Hard carbon draws great interests as anode material in lithium ion batteries (LIBs) due to its high the- oretical capacity, high rate capability and abundance of its precursors. Herein we firstly synthesize the lign...Hard carbon draws great interests as anode material in lithium ion batteries (LIBs) due to its high the- oretical capacity, high rate capability and abundance of its precursors. Herein we firstly synthesize the lignin-melamine resins by grafting melamine onto lignin. Afterwards, nitrogen doped hard carbon is pre- pared by the pyrolysis of lignin-melamine resins with the aid of catalyst (Ni(NO_3)2·6H_2O) at 1000 ℃. Compared with the samples without nitrogen-doping and catalysis, as-prepared nitrogen doped hard car- bon exhibits higher reversible capacity (345 mAh g-1 at 0.1 A g-1 ), higher rate capability (145 mAh g-1 at 5 A g-1) and excellent cycling stability. The superior electrochemical performance is ascribed to the synergistic effect of nitrogen doping, graphitic structure and amorphous structure. Among them, nitro- gen doping could create the vacancies around the nitrogen sites, which enhance the reactivity and the electronic conductivity of materials. Additionally, graphitic structure also enhances the electronic con- ductivity of materials, thus improving the electrochemical performance of hard carbon. It is worthwhile that Iignin, renewable and abundant biopolymer, is converted to hard carbon with good electrochemical performance, which realizes the high value utilization of lignin.展开更多
Among the synthesis techniques for graphene,chemical vapor deposition(CVD)enables the direct growth of graphene films on insulating substrates.Its advantages include uniform coverage,high quality,scalability,and compa...Among the synthesis techniques for graphene,chemical vapor deposition(CVD)enables the direct growth of graphene films on insulating substrates.Its advantages include uniform coverage,high quality,scalability,and compatibility with industrial processes.Graphene is chemically inert and has a zero-bandgap which poses a problem for its use as a functional layer,and nitrogen doping has become an important way to overcome this.Post-plasma treatment has been explored for the synthesis of nitrogen-doped graphene,but the procedures are intricate and not suitable for large-scale production.We report the direct synthesis of nitrogen-doped graphene on a 4-inch sapphire wafer by ethanol-assisted CVD employing pyridine as the carbon feedstock,where the nitrogen comes from the pyridine and the hydroxyl group in ethanol improves the quality of the graphene produced.Additionally,the types of nitrogen dopant produced and their effects on III-nitride epitaxy were also investigated,resulting in the successful illumination of LED devices.This work presents an effective synthesis strategy for the preparation of nitrogen-doped graphene,and provides a foundation for designing graphene functional layers in optoelectronic devices.展开更多
Development of efficient and stable metal catalysts for the selective aqueous phase hydrodeoxygenation(HDO)of biomass-derived oxygenates to value-added biofuels is highly desired.An innovative surface microenvironment...Development of efficient and stable metal catalysts for the selective aqueous phase hydrodeoxygenation(HDO)of biomass-derived oxygenates to value-added biofuels is highly desired.An innovative surface microenvironment modulation strategy was used to construct the nitrogen-doped hollow carbon sphere encapsulated with Pd(Pd@NHCS-X,X:600–800)nanoreactors for catalytic HDO of biomass-derived vanillin in water.The specific surface microenvironments of Pd@NHCS catalysts including the electronic property of active Pd centers and the surface wettability and porous structure of NHCS supports could be well-controlled by the calcination temperature of catalysts.Intrinsic kinetic evaluations demonstrated that the Pd@NHCS-600 catalyst presented a high turnover frequency of 337.77 h^(–1)and a low apparent activation energy of 18.63 kJ/mol.The excellent catalytic HDO performance was attributed to the unique surface microenvironment of Pd@NHCS catalyst based on structure-performance relationship analysis and DFT calculations.It revealed that pyridinic N species dominated the electronic property regulation of Pd sites through electronic metal-support interaction(EMSI)and produced numerous electron-rich active Pd centers,which not only intensified the dissociation and activation of H2 molecules,but also substantially improved the activation capability of vanillin via the enhanced adsorption of–C=O group.The fine hydrophilicity and abundant porous structure promoted the uniform dispersion of catalyst and ensured the effective access of reactants to catalytic active centers in water.Additionally,the Pd@NHCS-600 catalyst exhibited excellent catalytic stability and broad substrate applicability for the selective aqueous phase HDO of various biomass-derived carbonyl compounds.The proposed surface microenvironment modulation strategy will provide a new consideration for the rational design of high-performance nitrogen-doped carbon-supported metal catalysts for catalytic biomass transformation.展开更多
Traditionally reduced graphene oxide(RGO)-based electromagnetic wave(EMW)absorbing materials have poor absorption effectiveness due to impedance mismatch caused by skin effect.The introduction of structural defects an...Traditionally reduced graphene oxide(RGO)-based electromagnetic wave(EMW)absorbing materials have poor absorption effectiveness due to impedance mismatch caused by skin effect.The introduction of structural defects and the design of heterogeneous interfaces play a crucial role in enhancing the polarization effect of EMW absorbers.In this study,nitrogen-doped reduced graphene oxide/zinc ferrite@nitrogen-doped carbon(NRGO/ZnFe_(2)O_(4)@NC)ternary composite with rich heterogeneous interfaces is constructed by combining solvothermal reaction,in-situ polymerization,annealing treatment with subsequent hydrothermal reaction.The research results have shown that the obtained NRGO/ZnFe_(2)O_(4)@NC ternary composite exhibits a unique core-shell structure and excellent EMW absorption performance.At a thickness of 2.61 mm,the maximum effective absorption bandwidth can reach 7.2 GHz,spanning the entire Ku-band and a portion of the X-band,and the minimum reflection loss is-61.1 dB,which is superior to most reported RGO-based EMW absorbers.The excellent EMW absorbing ability is mainly ascribed to the optimized impedance matching and the enhanced polarization loss caused by the abundant heterogeneous interfaces and structural defects derived from heteroatomic nitrogen doping.Furthermore,the radar cross section in the far field is simulated by a computer simulation technique.This study provides a novel way to prepare core-shell magnetic carbon composites as highly efficient and broadband EMW absorbers.展开更多
We synthesized CN11,a carbon nitride material rich in sp^(3)hybrid graphitic nitrogen(sp^(3)-N),employing a facile oxalic acid-assisted melamine molecular assembly strategy.CN11 promoted the formation of Pd nanopartic...We synthesized CN11,a carbon nitride material rich in sp^(3)hybrid graphitic nitrogen(sp^(3)-N),employing a facile oxalic acid-assisted melamine molecular assembly strategy.CN11 promoted the formation of Pd nanoparticles(NPs)predominantly exposing{200}facets,termed Pd/CN11-2.This facet-specific configuration significantly boosted hydrogen adsorption,leading to notable improvements in catalytic activity.Compared to Pd/XC-72-2 and Pd/g-C_(3)N_(4)-2,Pd/CN11-2 exhibited a remarkable two-fold and nineteen-fold increase in catalytic yield for hydrazo compound hydrogenation,respectively.Pd/CN11-2 also demonstrated robust performance across a range of reaction conditions,maintaining excellent yield.This study emphasizes the critical role of tailored support structures in controlling Pd NPs facets,thereby enhancing hydrogenation efficiency.It provides valuable insights for advancing the industrial application of Pd-based catalysts,underscoring the importance of strategic support modulation for optimizing catalytic performance.展开更多
Zn-air battery(ZAB)has garnered significant attention owing to its environmental friendliness and safety attributes.A critical challenge in advancing ZAB technology lies in the development of high-performance and cost...Zn-air battery(ZAB)has garnered significant attention owing to its environmental friendliness and safety attributes.A critical challenge in advancing ZAB technology lies in the development of high-performance and cost-effective electrocatalysts for oxygen redox reactions(OER and ORR).Herein,we report Co/Fe carbon-supported composites as efficient bifunctional catalyst encapsulated in oxidative ammonolysis modified lignin-derived N-doped biochar(Co Fe-Co_(x)N@NOALC).It exhibited exceptional electrochemical performance in aqueous ZAB owing to their uniform dispersed and small particle size,with a peak power density of 154 mW/cm^(2)and a specific capacity of 770 mAh/g.Most notably,it exhibited a long cycle stability,surpassing 1500 h at a current density of 10 mA/cm^(2),with a mere 11.4%decrease in the chargedischarge efficiency of the battery.This study proposes a viable strategy for enhancing the performance and reducing the cost of Zn-air batteries through the utilization of biomass-derived materials.展开更多
Solar-induced water oxidation reaction(WOR)for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages.WOR is also associate...Solar-induced water oxidation reaction(WOR)for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages.WOR is also associated with important reduction reactions,such as oxygen reduction reaction(ORR),which leads to the production of hydrogen peroxide(H_(2)O_(2)).These transitions are instrumental in the emergence and evolution of life.In this study,transition metals were loaded onto nitrogen-doped carbon(NDC)prepared under the primitive Earth's atmospheric conditions.These metal-loaded NDC samples were found to catalyze both WOR and ORR under light illumination.The chemical pathways initiated by the pristine and metal-loaded NDC were investigated.This study provides valuable insights into potential mechanisms relevant to the early evolution of our planet.展开更多
Developing high-capacity carbon-based anode materials is crucial for enhancing the performance of lithium-ion batteries(LIBs).In this study,we presented a nitrogen-doped lignin mesoporous carbon/nickel/nickel oxide(NH...Developing high-capacity carbon-based anode materials is crucial for enhancing the performance of lithium-ion batteries(LIBs).In this study,we presented a nitrogen-doped lignin mesoporous carbon/nickel/nickel oxide(NHMC/Ni/NiO)nanocomposite for developing high-capacity LIBs anode materials through carbonization and selective etching strategies.The synthesized NMHC/Ni/NiO-0.33 composite exhibited a highly regular microstructure with well-dispersed Ni/NiO particles.The composite had a surface area of 408 m^(2)·g^(−1),a mesopore ratio of 75.0%,and a pyridine–nitrogen ratio of 58.9%.The introduction of nitrogen atoms reduced the disordered structure of lignin mesoporous carbon and enhanced its electrical conductivity,thus improving the lithium storage capabilities of the composite.Following 100 cycles at a current density of 0.2 A·g^(−1),the composite demonstrated enhanced Coulomb efficiency and rate performance,achieving a specific discharge capacity of 1230.9 mAh·g^(−1).At a high-current density of 1 A·g^(−1),the composite exhibited an excellent specific discharge capacity of 714.6 mAh·g^(−1).This study presents an innovative method for synthesizing high-performance anode materials of LIBs.展开更多
The recycling of plastics is a significant global concern.Due to the thermosetting properties of melamineformaldehyde(MF)resin plastics,which make heating and melting difficult,their recycling and reuse pose substanti...The recycling of plastics is a significant global concern.Due to the thermosetting properties of melamineformaldehyde(MF)resin plastics,which make heating and melting difficult,their recycling and reuse pose substantial challenges.In this study,we developed nitrogen-doped(N-doped)carbon materials through scalable carbonization of MF resin plastic waste.This metal-free N-doped carbon catalyst achieved a hydrogen peroxide(H_(2)O_(2))production rate of 971.6 mmol gcatalyst^(-1)h^(-1)with a Faradaic efficiency for H_(2)O_(2)(FEH_(2)O_(2))exceeding 90%under acidic conditions.Additionally,a flow cell utilizing this carbon catalyst demonstrated a production rate of 11.3 mol cm^(-2)h^(-1)(22.5 mol g_(catalyst)^(-1)h^(-1))and maintained a record-high current density of approximately 530 mA cm^(-2)over 300 h.In-situ electrochemical surface-enhanced Raman spectroscopy and density functional theory calculations revealed the presence of porphyrin-like carbon defects,which serve as active sites for the continuous and stable generation of^(*)OOH species.The nitrogen-doped carbon materials obtained from large-scale carbonization of MF plastic waste exhibit abundant active sites,making them highly promising electrocatalysts for the two-electron oxygen reduction reaction(2e^(-)ORR).展开更多
Lithium metal is considered to be the most promising anode material for the next-generation rechargeable batteries. However, the uniform and dendrite-free deposition of Li metal anode is hard to achieve, hindering its...Lithium metal is considered to be the most promising anode material for the next-generation rechargeable batteries. However, the uniform and dendrite-free deposition of Li metal anode is hard to achieve, hindering its practical applications. Herein, a lightweight, free-standing and nitrogen-doped carbon nanofiber-based 3D structured conductive matrix(NCNF), which is characterized by a robust and interconnected 3D network with high doping level of 9.5 at%, is prepared by electrospinning as the current collector for Li metal anode. Uniform Li nucleation with reduced polarization and dendrite-free Li deposition are achieved because the NCNF with high nitrogen-doping level and high conductivity provide abundant and homogenous metallic Li nucleation and deposition sites. Excellent cycling stability with high coulombic efficiency are realized. The Li plated NCNF was paired with LiFePO4 to assemble the full battery, also showing high cyclic stability.展开更多
For treatment of sulfion-containing wastewater,coupling the electrochemical sulfion oxidation reaction(SOR)with hydrogen evolution reaction(HER)can be an ideal way for sulfur and H_(2)resources recovery.Herein,we synt...For treatment of sulfion-containing wastewater,coupling the electrochemical sulfion oxidation reaction(SOR)with hydrogen evolution reaction(HER)can be an ideal way for sulfur and H_(2)resources recovery.Herein,we synthesize a metal-modified carbon nanotube arrays electrode(Co@N-CNTs/CC)for SOR and HER.This electrode has excellent performance for SOR and HER attributed to the unique array structure.It can achieve 99.36 mA/cm^(2)at 0.6 V for SOR,and 10 mA/cm^(2)at 0.067 V for HER.Density functional theory calculations verify that metal modification is able to regulate the electronic structure of carbon nanotube,which is able to optimize the adsorption of intermediates.Employed Co@N-CNTs/CC as bifunctional elec-trodes to establish a hybrid electrolytic cell can reduce about 67%of energy consumption compared with the traditional water splitting electrolytic cell.Finally,the hybrid electrolytic cell is used to treat actual sulfion-containing wastewater,achieving the sulfur yield of 30 mg h^(−1)cm^(−2)and the hydrogen production of 0.64 mL/min.展开更多
Lithium–sulfur(Li–S)batteries have the advantages of high-energy-density,low cost,and environmental friendliness,but the sluggish sulfur redox reactions and the severe shuttle effect of lithium polysulfide(LiPSs)aff...Lithium–sulfur(Li–S)batteries have the advantages of high-energy-density,low cost,and environmental friendliness,but the sluggish sulfur redox reactions and the severe shuttle effect of lithium polysulfide(LiPSs)affect their performance.Herein,we developed a highly efficient electrocatalyst(CNT/HEA-NC)consisting of high-entropy alloy(HEA)nanoparticles decorated with nitrogen-doped carbon(NC)and carbon nanotubes(CNTs)conductive networks.In the elaborate nanostructured protocol,the HEA nanoparticles with high catalytic activity accelerate the bidirectional conversion of LiPSs,the NC with strong sulfophilic activity effectively adsorb LiPSs to suppress the shuttle effect,and the CNT conductive network provides a fast electrons/ions transport pathway.Benefiting from the hierarchical confinement,Li–S batteries with CNT/HEA-NC modified separators deliver a discharge specific capacity of 692.0 mA h g^(−1)after 300 cycles at 1 C with a capacity decay rate of only 0.03%per cycle.Even at a current density of 5 C,the cell exhibits a superior capacity of 521.1 mAh g^(−1).This work provides a general strategy for integrating multifunctional electrocatalysts for high-performance Li–S batteries.展开更多
Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon na...Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon nanocages(NCNCs).NCNCs possess a large specific surface area of 1395 m^(2)·g^(-1),a high N atomic content of 9.37%and good biocompatibility,which is favorable for enzyme loading and electron transfer.The surface average concentration of electroactive glucose oxidase on NCNCs was 2.82×10^(-10)mol·cm^(-2).The NCNC-based direct electrochemical biosensor exhibited a high sensitivity of 13.7μA·(mmol·L^(-1))^(-1)·cm^(-2),rapid response time of 5 s and an impressive electron-transferrate constant(ks)of 1.87 s^(-1).Furthermore,we investigated an NCNC-based direct electron transfer(DET)biosensor for sweat glucose detection,which demonstrated tremendous promise for non-invasive wearable diabetes diagnosis.展开更多
Two-dimensional(2D)nitrogen-doped graphene(NG)films have attracted considerable attention as promis-ing metal-free electrochemical catalysts for the oxygen reduction reaction(ORR).Thermal evaporation is a versatile th...Two-dimensional(2D)nitrogen-doped graphene(NG)films have attracted considerable attention as promis-ing metal-free electrochemical catalysts for the oxygen reduction reaction(ORR).Thermal evaporation is a versatile thin film deposition technique.However,the conventional thermal evaporation techniques present challenges in producing nitrogen-rich NG thin films because of the difficulties of a controllable manner for doping graphene with N atoms.To address this,we designed a vacuum thermal evaporation system for the large-scale preparation of 2D NG thin films.Using poly(2,5-benzimidazole)(ABPBI)as a nitrogen and carbon precursor,we deposited nitrogen-rich NG thin films with a size of 50×50 mm^(2) and controllable thickness within the range of 0.5–1.5 nm.The 2D NG samples exhibited a uniform thin film structure with moderate defects.The nitrogen-rich ABPBI precursor and defects,as well as the beneficial morphology and structure,endowed the optimal catalyst(2D NG-900)with a comparable ORR activity and superior stability compared with the commercial Pt/C(20 wt%)catalyst.This paper proposes a feasible strategy for fabricating 2D NG films as effective metal-free catalysts for the ORR.展开更多
In this paper,nitrogen-doped graphene quantum dots(N-GQDs)were combined with gadolinium ions(Gd^(3+))by a surface modification to obtain magneto-optical dual-functional N-GQDs/Gd^(3+)nanoparticles.The morphology of ob...In this paper,nitrogen-doped graphene quantum dots(N-GQDs)were combined with gadolinium ions(Gd^(3+))by a surface modification to obtain magneto-optical dual-functional N-GQDs/Gd^(3+)nanoparticles.The morphology of obtained composite was characterized by field emission scanning electron microscopy and transmission electron microscopy.Luminescence and magnetic properties were measured by a fluorescence spectrophotometer and a vibrating sample magnetometer,respectively.Results indicate that well-dispersed spherical N-GQDs/Gd^(3+)nanoparticles have an average diameter of 7 nm.N-doping significantly increases the luminesce nce of particles with an optimal luminescence intensity at 20℃and pH=9.X-ray photoelectron spectroscopy results indicate that the N-doping introduces pyrrolic N as an electron donor,enhancing fluorescence by increasing the surface electron cloud density of N-GQDs.In addition,density functional theory calculation results reveal that N-doping reduces the band gap of NGQDs/Gd^(3+),enabling electronic transitions to higher energy levels and generating more activation sites,thereby enhancing luminescence.Compared to N-GQDs/Gd^(3+)prepared at 20℃,the saturated magnetization of particles prepared at 40℃is 0.85 emu/g,indicating a better magnetic response.The above results suggest that bifunctional nanomaterials N-GQDs/Gd^(3+)with excellent optical properties and magnetism can be better used for fluorescence and magnetic resonance imaging.展开更多
An efficient electrocatalyst is indispensable to significantly reduce energy consumption and accelerate the conversion efficiency of water splitting.In this work,the honeycomb-like porous MoCo alloy on nitrogen-doped ...An efficient electrocatalyst is indispensable to significantly reduce energy consumption and accelerate the conversion efficiency of water splitting.In this work,the honeycomb-like porous MoCo alloy on nitrogen-doped three-dimensional(3D)porous graphene substrate(Mo_(0.3)Co_(0.7)@NPG)has been synthesized from the annealing of layered double hydroxide(MoCo-LDH@NPG).Especially,the Mo_(0.3)Co_(0.7)@NPG exhibits low hydrogen evolution overpotential of 75 mV(10 mA·cm^(-2))and a Tafel slope of 69.9 mV·dec^(-1),which can be attributed to highly conductive NPG substrate,the unique nanostructure and the synergistic effect of Mo and Co.Moreover,the Mo_(0.3)Co_(0.7)@NPG can maintain the original morphology and high catalytic activity after 50-h stability test.This work proposes a general strategy to synthesize a multi-element alloy on conductive substrates with high porosity for electrocatalytic reaction.展开更多
N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4C1 as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation paramete...N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4C1 as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation parameters and their impact on the structure and photocatalytic activity under ultraviolet (UV) and visible light irra-diation were carried out. Multiple techniques (XRD, TEM, DRIF, DSC, and XPS) were commanded to characterize the crystal structures and chemical binding of N-doped TiO2. Its photocatalytic activity was examined by the deg- radation of organic compounds. The catalytic activity of the prepared N-doped TiO2 nanoparticles under visible light (λ〉400nm) irradiation is evidenced by the decomposition of 4-chlorophenol, showing that nitrogen atoms in the N-doped TiO2 nanoparticle catalyst are responsible for the visible light catalytic activity. The N-doped TiO2 nanoparticle catalyst prepared with this modified route exhibits higher catalytic activity under UV irradiation in contrast to TiO2 without N-doping. It is suggested that the doped nitrogen here is located at the interstitial site of TiO2 lattice.展开更多
Many electrochemical energy storage devices,such as batteries,supercapacitors,and metal ion capacitors,rely on effective and inexpensive electrode materials.Herein,we have developed highly active nitrogen-doped porous...Many electrochemical energy storage devices,such as batteries,supercapacitors,and metal ion capacitors,rely on effective and inexpensive electrode materials.Herein,we have developed highly active nitrogen-doped porous carbon nanofoams(NPCNs-600-N)for sodium-ion capacitors(SICs).NPCNs-600-N have a highly porous framework,extended interlayer spacing(0.41 nm),and lots of surface functional groups.Accordingly,NPCNs-600-N achieves a high reversible capacity(301 mAh·g^(-1)at 0.05 A·g^(-1)),superior rate capability(112 mAh·g^(-1)at 5.00 A·g^(-1)),and ultra-stable cyclability.The excellent rate and cycling performance originate from the abundant active sites and porous architecture of NPCNs-600-N.Further-more,SICs device is constructed by employing the NPCNs-600-N as the battery-like anode and commercial superconductive carbon black as the capacitive cathode,which delivers high energy/power densities of 92 Wh·kg^(-1)/15984 W·kg^(-1)with a remarkable cyclability(93%reten-tion over 5000 cycles at 1.00 A·g^(-1)).The methodology of the work enables the simultaneous tuning of the porous architectures and surface function groups of carbon for high-performance SICs.展开更多
In this report, nitrogen-doped porous carbons were synthesized from polyacrylonitrile fiber by a facile two-step synthesis process i.e. carbonization followed by KOH activation. Activation temperature and KOH/carbon r...In this report, nitrogen-doped porous carbons were synthesized from polyacrylonitrile fiber by a facile two-step synthesis process i.e. carbonization followed by KOH activation. Activation temperature and KOH/carbon ratio are two parameters to tune the porosity and surface chemical properties of sorbents. The as-obtained sorbents were carefully characterized.Special attention was paid concerning the change of sorbents’ morphology with respect to synthesis conditions. Under the activation temperatures of this study, the sorbents can still retain their fibrous structure when the KOH/carbon mass ratio is 1. Further increasing the KOH amount will destroy the original morphology of polyacrylonitrile fiber. CO_(2)adsorption performance tests show that a sorbent retaining the fibrous shape possesses the highest CO_(2)uptake of 3.95 mmol/g at 25℃and 1 bar. Comprehensive investigation found that the mutual effect of narrow microporosity and doped N content govern the CO_(2)adsorption capacity of these adsorbents. Furthermore, these polyacrylonitrile fiber-derived carbons present multiple outstanding CO_(2)capture properties such as excellent recyclability, high CO_(2)/N_(2)selectivity, fast adsorption kinetics, suitable heat of adsorption, and good dynamic adsorption capacity. Hence, nitrogen-doped porous carbons with fibrous structure are promising in CO_(2)capture.展开更多
Potassium-ion hybrid capacitors(PIHCs)as a burgeoning research hotspot are an ideal replacement for lithium-ion hybrid capacitors(LIHCs).Here,we report nitrogen-doped porous carbon nanosheets(NPCNs)with enlarged inter...Potassium-ion hybrid capacitors(PIHCs)as a burgeoning research hotspot are an ideal replacement for lithium-ion hybrid capacitors(LIHCs).Here,we report nitrogen-doped porous carbon nanosheets(NPCNs)with enlarged interlayer spacing,abundant defects,and favorable mesoporous structures.The structural changes of NPCNs in potassiation and depotassiation processes are analyzed by using Raman spectroscopy and transmission electron microscopy.Due to the unique structure of NPCNs,the PIHC device assembled using NPCNs as both the anode and cathode material(double-functional self-matching material)exhibits a superior energy density of 128 Wh kg^(-1)with a capacity retention of 90.8%after 9000 cycles.This research can promote the development of double-functional self-matching materials for hybrid energy storage devices with ultra-high performance.展开更多
基金financially supported by the Science and Technology research on strategic emerging industry of Hunan Province, China (Grant No. 2016GK4029)Shenzhen Greenway Technology Co., Ltd in China (No. H20150420035)the Fundamental Research Funds for the Central Universities of Central South University (No. 2017zzts126)
文摘Hard carbon draws great interests as anode material in lithium ion batteries (LIBs) due to its high the- oretical capacity, high rate capability and abundance of its precursors. Herein we firstly synthesize the lignin-melamine resins by grafting melamine onto lignin. Afterwards, nitrogen doped hard carbon is pre- pared by the pyrolysis of lignin-melamine resins with the aid of catalyst (Ni(NO_3)2·6H_2O) at 1000 ℃. Compared with the samples without nitrogen-doping and catalysis, as-prepared nitrogen doped hard car- bon exhibits higher reversible capacity (345 mAh g-1 at 0.1 A g-1 ), higher rate capability (145 mAh g-1 at 5 A g-1) and excellent cycling stability. The superior electrochemical performance is ascribed to the synergistic effect of nitrogen doping, graphitic structure and amorphous structure. Among them, nitro- gen doping could create the vacancies around the nitrogen sites, which enhance the reactivity and the electronic conductivity of materials. Additionally, graphitic structure also enhances the electronic con- ductivity of materials, thus improving the electrochemical performance of hard carbon. It is worthwhile that Iignin, renewable and abundant biopolymer, is converted to hard carbon with good electrochemical performance, which realizes the high value utilization of lignin.
基金National Natural Science Foundation of China(T2188101)。
文摘Among the synthesis techniques for graphene,chemical vapor deposition(CVD)enables the direct growth of graphene films on insulating substrates.Its advantages include uniform coverage,high quality,scalability,and compatibility with industrial processes.Graphene is chemically inert and has a zero-bandgap which poses a problem for its use as a functional layer,and nitrogen doping has become an important way to overcome this.Post-plasma treatment has been explored for the synthesis of nitrogen-doped graphene,but the procedures are intricate and not suitable for large-scale production.We report the direct synthesis of nitrogen-doped graphene on a 4-inch sapphire wafer by ethanol-assisted CVD employing pyridine as the carbon feedstock,where the nitrogen comes from the pyridine and the hydroxyl group in ethanol improves the quality of the graphene produced.Additionally,the types of nitrogen dopant produced and their effects on III-nitride epitaxy were also investigated,resulting in the successful illumination of LED devices.This work presents an effective synthesis strategy for the preparation of nitrogen-doped graphene,and provides a foundation for designing graphene functional layers in optoelectronic devices.
文摘Development of efficient and stable metal catalysts for the selective aqueous phase hydrodeoxygenation(HDO)of biomass-derived oxygenates to value-added biofuels is highly desired.An innovative surface microenvironment modulation strategy was used to construct the nitrogen-doped hollow carbon sphere encapsulated with Pd(Pd@NHCS-X,X:600–800)nanoreactors for catalytic HDO of biomass-derived vanillin in water.The specific surface microenvironments of Pd@NHCS catalysts including the electronic property of active Pd centers and the surface wettability and porous structure of NHCS supports could be well-controlled by the calcination temperature of catalysts.Intrinsic kinetic evaluations demonstrated that the Pd@NHCS-600 catalyst presented a high turnover frequency of 337.77 h^(–1)and a low apparent activation energy of 18.63 kJ/mol.The excellent catalytic HDO performance was attributed to the unique surface microenvironment of Pd@NHCS catalyst based on structure-performance relationship analysis and DFT calculations.It revealed that pyridinic N species dominated the electronic property regulation of Pd sites through electronic metal-support interaction(EMSI)and produced numerous electron-rich active Pd centers,which not only intensified the dissociation and activation of H2 molecules,but also substantially improved the activation capability of vanillin via the enhanced adsorption of–C=O group.The fine hydrophilicity and abundant porous structure promoted the uniform dispersion of catalyst and ensured the effective access of reactants to catalytic active centers in water.Additionally,the Pd@NHCS-600 catalyst exhibited excellent catalytic stability and broad substrate applicability for the selective aqueous phase HDO of various biomass-derived carbonyl compounds.The proposed surface microenvironment modulation strategy will provide a new consideration for the rational design of high-performance nitrogen-doped carbon-supported metal catalysts for catalytic biomass transformation.
基金supported by the Open Research Fund Program of Engineering Technology Research Center of Coal Resources Comprehensive Utilization,Anhui Province,Anhui University of Science and Technology(Grant No.MTYJZX202301)the Anhui Provincial Natural Science Foundation(Grant No.2008085J27).
文摘Traditionally reduced graphene oxide(RGO)-based electromagnetic wave(EMW)absorbing materials have poor absorption effectiveness due to impedance mismatch caused by skin effect.The introduction of structural defects and the design of heterogeneous interfaces play a crucial role in enhancing the polarization effect of EMW absorbers.In this study,nitrogen-doped reduced graphene oxide/zinc ferrite@nitrogen-doped carbon(NRGO/ZnFe_(2)O_(4)@NC)ternary composite with rich heterogeneous interfaces is constructed by combining solvothermal reaction,in-situ polymerization,annealing treatment with subsequent hydrothermal reaction.The research results have shown that the obtained NRGO/ZnFe_(2)O_(4)@NC ternary composite exhibits a unique core-shell structure and excellent EMW absorption performance.At a thickness of 2.61 mm,the maximum effective absorption bandwidth can reach 7.2 GHz,spanning the entire Ku-band and a portion of the X-band,and the minimum reflection loss is-61.1 dB,which is superior to most reported RGO-based EMW absorbers.The excellent EMW absorbing ability is mainly ascribed to the optimized impedance matching and the enhanced polarization loss caused by the abundant heterogeneous interfaces and structural defects derived from heteroatomic nitrogen doping.Furthermore,the radar cross section in the far field is simulated by a computer simulation technique.This study provides a novel way to prepare core-shell magnetic carbon composites as highly efficient and broadband EMW absorbers.
基金supported by the National Natural Science Foundation of China(21503264,22179081 and 22076117)Natural Science Foundation of Shanghai(20ZR1422500).
文摘We synthesized CN11,a carbon nitride material rich in sp^(3)hybrid graphitic nitrogen(sp^(3)-N),employing a facile oxalic acid-assisted melamine molecular assembly strategy.CN11 promoted the formation of Pd nanoparticles(NPs)predominantly exposing{200}facets,termed Pd/CN11-2.This facet-specific configuration significantly boosted hydrogen adsorption,leading to notable improvements in catalytic activity.Compared to Pd/XC-72-2 and Pd/g-C_(3)N_(4)-2,Pd/CN11-2 exhibited a remarkable two-fold and nineteen-fold increase in catalytic yield for hydrazo compound hydrogenation,respectively.Pd/CN11-2 also demonstrated robust performance across a range of reaction conditions,maintaining excellent yield.This study emphasizes the critical role of tailored support structures in controlling Pd NPs facets,thereby enhancing hydrogenation efficiency.It provides valuable insights for advancing the industrial application of Pd-based catalysts,underscoring the importance of strategic support modulation for optimizing catalytic performance.
基金sponsored by the National Natural Science Foundation of China(Nos.U23A6005 and 22178069)。
文摘Zn-air battery(ZAB)has garnered significant attention owing to its environmental friendliness and safety attributes.A critical challenge in advancing ZAB technology lies in the development of high-performance and cost-effective electrocatalysts for oxygen redox reactions(OER and ORR).Herein,we report Co/Fe carbon-supported composites as efficient bifunctional catalyst encapsulated in oxidative ammonolysis modified lignin-derived N-doped biochar(Co Fe-Co_(x)N@NOALC).It exhibited exceptional electrochemical performance in aqueous ZAB owing to their uniform dispersed and small particle size,with a peak power density of 154 mW/cm^(2)and a specific capacity of 770 mAh/g.Most notably,it exhibited a long cycle stability,surpassing 1500 h at a current density of 10 mA/cm^(2),with a mere 11.4%decrease in the chargedischarge efficiency of the battery.This study proposes a viable strategy for enhancing the performance and reducing the cost of Zn-air batteries through the utilization of biomass-derived materials.
基金supported by the National Key Technologies R&D Program of China(Nos.2022YFE0114800 and 2021YFA1502100)National Natural Science Foundation of China(Nos.22075047,22032002,U1905214,21961142019)the 111 Project(Nos.D16008)。
文摘Solar-induced water oxidation reaction(WOR)for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages.WOR is also associated with important reduction reactions,such as oxygen reduction reaction(ORR),which leads to the production of hydrogen peroxide(H_(2)O_(2)).These transitions are instrumental in the emergence and evolution of life.In this study,transition metals were loaded onto nitrogen-doped carbon(NDC)prepared under the primitive Earth's atmospheric conditions.These metal-loaded NDC samples were found to catalyze both WOR and ORR under light illumination.The chemical pathways initiated by the pristine and metal-loaded NDC were investigated.This study provides valuable insights into potential mechanisms relevant to the early evolution of our planet.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.22278092,22078116 and 22222805)Guangdong Provincial Key Research and Development Program(No.2020B1111380002)+2 种基金Science and Technology Research Project of Guangzhou(Nos.2023A03J0034,2023A04J0077 and 202102020467)State Key Laboratory of Pulp and Paper Engineering(No.202313)Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(No.202255464).
文摘Developing high-capacity carbon-based anode materials is crucial for enhancing the performance of lithium-ion batteries(LIBs).In this study,we presented a nitrogen-doped lignin mesoporous carbon/nickel/nickel oxide(NHMC/Ni/NiO)nanocomposite for developing high-capacity LIBs anode materials through carbonization and selective etching strategies.The synthesized NMHC/Ni/NiO-0.33 composite exhibited a highly regular microstructure with well-dispersed Ni/NiO particles.The composite had a surface area of 408 m^(2)·g^(−1),a mesopore ratio of 75.0%,and a pyridine–nitrogen ratio of 58.9%.The introduction of nitrogen atoms reduced the disordered structure of lignin mesoporous carbon and enhanced its electrical conductivity,thus improving the lithium storage capabilities of the composite.Following 100 cycles at a current density of 0.2 A·g^(−1),the composite demonstrated enhanced Coulomb efficiency and rate performance,achieving a specific discharge capacity of 1230.9 mAh·g^(−1).At a high-current density of 1 A·g^(−1),the composite exhibited an excellent specific discharge capacity of 714.6 mAh·g^(−1).This study presents an innovative method for synthesizing high-performance anode materials of LIBs.
基金supported by the National Natural Science Foundation of China(Grant No.22276123,22025505)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2022ZD105)State Key Lab of Metal Matrix Composite。
文摘The recycling of plastics is a significant global concern.Due to the thermosetting properties of melamineformaldehyde(MF)resin plastics,which make heating and melting difficult,their recycling and reuse pose substantial challenges.In this study,we developed nitrogen-doped(N-doped)carbon materials through scalable carbonization of MF resin plastic waste.This metal-free N-doped carbon catalyst achieved a hydrogen peroxide(H_(2)O_(2))production rate of 971.6 mmol gcatalyst^(-1)h^(-1)with a Faradaic efficiency for H_(2)O_(2)(FEH_(2)O_(2))exceeding 90%under acidic conditions.Additionally,a flow cell utilizing this carbon catalyst demonstrated a production rate of 11.3 mol cm^(-2)h^(-1)(22.5 mol g_(catalyst)^(-1)h^(-1))and maintained a record-high current density of approximately 530 mA cm^(-2)over 300 h.In-situ electrochemical surface-enhanced Raman spectroscopy and density functional theory calculations revealed the presence of porphyrin-like carbon defects,which serve as active sites for the continuous and stable generation of^(*)OOH species.The nitrogen-doped carbon materials obtained from large-scale carbonization of MF plastic waste exhibit abundant active sites,making them highly promising electrocatalysts for the two-electron oxygen reduction reaction(2e^(-)ORR).
基金the financial support from the Guangdong Natural Science Funds for Distinguished Young Scholar (2017B030306006) the National Natural Science Foundation of China (51772164, U1601206 and U1710256)+1 种基金 the National Key Basic Research Program of China (2014CB932400)Shenzhen Technical Plan Project (JCYJ20150529164918734 and JCYJ20170412171359175)
文摘Lithium metal is considered to be the most promising anode material for the next-generation rechargeable batteries. However, the uniform and dendrite-free deposition of Li metal anode is hard to achieve, hindering its practical applications. Herein, a lightweight, free-standing and nitrogen-doped carbon nanofiber-based 3D structured conductive matrix(NCNF), which is characterized by a robust and interconnected 3D network with high doping level of 9.5 at%, is prepared by electrospinning as the current collector for Li metal anode. Uniform Li nucleation with reduced polarization and dendrite-free Li deposition are achieved because the NCNF with high nitrogen-doping level and high conductivity provide abundant and homogenous metallic Li nucleation and deposition sites. Excellent cycling stability with high coulombic efficiency are realized. The Li plated NCNF was paired with LiFePO4 to assemble the full battery, also showing high cyclic stability.
基金supported by Natural Science Foundation of Shandong Province(Nos.ZR2022QE076,ZR2021JQ15,ZR2019YQ20)the National Natural Science Foundation of China(Nos.52002145,52202092,51972147,52022037)Taishan Scholars Project Special Funds(No.tsqn201812083).
文摘For treatment of sulfion-containing wastewater,coupling the electrochemical sulfion oxidation reaction(SOR)with hydrogen evolution reaction(HER)can be an ideal way for sulfur and H_(2)resources recovery.Herein,we synthesize a metal-modified carbon nanotube arrays electrode(Co@N-CNTs/CC)for SOR and HER.This electrode has excellent performance for SOR and HER attributed to the unique array structure.It can achieve 99.36 mA/cm^(2)at 0.6 V for SOR,and 10 mA/cm^(2)at 0.067 V for HER.Density functional theory calculations verify that metal modification is able to regulate the electronic structure of carbon nanotube,which is able to optimize the adsorption of intermediates.Employed Co@N-CNTs/CC as bifunctional elec-trodes to establish a hybrid electrolytic cell can reduce about 67%of energy consumption compared with the traditional water splitting electrolytic cell.Finally,the hybrid electrolytic cell is used to treat actual sulfion-containing wastewater,achieving the sulfur yield of 30 mg h^(−1)cm^(−2)and the hydrogen production of 0.64 mL/min.
基金supported by the Jiangsu Carbon Peak Carbon Neutralization Science and Technology Innovation Special Fund(No.BE2022605)the Fundamental Research Funds for the Central Universities(No.14380163)+3 种基金the National Natural Science Foundation of China(No.22075288)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.21KJA460014,23KJB430012)Natural Science Foundation of Jiangsu Province(No.BK20231227)Nantong Basic Science Research Program(No.JC12022056).
文摘Lithium–sulfur(Li–S)batteries have the advantages of high-energy-density,low cost,and environmental friendliness,but the sluggish sulfur redox reactions and the severe shuttle effect of lithium polysulfide(LiPSs)affect their performance.Herein,we developed a highly efficient electrocatalyst(CNT/HEA-NC)consisting of high-entropy alloy(HEA)nanoparticles decorated with nitrogen-doped carbon(NC)and carbon nanotubes(CNTs)conductive networks.In the elaborate nanostructured protocol,the HEA nanoparticles with high catalytic activity accelerate the bidirectional conversion of LiPSs,the NC with strong sulfophilic activity effectively adsorb LiPSs to suppress the shuttle effect,and the CNT conductive network provides a fast electrons/ions transport pathway.Benefiting from the hierarchical confinement,Li–S batteries with CNT/HEA-NC modified separators deliver a discharge specific capacity of 692.0 mA h g^(−1)after 300 cycles at 1 C with a capacity decay rate of only 0.03%per cycle.Even at a current density of 5 C,the cell exhibits a superior capacity of 521.1 mAh g^(−1).This work provides a general strategy for integrating multifunctional electrocatalysts for high-performance Li–S batteries.
基金financially supported by National Key Research and Development Program of China(No.2021YFA1401103)the National Natural Science Foundation of China(Nos.61825403,61921005 and 61904049)。
文摘Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon nanocages(NCNCs).NCNCs possess a large specific surface area of 1395 m^(2)·g^(-1),a high N atomic content of 9.37%and good biocompatibility,which is favorable for enzyme loading and electron transfer.The surface average concentration of electroactive glucose oxidase on NCNCs was 2.82×10^(-10)mol·cm^(-2).The NCNC-based direct electrochemical biosensor exhibited a high sensitivity of 13.7μA·(mmol·L^(-1))^(-1)·cm^(-2),rapid response time of 5 s and an impressive electron-transferrate constant(ks)of 1.87 s^(-1).Furthermore,we investigated an NCNC-based direct electron transfer(DET)biosensor for sweat glucose detection,which demonstrated tremendous promise for non-invasive wearable diabetes diagnosis.
基金the National Natural Science Foundation of China(Grant No.22105114)the Fundamental Research Funds for the Central Universities(Grant No.2024MS014).
文摘Two-dimensional(2D)nitrogen-doped graphene(NG)films have attracted considerable attention as promis-ing metal-free electrochemical catalysts for the oxygen reduction reaction(ORR).Thermal evaporation is a versatile thin film deposition technique.However,the conventional thermal evaporation techniques present challenges in producing nitrogen-rich NG thin films because of the difficulties of a controllable manner for doping graphene with N atoms.To address this,we designed a vacuum thermal evaporation system for the large-scale preparation of 2D NG thin films.Using poly(2,5-benzimidazole)(ABPBI)as a nitrogen and carbon precursor,we deposited nitrogen-rich NG thin films with a size of 50×50 mm^(2) and controllable thickness within the range of 0.5–1.5 nm.The 2D NG samples exhibited a uniform thin film structure with moderate defects.The nitrogen-rich ABPBI precursor and defects,as well as the beneficial morphology and structure,endowed the optimal catalyst(2D NG-900)with a comparable ORR activity and superior stability compared with the commercial Pt/C(20 wt%)catalyst.This paper proposes a feasible strategy for fabricating 2D NG films as effective metal-free catalysts for the ORR.
基金Project supported by Science and Technology Project from Guizhou Province([2022]031,[2023]267,[2023]016)Central Government Guides Local Science and Technology Development([2019]4011)。
文摘In this paper,nitrogen-doped graphene quantum dots(N-GQDs)were combined with gadolinium ions(Gd^(3+))by a surface modification to obtain magneto-optical dual-functional N-GQDs/Gd^(3+)nanoparticles.The morphology of obtained composite was characterized by field emission scanning electron microscopy and transmission electron microscopy.Luminescence and magnetic properties were measured by a fluorescence spectrophotometer and a vibrating sample magnetometer,respectively.Results indicate that well-dispersed spherical N-GQDs/Gd^(3+)nanoparticles have an average diameter of 7 nm.N-doping significantly increases the luminesce nce of particles with an optimal luminescence intensity at 20℃and pH=9.X-ray photoelectron spectroscopy results indicate that the N-doping introduces pyrrolic N as an electron donor,enhancing fluorescence by increasing the surface electron cloud density of N-GQDs.In addition,density functional theory calculation results reveal that N-doping reduces the band gap of NGQDs/Gd^(3+),enabling electronic transitions to higher energy levels and generating more activation sites,thereby enhancing luminescence.Compared to N-GQDs/Gd^(3+)prepared at 20℃,the saturated magnetization of particles prepared at 40℃is 0.85 emu/g,indicating a better magnetic response.The above results suggest that bifunctional nanomaterials N-GQDs/Gd^(3+)with excellent optical properties and magnetism can be better used for fluorescence and magnetic resonance imaging.
基金supported by the National Natural Science Foundation of China(Nos.52272296 and 51502092)the Fundamental Research Funds for the Central Universities(Nos.JKD01211601 and 1222201718002)the National Overseas High-Level Talent Youth Program in China and the Eastern Scholar Project of Shanghai。
文摘An efficient electrocatalyst is indispensable to significantly reduce energy consumption and accelerate the conversion efficiency of water splitting.In this work,the honeycomb-like porous MoCo alloy on nitrogen-doped three-dimensional(3D)porous graphene substrate(Mo_(0.3)Co_(0.7)@NPG)has been synthesized from the annealing of layered double hydroxide(MoCo-LDH@NPG).Especially,the Mo_(0.3)Co_(0.7)@NPG exhibits low hydrogen evolution overpotential of 75 mV(10 mA·cm^(-2))and a Tafel slope of 69.9 mV·dec^(-1),which can be attributed to highly conductive NPG substrate,the unique nanostructure and the synergistic effect of Mo and Co.Moreover,the Mo_(0.3)Co_(0.7)@NPG can maintain the original morphology and high catalytic activity after 50-h stability test.This work proposes a general strategy to synthesize a multi-element alloy on conductive substrates with high porosity for electrocatalytic reaction.
基金Supported by the Science and Technology Research Program of Chongqing Education Commission (KJ050702), and the Natural Science Foundation Project of Chongqing Science and Technology(Commission (No.2007BB7208).
文摘N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4C1 as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation parameters and their impact on the structure and photocatalytic activity under ultraviolet (UV) and visible light irra-diation were carried out. Multiple techniques (XRD, TEM, DRIF, DSC, and XPS) were commanded to characterize the crystal structures and chemical binding of N-doped TiO2. Its photocatalytic activity was examined by the deg- radation of organic compounds. The catalytic activity of the prepared N-doped TiO2 nanoparticles under visible light (λ〉400nm) irradiation is evidenced by the decomposition of 4-chlorophenol, showing that nitrogen atoms in the N-doped TiO2 nanoparticle catalyst are responsible for the visible light catalytic activity. The N-doped TiO2 nanoparticle catalyst prepared with this modified route exhibits higher catalytic activity under UV irradiation in contrast to TiO2 without N-doping. It is suggested that the doped nitrogen here is located at the interstitial site of TiO2 lattice.
基金financially supported by the Natural Science Foundation of Jiangsu Province (No. BK20170549)the National Natural Science Foundation of China (Nos. 21706103 and 22075109)+2 种基金Nanjing Tech University Research Start-Up Fund (No. 38274017111)Zhongyan Jilantai Chlor-Alkali Chemical Co., Ltd (No. FZ2019-RWS-027)the Open Fund of the Key Laboratory of Fine Chemical Application Technology of Luzhou (No. HYJH-2101-B)
文摘Many electrochemical energy storage devices,such as batteries,supercapacitors,and metal ion capacitors,rely on effective and inexpensive electrode materials.Herein,we have developed highly active nitrogen-doped porous carbon nanofoams(NPCNs-600-N)for sodium-ion capacitors(SICs).NPCNs-600-N have a highly porous framework,extended interlayer spacing(0.41 nm),and lots of surface functional groups.Accordingly,NPCNs-600-N achieves a high reversible capacity(301 mAh·g^(-1)at 0.05 A·g^(-1)),superior rate capability(112 mAh·g^(-1)at 5.00 A·g^(-1)),and ultra-stable cyclability.The excellent rate and cycling performance originate from the abundant active sites and porous architecture of NPCNs-600-N.Further-more,SICs device is constructed by employing the NPCNs-600-N as the battery-like anode and commercial superconductive carbon black as the capacitive cathode,which delivers high energy/power densities of 92 Wh·kg^(-1)/15984 W·kg^(-1)with a remarkable cyclability(93%reten-tion over 5000 cycles at 1.00 A·g^(-1)).The methodology of the work enables the simultaneous tuning of the porous architectures and surface function groups of carbon for high-performance SICs.
基金supported by Zhejiang Provincial Natural Science Foundation(No. LY21B070005)National Undergraduate Training Program for Innovation and Entrepreneurship of China(Nos. 202110345015 and 202110345016)Self designed scientific research project of Zhejiang Normal University(No. 2021ZS06)。
文摘In this report, nitrogen-doped porous carbons were synthesized from polyacrylonitrile fiber by a facile two-step synthesis process i.e. carbonization followed by KOH activation. Activation temperature and KOH/carbon ratio are two parameters to tune the porosity and surface chemical properties of sorbents. The as-obtained sorbents were carefully characterized.Special attention was paid concerning the change of sorbents’ morphology with respect to synthesis conditions. Under the activation temperatures of this study, the sorbents can still retain their fibrous structure when the KOH/carbon mass ratio is 1. Further increasing the KOH amount will destroy the original morphology of polyacrylonitrile fiber. CO_(2)adsorption performance tests show that a sorbent retaining the fibrous shape possesses the highest CO_(2)uptake of 3.95 mmol/g at 25℃and 1 bar. Comprehensive investigation found that the mutual effect of narrow microporosity and doped N content govern the CO_(2)adsorption capacity of these adsorbents. Furthermore, these polyacrylonitrile fiber-derived carbons present multiple outstanding CO_(2)capture properties such as excellent recyclability, high CO_(2)/N_(2)selectivity, fast adsorption kinetics, suitable heat of adsorption, and good dynamic adsorption capacity. Hence, nitrogen-doped porous carbons with fibrous structure are promising in CO_(2)capture.
基金financially supported by the National Natural Science Foundation of China(Nos.21873026,21573061,21773059)。
文摘Potassium-ion hybrid capacitors(PIHCs)as a burgeoning research hotspot are an ideal replacement for lithium-ion hybrid capacitors(LIHCs).Here,we report nitrogen-doped porous carbon nanosheets(NPCNs)with enlarged interlayer spacing,abundant defects,and favorable mesoporous structures.The structural changes of NPCNs in potassiation and depotassiation processes are analyzed by using Raman spectroscopy and transmission electron microscopy.Due to the unique structure of NPCNs,the PIHC device assembled using NPCNs as both the anode and cathode material(double-functional self-matching material)exhibits a superior energy density of 128 Wh kg^(-1)with a capacity retention of 90.8%after 9000 cycles.This research can promote the development of double-functional self-matching materials for hybrid energy storage devices with ultra-high performance.