic acid-induced salt tolerance in apple 被引量:2
6
作者 Yage Li Liuzi Zhang +3 位作者 Zhouyu Yuan Jianting Zhang Yan Zhong Liangju Wang 《Horticultural Plant Journal》 2025年第4期1397-1413,共17页
5-Aminolevulinic acid(ALA),is a novel plant growth regulator that can enhance plant tolerance against salt stress.However,the molecular mechanism of ALA is not well studied.In this study,ALA improved salt tolerance of... 5-Aminolevulinic acid(ALA),is a novel plant growth regulator that can enhance plant tolerance against salt stress.However,the molecular mechanism of ALA is not well studied.In this study,ALA improved salt tolerance of apple(Malus×domestica'Gala')when the detached leaves or cultured calli were used as the materials.The expression of MdWRKY71,a WRKY transcription factor(TF)gene was found to be responsive to NaCl as well as ALA treatment.Functional analysis showed that overexpressing(OE)-MdWRKY71 significantly improved the salt tolerance of the transgenic apple,while RNA interfering(RNAi)-MdWRKY71 reduced the salt tolerance.However,exogenous ALA alleviated the salt damage in the RNAi-MdWRKY71 apple.When MdWRKY71 was transferred into tobacco,the salt tolerance of transgenic plants was enhanced,which was further improved by exogenous ALA.Subsequently,MdWRKY71 bound to the W-box of promoters of MdSOS2,MdNHX1,MdCLC-g,MdSOD1,MdCAT1 and MdAPX1,transcriptionally activating the gene expressions.Since the genes are responsible for Na+and Cl-transport and antioxidant enzyme activity respectively,it can be concluded that MdWRKY71,a new TF,is involved in ALA-improved salt tolerance by regulating ion homeostasis and redox homeostasis.These results provided new insights into the transcriptional regulatory mechanism of ALA in enhancing apple salt tolerance. 展开更多
关键词 APPLE ALA MdWRKY71 salt stress Transcriptional regulation
在线阅读 下载PDF
Optimization of lithium extraction solar pond in Zabuye Salt Lake: Theoretical calculation combined with field experiments 被引量:1
7
作者 Tao Ding Zhen Nie +6 位作者 Qian Wu Jiang-jiang Yu Ling-zhong Bu Yun-sheng Wang En-yuan Xing Mian-ping Zheng Yu-bin Li 《China Geology》 2025年第1期26-38,共13页
This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducte... This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines. 展开更多
关键词 salt lake Solar pond Lithium extraction Crystallization rate Box-Behnken Computational fluid dynamics Response surface Zabuye salt lake Mineral exploration engineering
在线阅读 下载PDF
Development status and prospect of salt cavern energy storage technology 被引量:1
8
作者 Jianfeng Liu Jianliang Pei +2 位作者 Jinbing Wei Jianxiong Yang Huining Xu 《Earth Energy Science》 2025年第2期159-179,共21页
The rapid development of energy storage technology has provided tremendous support for the energy transition in countries worldwide.Salt cavern energy storage,as a form of energy storage technology,has gained widespre... The rapid development of energy storage technology has provided tremendous support for the energy transition in countries worldwide.Salt cavern energy storage,as a form of energy storage technology,has gained widespread attention due to its large storage capacity and broad distribution.Therefore,this paper primarily discusses the current research status of salt cavern energy storage technology,with a focus on analyzing its classifications,advantages,disadvantages,and the challenges and countermeasures associated with its development.This study aims to promote further advancement in salt cavern energy storage technology. 展开更多
关键词 salt cavern Energy storage Renewable energy Underground space
在线阅读 下载PDF
TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C 被引量:1
9
作者 Yuxiang Qin Bao Zhang +2 位作者 Shoufu Cui Xiaochun Qin Genying Li 《Journal of Integrative Agriculture》 2025年第3期1017-1029,共13页
FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especi... FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especially the molecular mechanism through which FLZs function,are not well understood.In this study,we characterized 120FLZs in wheat and revealed the function and mechanism of TaFLZ54D increasing salt stress tolerance in transgenic wheat.Expression analysis demonstrated that TaFLZ54D can be induced by NaCl treatment and it had the highest expression level under NaCl treatment among the 120 FLZs.Over-expression of TaFLZ54D increased wheat salt stress tolerance and the transgenic plants had higher levels of superoxide dismutase(SOD)and peroxidase(POD)activities and soluble sugar content,but a lower Na^(+)/K^(+)ratio and malondialdehyde(MDA)content than the wild type(WT)plants.Potassium ion transmembrane transporters and serine/threonine kinase inhibitor proteins showed differential expression between Ta FLZ54D transgenic wheat and the WT.Yeast two hybrid and luciferase complementation assays revealed that TaSGT1 and TaPP2C are the proteins that interact directly with TaFLZ54D.In summary,TaFLZ54D enhances salt stress tolerance through interaction with TaSGT1 and TaPP2C to reduce Na^(+)absorption and mitigate oxidative stress.The interaction between TaFLZ54D and TaSGT1,as well as TaPP2C indicated a link between salt stress tolerance of TaFLZ54D and the ubiquitin-mediated degradation of negative regulatory proteins. 展开更多
关键词 WHEAT FLZ salt tolerance protein interaction Na^(+)exclusion
在线阅读 下载PDF
Research status of creep-fatigue characteristics of salt rocks and stability of compressed air storage in salt caverns 被引量:1
10
作者 Marion Fourmeau Wen Liu +4 位作者 Zongze Li Daniel Nelias Jinyang Fan Hao Tian Wei Liu 《Earth Energy Science》 2025年第1期98-116,共19页
Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are t... Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are taking measures to carry out energy transformation and construct new energy systems.As an important part of the new energy system,energy storage technology is highly valued by all countries.Among many large-scale energy storage technologies,salt cavern compressed air energy storage(CAES)technology stands out for its safety and economy,which is recognized and valued by scholars from various countries.For the construction of salt cavern CAES power station,it is very important to ensure the stability of salt cavern.Therefore,scholars have investigated the mechanical properties of salt rocks and the stability of salt caverns for CAES.This paper synthesizes the findings of current research on the creep and fatigue properties of salt rock,highlighting three key points:The factors influencing the creep and fatigue characteristics of salt rock include its composition,stress levels,and temperature.Notably,impurities and surrounding pressure tend to inhibit the deformation of salt rock,whereas elevated temperature and differential stress facilitate its deformation;The mechanisms governing creep and fatigue damage in salt rock are primarily associated with dislocation movement and microcracking;Most existing constitutive models for creep and fatigue are based on viscoelastic-plasticity theory,with fewer models derived from micro-mechanical perspectives.Additionally,this paper reviews studies on the stability of salt cavern CAES reservoirs utilizing numerical simulation methods and offers insights into future research directions concerning the creep and fatigue properties of salt rocks. 展开更多
关键词 salt rock Creep properties Fatigue properties Stability of energy storage
在线阅读 下载PDF
An LRR-RLK protein modulates drought-and salt-stress responses in maize 被引量:1
11
作者 Zhirui Yang Chen Wang +10 位作者 Tengfei Zhu Jiafan He Yijie Wang Shiping Yang Yu Liu Bochen Zhao Chaohui Zhu Shuqing Ye Limei Chen Shengxue Liu Feng Qin 《Journal of Genetics and Genomics》 2025年第3期388-399,共12页
Maize(Zea mays),which is a vital source of food,feed,and energy feedstock globally,has significant potential for higher yields.However,environmental stress conditions,including drought and salt stress,severely restric... Maize(Zea mays),which is a vital source of food,feed,and energy feedstock globally,has significant potential for higher yields.However,environmental stress conditions,including drought and salt stress,severely restrict maize plant growth and development,leading to great yield losses.Leucine-rich repeat receptor-like kinases(LRR-RLKs)function in biotic and abiotic stress responses in the model plant Arabidopsis(Arabidopsis thaliana),but their roles in abiotic stress responses in maize are not entirely understood.In this study,we determine that the LRR-RLK ZmMIK2,a homolog of the Arabidopsis LRR-RK MALE DISCOVERER 1(MDIS1)-INTERACTING RECEPTOR LIKE KINASE 2(MIK2),functions in resistance to both drought and salt stress in maize.Zmmik2 plants exhibit enhanced resistance to both stresses,whereas overexpressing ZmMIK2 confers the opposite phenotypes.Furthermore,we identify C2-DOMAIN-CONTAINING PROTEIN 1(ZmC2DP1),which interacts with the intracellular region of ZmMIK2.Notably,that region of ZmMIK2 mediates the phosphorylation of ZmC2DP1,likely by increasing its stability.Both ZmMIK2 and ZmC2DP1 are mainly expressed in roots.As with ZmMIK2,knockout of ZmC2DP1 enhances resistance to both drought and salt stress.We conclude that ZmMIK2-ZmC2DP1 acts as a negative regulatory module in maize drought-and salt-stress responses. 展开更多
关键词 MAIZE LRR-RLK protein C2-domain containing protein DROUGHT salt stress
原文传递
Progress in study of spray pyrolysis technology for chloride salt solutions in rare earth extraction and separation processes 被引量:1
12
作者 Ziyi Cheng Xiaowei Huang +5 位作者 Zongyu Feng Jianping Long Hai Yu Meng Wang Juanyu Yang Haiqing Hao 《Journal of Rare Earths》 2025年第10期2053-2064,I0001,共13页
This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.... This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy. 展开更多
关键词 Rare earths Separation processes Spray pyrolysis technology Chloride salt solutions Green recycling
原文传递
Densification and thermal properties of cylindrical graphite-based fuel elements used in a molten salt reactor
13
作者 WANG Gan WANG Hao-ran +5 位作者 LU Lin-yuan LI Wan-lin CHEN Nan-nan HE Yun ZHONG Ya-juan LIN Jun 《新型炭材料(中英文)》 北大核心 2025年第6期1362-1376,I0059,共16页
Based on the service characteristics of fuel elements for molten salt reactors,they need to have a high power density,resistance to coolant infiltration,and excellent thermodynamic properties.To solve the problem of t... Based on the service characteristics of fuel elements for molten salt reactors,they need to have a high power density,resistance to coolant infiltration,and excellent thermodynamic properties.To solve the problem of the graphite used in the fuel element for these reactors being susceptible to molten salt infiltration,carbon black(CB)was added to increase the density of the graphite,and a fuel element(TRISO(tri-structural isotropic)fuel particles were randomly distributed in the modified graphite matrix)was prepared by cold isostatic pressing process.An out-of-pile performance study shows that the densification and pore structure of the modified graphite matrix were improved,as was the resistance to molten salt infiltration.The median pore size of the modified graphite was reduced from 673 to 433 nm and the threshold pressure for molten salt(FLiBe,66%(molar fraction)LiF and 34%BeF_(2))infiltration was increased from 0.88 to 1.37 MPa.The isotropic CB made the graphite matrix less anisotropic,while its thermal conductivity and compressive strength were reduced due to the difficult graphitization of CB.Fuel elements containing 20%(volume fraction)TRISO particles were prepared.Numerical simulations show that the power and temperature distribution of the fuel were in line with the design requirements.The modified graphite matrix had a higher density,smaller pores,a lower anisotropy and a greater resistance to FLiBe infiltration. 展开更多
关键词 Molten salt reactor Cylindrical fuel element Graphite matrix Thermal properties Molten salt infiltration
在线阅读 下载PDF
Intramolecular Charge Transfer Complex Enabled Trifluoromethylation of Heteroarenes with Trifluoromethyl Phosphonium Salt
14
作者 Liu Shuai Chen Kunquan +2 位作者 Sun Dequn Liu Qiang Chen Xiangyu 《有机化学》 北大核心 2025年第7期2545-2551,共7页
A photoinduced intramolecular charge transfer complex(ICTC)-enabled photoreduction of trifluoromethyl phosphonium salt for the trifluoromethylation of heteroarenes was developed.It offers a convenient approach to intr... A photoinduced intramolecular charge transfer complex(ICTC)-enabled photoreduction of trifluoromethyl phosphonium salt for the trifluoromethylation of heteroarenes was developed.It offers a convenient approach to introduce trifluoromethyl group to a wide range of aromatic heterocycles,such as indoles,pyrrole,substituted benzene,coumarin,and chromone.This strategy provides operational simplicity,photocatalyst-,transition metal-,and oxidant-free conditions,making it highly advantageous. 展开更多
关键词 trifluoromethyl phosphonium salt charge transfer complex TRIFLUOROMETHYLATION PHOTOINDUCED
原文传递
Effect of Cu and Mo Alloying on Microstructure and Molten Salt Corrosion Resistance of 347H Stainless Steel
15
作者 Yu Zhiqi Zhao Yanchun +4 位作者 Liu Tianzeng Feng Li Ma Huwen Li Jucang Pan Jixiang 《稀有金属材料与工程》 北大核心 2025年第4期862-870,共9页
A static corrosion experiment of 347H stainless steel alloyed with elements Cu and Mo was carried out in a nitrate molten salt(60%NaNO_(3)+40%KNO_(3))at 565℃ for 720 h.The effects of elements Cu and Mo on the corrosi... A static corrosion experiment of 347H stainless steel alloyed with elements Cu and Mo was carried out in a nitrate molten salt(60%NaNO_(3)+40%KNO_(3))at 565℃ for 720 h.The effects of elements Cu and Mo on the corrosion resistance of 347H stainless steel in molten salt were investigated by analyzing the phase composition,microstructure and chemical composition of the corrosion products.The results show that the grain refinement induced by element Mo imparts the stainless steel with optimal corrosion resistance at a medium grain size.Furthermore,the formation of MoC significantly enhances the intergranular corrosion resistance of the stainless steel.The stainless steel exhibits uniform corrosion in the nitrate solution.The corrosion layer displays a dual-layer structure,and the corrosion products protecting matrix are present in both the inner and outer layers.The outer layer consists of a mixture of Fe oxides(Fe_(2)O_(3),Fe_(3)O_(4)),NaFeO_(2),and a minor amount of MgFe_(2)O_(4).Conversely,the inner layer is primarily composed of a spinel layer(FeCr_(2)O_(4),MgCr_(2)O_(4))and a thin Cu_(2)O layer.The oxidation of Cu in the inner layer leads to the formation of a dense Cu_(2)O layer,effectively impeding O_(2)-plasma infiltration into the matrix. 展开更多
关键词 ALLOYING 347H stainless steel NITRATE molten salt corrosion
原文传递
Salt reduction in cured meat products:a review on strategies and mechanisms
16
作者 Qi Chen Jinxuan Cao +3 位作者 Wenhai She Weidong Bai Xiaofang Zeng Hao Dong 《Food Science and Human Wellness》 2025年第3期864-879,共16页
Sodium chloride is one of the most widely used additives in meat curing.However,cured meat products contribute to a portion of the total sodium dietary intake.Consumers and researchers'concern about excessive sodi... Sodium chloride is one of the most widely used additives in meat curing.However,cured meat products contribute to a portion of the total sodium dietary intake.Consumers and researchers'concern about excessive sodium intake has prompted the food industry to consider ways to reduce salt content of cured meat products.The aim of this review is to provide a broad but comprehensive understanding of salt reduction strategies for cured meat products.The implications and limitations of each approach were discussed.Green technologies treatments,such as ultrasonic technology,high-pressure processing,seem to be potential to ensure microbiological safety in low-sodium cured meat products.However,these novel technologies can cause protein and fat oxidization in meat products.A combination of multiple treatments could give the desired effect.In addition,different parameter conditions need to be set according to the specific meat to achieve better salt reduction effect. 展开更多
关键词 salt reduction Cured meat products Ultrasonic technology salt substitutes High-pressure processing
在线阅读 下载PDF
A spot of green in the heart of the salt sea
17
作者 李莉 《疯狂英语(新读写)》 2025年第12期54-55,78,79,共4页
A tree seemingly growing out of a white salt island in the heart of the Dead Sea isn't something you'd expect to see when visiting the world's saltiest body of water.And yet that's exactly the sight yo... A tree seemingly growing out of a white salt island in the heart of the Dead Sea isn't something you'd expect to see when visiting the world's saltiest body of water.And yet that's exactly the sight you're treated to near the beach of Ein Bokek. 展开更多
关键词 green white salt island tree Dead Sea salt sea Ein Bokek Beach
在线阅读 下载PDF
Impact of salt dome morphology on geological storage volumetric estimations:Implications for prospect-scale assessment
18
作者 C.Nur Schub Lorena G.Moscardelli Jonathan P.Schuba 《Energy Geoscience》 2025年第4期29-40,共12页
Geological storage in salt caverns plays a critical role in managing energy resources,yet regional assessments often fall short in accounting for specific salt dome morphological variations that can significantly infl... Geological storage in salt caverns plays a critical role in managing energy resources,yet regional assessments often fall short in accounting for specific salt dome morphological variations that can significantly influence cavern engineering and storage capacity.To address this gap,we developed a refined approach to modeling salt domes,incorporating primary axis tilt,ellipticity,and conic taper.These geometric modifications are applied to a cylindrical baseline salt dome model to assess the effects on total salt volume,workable salt volume,and cavern storage potential.Case studies of four salt domes from the East Texas Salt Basin—Mount Sylvan,Boggy Creek,Steen,and Hainesville—validate the observed trends from the models.Our findings reveal that positive cone taper and primary axis tilt configurations enhance storage potential,leading to significant increases in potential cavern volume,while ellipticity and negative cone taper result in reduced storage capacities.The study underscores the importance of refining volumetric assessments by accounting for detailed morphologic variations,providing a more accurate framework for site-specific geological storage evaluations.Additionally,we discuss challenges related to intra-salt heterogeneities,including intra-salt deformation and mineralogical impurities,highlighting the need for improved site characterization to optimize the safety and efficiency of subsurface storage systems.This work contributes to the development of scalable and reliable geological storage infrastructure,essential for meeting future energy demands. 展开更多
关键词 Hydrogen storage Underground storage salt cavern salt dome Structural modeling Volumetric estimation
在线阅读 下载PDF
Harnessing sediment voids of low-grade salt mines for compressed air energy storage:Experimental and theoretical insights
19
作者 Qihang Li Wei Liu +5 位作者 Liangliang Jiang Yiwen Ju Aliakbar Hassanpouryouzband Guimin Zhang Xiangzhao Kong Jun Xu 《International Journal of Mining Science and Technology》 2025年第8期1303-1322,共20页
Renewable energy storage technologies are critical for transitioning to sustainable energy systems,with salt caverns playing a significant role in large-scale solutions.In water-soluble mining of low-grade salt format... Renewable energy storage technologies are critical for transitioning to sustainable energy systems,with salt caverns playing a significant role in large-scale solutions.In water-soluble mining of low-grade salt formations,insoluble impurities and interlayers detach during salt dissolution and accumulate as sediment at the cavern base,thereby reducing the storage capacity and economic viability of salt cavern gas storage(SCGS).This study investigates sediment formation mechanisms,void distribution,and voidage in the Huai'an low-grade salt mine,introducing a novel self-developed physical simulation device for two butted-well horizontal(TWH)caverns that replicates compressed air injection and brine discharge.Experiments comparing“one injection and one discharge”and“two injections and one discharge”modes revealed that(1)compressed air effectively displaces brine from sediment voids,(2)a 0.5 MPa injection pressure corresponds to a 10.3 MPa operational lower limit in practice,aligning with field data,and(3)sediment voidage is approximately 46%,validated via air-brine interface theory.The“two injections and one discharge”mode outperformed in both discharge volume and rate.Additionally,a mathematical model for brine displacement via compressed air was established.These results provide foundational insights for optimizing compressed air energy storage(CAES)in low-grade salt mines,advancing their role in renewable energy integration. 展开更多
关键词 salt cavern Sediment voids CAES Energy storage Physical experiment Low-grade salt mines
在线阅读 下载PDF
Erratum to“Research status of creep-fatigue characteristics of salt rocks and stability of compressed air storage in salt caverns”[Earth Energy Sci.1(2025)98-116]
20
作者 Marion Fourmeau Wen Liu +4 位作者 Zongze Li Daniel Nelias Jinyang Fan Hao Tian Wei Liu 《Earth Energy Science》 2025年第2期117-117,共1页
The publisher regrets that the article type for this publication was incorrectly labeled as a Research Article.The correct designation should be Review Article.
关键词 salt caverns compressed air storage creep fatigue characteristics salt rocks STABILITY
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部