期刊文献+
共找到260篇文章
< 1 2 13 >
每页显示 20 50 100
Cooperation of nitrogen-doping and catalysis to improve the Li-ion storage performance of lignin-based hard carbon 被引量:6
1
作者 Zhewei Yang Huajun Guo +4 位作者 Feifei Li Xinhai Li Zhixing Wang Lizhi Cui Jiexi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1390-1396,共7页
Hard carbon draws great interests as anode material in lithium ion batteries (LIBs) due to its high the- oretical capacity, high rate capability and abundance of its precursors. Herein we firstly synthesize the lign... Hard carbon draws great interests as anode material in lithium ion batteries (LIBs) due to its high the- oretical capacity, high rate capability and abundance of its precursors. Herein we firstly synthesize the lignin-melamine resins by grafting melamine onto lignin. Afterwards, nitrogen doped hard carbon is pre- pared by the pyrolysis of lignin-melamine resins with the aid of catalyst (Ni(NO_3)2·6H_2O) at 1000 ℃. Compared with the samples without nitrogen-doping and catalysis, as-prepared nitrogen doped hard car- bon exhibits higher reversible capacity (345 mAh g-1 at 0.1 A g-1 ), higher rate capability (145 mAh g-1 at 5 A g-1) and excellent cycling stability. The superior electrochemical performance is ascribed to the synergistic effect of nitrogen doping, graphitic structure and amorphous structure. Among them, nitro- gen doping could create the vacancies around the nitrogen sites, which enhance the reactivity and the electronic conductivity of materials. Additionally, graphitic structure also enhances the electronic con- ductivity of materials, thus improving the electrochemical performance of hard carbon. It is worthwhile that Iignin, renewable and abundant biopolymer, is converted to hard carbon with good electrochemical performance, which realizes the high value utilization of lignin. 展开更多
关键词 Hard carbon LIGNIN MELAMINE nitrogen-doping CATALYSIS
在线阅读 下载PDF
Ethanol-assisted direct synthesis of wafer-scale nitrogen-doped graphene for III-nitride epitaxial growth
2
作者 WEI Wen-ze GAO Xiang +4 位作者 YU Chao-jie SUN Xiao-li WEI Tong-bo JIA Li SUN Jing-yu 《新型炭材料(中英文)》 北大核心 2025年第3期678-687,共10页
Among the synthesis techniques for graphene,chemical vapor deposition(CVD)enables the direct growth of graphene films on insulating substrates.Its advantages include uniform coverage,high quality,scalability,and compa... Among the synthesis techniques for graphene,chemical vapor deposition(CVD)enables the direct growth of graphene films on insulating substrates.Its advantages include uniform coverage,high quality,scalability,and compatibility with industrial processes.Graphene is chemically inert and has a zero-bandgap which poses a problem for its use as a functional layer,and nitrogen doping has become an important way to overcome this.Post-plasma treatment has been explored for the synthesis of nitrogen-doped graphene,but the procedures are intricate and not suitable for large-scale production.We report the direct synthesis of nitrogen-doped graphene on a 4-inch sapphire wafer by ethanol-assisted CVD employing pyridine as the carbon feedstock,where the nitrogen comes from the pyridine and the hydroxyl group in ethanol improves the quality of the graphene produced.Additionally,the types of nitrogen dopant produced and their effects on III-nitride epitaxy were also investigated,resulting in the successful illumination of LED devices.This work presents an effective synthesis strategy for the preparation of nitrogen-doped graphene,and provides a foundation for designing graphene functional layers in optoelectronic devices. 展开更多
关键词 III-nitride epitaxy Direct synthesis Ethanol-assisted CVD LED devices nitrogen-doped graphene
在线阅读 下载PDF
Microenvironment engineering of nitrogen-doped hollow carbon spheres encapsulated with Pd catalysts for highly selective hydrodeoxygenation of biomass-derived vanillin in water
3
作者 Jun Wu Liqian Liu +5 位作者 Xinyue Yan Gang Pan Jiahao Bai Chengbing Wang Fuwei Li Yong Li 《Chinese Journal of Catalysis》 2025年第4期267-284,共18页
Development of efficient and stable metal catalysts for the selective aqueous phase hydrodeoxygenation(HDO)of biomass-derived oxygenates to value-added biofuels is highly desired.An innovative surface microenvironment... Development of efficient and stable metal catalysts for the selective aqueous phase hydrodeoxygenation(HDO)of biomass-derived oxygenates to value-added biofuels is highly desired.An innovative surface microenvironment modulation strategy was used to construct the nitrogen-doped hollow carbon sphere encapsulated with Pd(Pd@NHCS-X,X:600–800)nanoreactors for catalytic HDO of biomass-derived vanillin in water.The specific surface microenvironments of Pd@NHCS catalysts including the electronic property of active Pd centers and the surface wettability and porous structure of NHCS supports could be well-controlled by the calcination temperature of catalysts.Intrinsic kinetic evaluations demonstrated that the Pd@NHCS-600 catalyst presented a high turnover frequency of 337.77 h^(–1)and a low apparent activation energy of 18.63 kJ/mol.The excellent catalytic HDO performance was attributed to the unique surface microenvironment of Pd@NHCS catalyst based on structure-performance relationship analysis and DFT calculations.It revealed that pyridinic N species dominated the electronic property regulation of Pd sites through electronic metal-support interaction(EMSI)and produced numerous electron-rich active Pd centers,which not only intensified the dissociation and activation of H2 molecules,but also substantially improved the activation capability of vanillin via the enhanced adsorption of–C=O group.The fine hydrophilicity and abundant porous structure promoted the uniform dispersion of catalyst and ensured the effective access of reactants to catalytic active centers in water.Additionally,the Pd@NHCS-600 catalyst exhibited excellent catalytic stability and broad substrate applicability for the selective aqueous phase HDO of various biomass-derived carbonyl compounds.The proposed surface microenvironment modulation strategy will provide a new consideration for the rational design of high-performance nitrogen-doped carbon-supported metal catalysts for catalytic biomass transformation. 展开更多
关键词 Microenvironment modulation nitrogen-doped hollow carbon sphere Pd-based catalyst Electronic metal-support interaction HYDRODEOXYGENATION VANILLIN
在线阅读 下载PDF
Preparation of nitrogen-doped re duce d graphene oxide/zinc ferrite@nitrogen-doped carbon composite for broadband and highly efficient electromagnetic wave absorption
4
作者 Ruiwen Shu Yang Guan Baohua Liu 《Journal of Materials Science & Technology》 2025年第11期16-26,共11页
Traditionally reduced graphene oxide(RGO)-based electromagnetic wave(EMW)absorbing materials have poor absorption effectiveness due to impedance mismatch caused by skin effect.The introduction of structural defects an... Traditionally reduced graphene oxide(RGO)-based electromagnetic wave(EMW)absorbing materials have poor absorption effectiveness due to impedance mismatch caused by skin effect.The introduction of structural defects and the design of heterogeneous interfaces play a crucial role in enhancing the polarization effect of EMW absorbers.In this study,nitrogen-doped reduced graphene oxide/zinc ferrite@nitrogen-doped carbon(NRGO/ZnFe_(2)O_(4)@NC)ternary composite with rich heterogeneous interfaces is constructed by combining solvothermal reaction,in-situ polymerization,annealing treatment with subsequent hydrothermal reaction.The research results have shown that the obtained NRGO/ZnFe_(2)O_(4)@NC ternary composite exhibits a unique core-shell structure and excellent EMW absorption performance.At a thickness of 2.61 mm,the maximum effective absorption bandwidth can reach 7.2 GHz,spanning the entire Ku-band and a portion of the X-band,and the minimum reflection loss is-61.1 dB,which is superior to most reported RGO-based EMW absorbers.The excellent EMW absorbing ability is mainly ascribed to the optimized impedance matching and the enhanced polarization loss caused by the abundant heterogeneous interfaces and structural defects derived from heteroatomic nitrogen doping.Furthermore,the radar cross section in the far field is simulated by a computer simulation technique.This study provides a novel way to prepare core-shell magnetic carbon composites as highly efficient and broadband EMW absorbers. 展开更多
关键词 Defect engineering Heterogeneous interface nitrogen-doped graphene Core-shell microsphere Electromagnetic dissipation
原文传递
Rational design of nitrogen-doped carbon for palladium catalysts in hydrogenation of hydrazo compounds
5
作者 Junzhe Xu Shuang Liu +5 位作者 Lin Li Xian Qin Ruixin Qu Jinguo Wang Di Liu Gaixia Wei 《Chinese Journal of Chemical Engineering》 2025年第1期156-166,共11页
We synthesized CN11,a carbon nitride material rich in sp^(3)hybrid graphitic nitrogen(sp^(3)-N),employing a facile oxalic acid-assisted melamine molecular assembly strategy.CN11 promoted the formation of Pd nanopartic... We synthesized CN11,a carbon nitride material rich in sp^(3)hybrid graphitic nitrogen(sp^(3)-N),employing a facile oxalic acid-assisted melamine molecular assembly strategy.CN11 promoted the formation of Pd nanoparticles(NPs)predominantly exposing{200}facets,termed Pd/CN11-2.This facet-specific configuration significantly boosted hydrogen adsorption,leading to notable improvements in catalytic activity.Compared to Pd/XC-72-2 and Pd/g-C_(3)N_(4)-2,Pd/CN11-2 exhibited a remarkable two-fold and nineteen-fold increase in catalytic yield for hydrazo compound hydrogenation,respectively.Pd/CN11-2 also demonstrated robust performance across a range of reaction conditions,maintaining excellent yield.This study emphasizes the critical role of tailored support structures in controlling Pd NPs facets,thereby enhancing hydrogenation efficiency.It provides valuable insights for advancing the industrial application of Pd-based catalysts,underscoring the importance of strategic support modulation for optimizing catalytic performance. 展开更多
关键词 Pd nanocatalyst nitrogen-doped carbon HYDROGENATION Deprotection of CBz Bimethylation of amino
在线阅读 下载PDF
Oxidative ammonolysis modified lignin-derived nitrogen-doped carbon-supported Co/Fe composites as bifunctional electrocatalyst for Zn-air batteries
6
作者 Jinhui Zhang Jianglin Liu +3 位作者 Jie Ran Xuliang Lin Huan Wang Xueqing Qiu 《Chinese Chemical Letters》 2025年第10期627-631,共5页
Zn-air battery(ZAB)has garnered significant attention owing to its environmental friendliness and safety attributes.A critical challenge in advancing ZAB technology lies in the development of high-performance and cost... Zn-air battery(ZAB)has garnered significant attention owing to its environmental friendliness and safety attributes.A critical challenge in advancing ZAB technology lies in the development of high-performance and cost-effective electrocatalysts for oxygen redox reactions(OER and ORR).Herein,we report Co/Fe carbon-supported composites as efficient bifunctional catalyst encapsulated in oxidative ammonolysis modified lignin-derived N-doped biochar(Co Fe-Co_(x)N@NOALC).It exhibited exceptional electrochemical performance in aqueous ZAB owing to their uniform dispersed and small particle size,with a peak power density of 154 mW/cm^(2)and a specific capacity of 770 mAh/g.Most notably,it exhibited a long cycle stability,surpassing 1500 h at a current density of 10 mA/cm^(2),with a mere 11.4%decrease in the chargedischarge efficiency of the battery.This study proposes a viable strategy for enhancing the performance and reducing the cost of Zn-air batteries through the utilization of biomass-derived materials. 展开更多
关键词 Lignin-derived carbon nitrogen-dopED Oxygen reduction reaction Oxygen evolution reaction Zn-air battery
原文传递
Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts
7
作者 Yan Wang Jiaqi Zhang +3 位作者 Xiaofeng Wu Sibo Wang Masakazu Anpo Yuanxing Fang 《Chinese Chemical Letters》 2025年第2期196-201,共6页
Solar-induced water oxidation reaction(WOR)for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages.WOR is also associate... Solar-induced water oxidation reaction(WOR)for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages.WOR is also associated with important reduction reactions,such as oxygen reduction reaction(ORR),which leads to the production of hydrogen peroxide(H_(2)O_(2)).These transitions are instrumental in the emergence and evolution of life.In this study,transition metals were loaded onto nitrogen-doped carbon(NDC)prepared under the primitive Earth's atmospheric conditions.These metal-loaded NDC samples were found to catalyze both WOR and ORR under light illumination.The chemical pathways initiated by the pristine and metal-loaded NDC were investigated.This study provides valuable insights into potential mechanisms relevant to the early evolution of our planet. 展开更多
关键词 nitrogen-doped carbon Chemical vapor deposition PHOTOCATALYSIS Water oxidation reaction Oxygen reduction reaction
原文传递
Nitrogen-doped lignin mesoporous carbon/nickel/oxide nanocomposites with excellent lithium storage properties
8
作者 Ping-Xian Feng Qi-Liang Chen +1 位作者 Dong-Jie Yang Huan Wang 《Rare Metals》 2025年第2期889-900,共12页
Developing high-capacity carbon-based anode materials is crucial for enhancing the performance of lithium-ion batteries(LIBs).In this study,we presented a nitrogen-doped lignin mesoporous carbon/nickel/nickel oxide(NH... Developing high-capacity carbon-based anode materials is crucial for enhancing the performance of lithium-ion batteries(LIBs).In this study,we presented a nitrogen-doped lignin mesoporous carbon/nickel/nickel oxide(NHMC/Ni/NiO)nanocomposite for developing high-capacity LIBs anode materials through carbonization and selective etching strategies.The synthesized NMHC/Ni/NiO-0.33 composite exhibited a highly regular microstructure with well-dispersed Ni/NiO particles.The composite had a surface area of 408 m^(2)·g^(−1),a mesopore ratio of 75.0%,and a pyridine–nitrogen ratio of 58.9%.The introduction of nitrogen atoms reduced the disordered structure of lignin mesoporous carbon and enhanced its electrical conductivity,thus improving the lithium storage capabilities of the composite.Following 100 cycles at a current density of 0.2 A·g^(−1),the composite demonstrated enhanced Coulomb efficiency and rate performance,achieving a specific discharge capacity of 1230.9 mAh·g^(−1).At a high-current density of 1 A·g^(−1),the composite exhibited an excellent specific discharge capacity of 714.6 mAh·g^(−1).This study presents an innovative method for synthesizing high-performance anode materials of LIBs. 展开更多
关键词 nitrogen-dopED Lignin mesoporous carbon Carbon/nickel/nickel oxide Lithium-ion batteries
原文传递
Scalable carbonization of waste plastics for producing nitrogen-doped carbon for efficient hydrogen peroxide electrosynthesis
9
作者 Yichan Wen Yan Fang +9 位作者 Baojing Huang Ting Zhang Chengcheng Cai Baoling Niu Hongyuan Wang Qianqing Guo Shengqi Ding Guohua Yao Xufang Qian Yixin Zhao 《Journal of Energy Chemistry》 2025年第9期181-189,I0007,共10页
The recycling of plastics is a significant global concern.Due to the thermosetting properties of melamineformaldehyde(MF)resin plastics,which make heating and melting difficult,their recycling and reuse pose substanti... The recycling of plastics is a significant global concern.Due to the thermosetting properties of melamineformaldehyde(MF)resin plastics,which make heating and melting difficult,their recycling and reuse pose substantial challenges.In this study,we developed nitrogen-doped(N-doped)carbon materials through scalable carbonization of MF resin plastic waste.This metal-free N-doped carbon catalyst achieved a hydrogen peroxide(H_(2)O_(2))production rate of 971.6 mmol gcatalyst^(-1)h^(-1)with a Faradaic efficiency for H_(2)O_(2)(FEH_(2)O_(2))exceeding 90%under acidic conditions.Additionally,a flow cell utilizing this carbon catalyst demonstrated a production rate of 11.3 mol cm^(-2)h^(-1)(22.5 mol g_(catalyst)^(-1)h^(-1))and maintained a record-high current density of approximately 530 mA cm^(-2)over 300 h.In-situ electrochemical surface-enhanced Raman spectroscopy and density functional theory calculations revealed the presence of porphyrin-like carbon defects,which serve as active sites for the continuous and stable generation of^(*)OOH species.The nitrogen-doped carbon materials obtained from large-scale carbonization of MF plastic waste exhibit abundant active sites,making them highly promising electrocatalysts for the two-electron oxygen reduction reaction(2e^(-)ORR). 展开更多
关键词 Melamine formaldehyde resin plastic wastes nitrogen-doped carbon Metal-free catalysts Decentralized H2O2 electrosynthesis
在线阅读 下载PDF
A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes 被引量:17
10
作者 Haoliang Wu Yunbo Zhang +5 位作者 Yaqian Deng Zhijia Huang Chen Zhang Yan-Bing He Wei Lv Quan-Hong Yang 《Science China Materials》 SCIE EI CSCD 2019年第1期87-94,共8页
Lithium metal is considered to be the most promising anode material for the next-generation rechargeable batteries. However, the uniform and dendrite-free deposition of Li metal anode is hard to achieve, hindering its... Lithium metal is considered to be the most promising anode material for the next-generation rechargeable batteries. However, the uniform and dendrite-free deposition of Li metal anode is hard to achieve, hindering its practical applications. Herein, a lightweight, free-standing and nitrogen-doped carbon nanofiber-based 3D structured conductive matrix(NCNF), which is characterized by a robust and interconnected 3D network with high doping level of 9.5 at%, is prepared by electrospinning as the current collector for Li metal anode. Uniform Li nucleation with reduced polarization and dendrite-free Li deposition are achieved because the NCNF with high nitrogen-doping level and high conductivity provide abundant and homogenous metallic Li nucleation and deposition sites. Excellent cycling stability with high coulombic efficiency are realized. The Li plated NCNF was paired with LiFePO4 to assemble the full battery, also showing high cyclic stability. 展开更多
关键词 lithium metal anode NUCLEATION dendrite-free nitrogen-doping OVERPOTENTIAL
原文传递
Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption
11
作者 Xiao Li Wanqiang Yu +8 位作者 Yujie Wang Ruiying Liu Qingquan Yu Riming Hu Xuchuan Jiang Qingsheng Gao Hong Liu Jiayuan Yu Weijia Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期533-538,共6页
For treatment of sulfion-containing wastewater,coupling the electrochemical sulfion oxidation reaction(SOR)with hydrogen evolution reaction(HER)can be an ideal way for sulfur and H_(2)resources recovery.Herein,we synt... For treatment of sulfion-containing wastewater,coupling the electrochemical sulfion oxidation reaction(SOR)with hydrogen evolution reaction(HER)can be an ideal way for sulfur and H_(2)resources recovery.Herein,we synthesize a metal-modified carbon nanotube arrays electrode(Co@N-CNTs/CC)for SOR and HER.This electrode has excellent performance for SOR and HER attributed to the unique array structure.It can achieve 99.36 mA/cm^(2)at 0.6 V for SOR,and 10 mA/cm^(2)at 0.067 V for HER.Density functional theory calculations verify that metal modification is able to regulate the electronic structure of carbon nanotube,which is able to optimize the adsorption of intermediates.Employed Co@N-CNTs/CC as bifunctional elec-trodes to establish a hybrid electrolytic cell can reduce about 67%of energy consumption compared with the traditional water splitting electrolytic cell.Finally,the hybrid electrolytic cell is used to treat actual sulfion-containing wastewater,achieving the sulfur yield of 30 mg h^(−1)cm^(−2)and the hydrogen production of 0.64 mL/min. 展开更多
关键词 Sulfion oxidation reaction Hydrogen evolution reaction nitrogen-doping carbon nanotube Core-shell structure Resource upgrade
原文传递
High entropy alloy nanoparticles dual-decorated with nitrogen-doped carbon and carbon nanotubes as promising electrocatalysts for lithium-sulfur batteries 被引量:1
12
作者 Yujie Ma Yilun Ren +8 位作者 Dongyue Sun Biao Wang Hao Wu Haifeng Bian Jiangdong Cao Xueyu Cao Feng Ding Jiahao Lu Xiangkang Meng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第21期98-104,共7页
Lithium–sulfur(Li–S)batteries have the advantages of high-energy-density,low cost,and environmental friendliness,but the sluggish sulfur redox reactions and the severe shuttle effect of lithium polysulfide(LiPSs)aff... Lithium–sulfur(Li–S)batteries have the advantages of high-energy-density,low cost,and environmental friendliness,but the sluggish sulfur redox reactions and the severe shuttle effect of lithium polysulfide(LiPSs)affect their performance.Herein,we developed a highly efficient electrocatalyst(CNT/HEA-NC)consisting of high-entropy alloy(HEA)nanoparticles decorated with nitrogen-doped carbon(NC)and carbon nanotubes(CNTs)conductive networks.In the elaborate nanostructured protocol,the HEA nanoparticles with high catalytic activity accelerate the bidirectional conversion of LiPSs,the NC with strong sulfophilic activity effectively adsorb LiPSs to suppress the shuttle effect,and the CNT conductive network provides a fast electrons/ions transport pathway.Benefiting from the hierarchical confinement,Li–S batteries with CNT/HEA-NC modified separators deliver a discharge specific capacity of 692.0 mA h g^(−1)after 300 cycles at 1 C with a capacity decay rate of only 0.03%per cycle.Even at a current density of 5 C,the cell exhibits a superior capacity of 521.1 mAh g^(−1).This work provides a general strategy for integrating multifunctional electrocatalysts for high-performance Li–S batteries. 展开更多
关键词 High-entropy alloy nitrogen-doped carbon Shuttle effect ELECTROCATALYST Li-S batteries
原文传递
A direct electrochemical biosensor for rapid glucose detection based on nitrogen-doped carbon nanocages 被引量:1
13
作者 Lan-Lan Li Yu Zhao +2 位作者 Li-Jia Pan Jian-Bin Xu Yi Shi 《Rare Metals》 SCIE EI CAS CSCD 2024年第5期2184-2192,共9页
Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon na... Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon nanocages(NCNCs).NCNCs possess a large specific surface area of 1395 m^(2)·g^(-1),a high N atomic content of 9.37%and good biocompatibility,which is favorable for enzyme loading and electron transfer.The surface average concentration of electroactive glucose oxidase on NCNCs was 2.82×10^(-10)mol·cm^(-2).The NCNC-based direct electrochemical biosensor exhibited a high sensitivity of 13.7μA·(mmol·L^(-1))^(-1)·cm^(-2),rapid response time of 5 s and an impressive electron-transferrate constant(ks)of 1.87 s^(-1).Furthermore,we investigated an NCNC-based direct electron transfer(DET)biosensor for sweat glucose detection,which demonstrated tremendous promise for non-invasive wearable diabetes diagnosis. 展开更多
关键词 Direct electron transfer(DET) nitrogen-doped carbon nanocages(NCNCs) Glucose oxidase BIOSENSOR
原文传递
Synthesis of uniform two-dimensional nitrogen-doped graphene films via thermal evaporation as efficient oxygen reduction catalysts 被引量:1
14
作者 Xue-Wei Lu Xiaoliang Zhang +4 位作者 Ruxuan Chen Shuwei Wang Zile Wang Huajun Tian Liying Jiao 《Energy Materials and Devices》 2024年第4期79-89,共11页
Two-dimensional(2D)nitrogen-doped graphene(NG)films have attracted considerable attention as promis-ing metal-free electrochemical catalysts for the oxygen reduction reaction(ORR).Thermal evaporation is a versatile th... Two-dimensional(2D)nitrogen-doped graphene(NG)films have attracted considerable attention as promis-ing metal-free electrochemical catalysts for the oxygen reduction reaction(ORR).Thermal evaporation is a versatile thin film deposition technique.However,the conventional thermal evaporation techniques present challenges in producing nitrogen-rich NG thin films because of the difficulties of a controllable manner for doping graphene with N atoms.To address this,we designed a vacuum thermal evaporation system for the large-scale preparation of 2D NG thin films.Using poly(2,5-benzimidazole)(ABPBI)as a nitrogen and carbon precursor,we deposited nitrogen-rich NG thin films with a size of 50×50 mm^(2) and controllable thickness within the range of 0.5–1.5 nm.The 2D NG samples exhibited a uniform thin film structure with moderate defects.The nitrogen-rich ABPBI precursor and defects,as well as the beneficial morphology and structure,endowed the optimal catalyst(2D NG-900)with a comparable ORR activity and superior stability compared with the commercial Pt/C(20 wt%)catalyst.This paper proposes a feasible strategy for fabricating 2D NG films as effective metal-free catalysts for the ORR. 展开更多
关键词 thermal evaporation nitrogen-doped graphene TWO-DIMENSIONAL uniform films oxygen reduction reaction
在线阅读 下载PDF
Luminescence and magnetic properties of bifunctional nanoparticles composited by nitrogen-doped graphene quantum dots and gadolinium
15
作者 Wanli Zhang Hao Zhou +2 位作者 Meigui Ou Donghao Sun Chunlin Yang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第4期716-723,共8页
In this paper,nitrogen-doped graphene quantum dots(N-GQDs)were combined with gadolinium ions(Gd^(3+))by a surface modification to obtain magneto-optical dual-functional N-GQDs/Gd^(3+)nanoparticles.The morphology of ob... In this paper,nitrogen-doped graphene quantum dots(N-GQDs)were combined with gadolinium ions(Gd^(3+))by a surface modification to obtain magneto-optical dual-functional N-GQDs/Gd^(3+)nanoparticles.The morphology of obtained composite was characterized by field emission scanning electron microscopy and transmission electron microscopy.Luminescence and magnetic properties were measured by a fluorescence spectrophotometer and a vibrating sample magnetometer,respectively.Results indicate that well-dispersed spherical N-GQDs/Gd^(3+)nanoparticles have an average diameter of 7 nm.N-doping significantly increases the luminesce nce of particles with an optimal luminescence intensity at 20℃and pH=9.X-ray photoelectron spectroscopy results indicate that the N-doping introduces pyrrolic N as an electron donor,enhancing fluorescence by increasing the surface electron cloud density of N-GQDs.In addition,density functional theory calculation results reveal that N-doping reduces the band gap of NGQDs/Gd^(3+),enabling electronic transitions to higher energy levels and generating more activation sites,thereby enhancing luminescence.Compared to N-GQDs/Gd^(3+)prepared at 20℃,the saturated magnetization of particles prepared at 40℃is 0.85 emu/g,indicating a better magnetic response.The above results suggest that bifunctional nanomaterials N-GQDs/Gd^(3+)with excellent optical properties and magnetism can be better used for fluorescence and magnetic resonance imaging. 展开更多
关键词 nitrogen-doped graphenequantum dots GADOLINIUM LUMINESCENCE Magnetism Rare earths
原文传递
Honeycomb-like MoCo alloy on 3D nitrogen-doped porous graphene for efficient hydrogen evolution reaction
16
作者 Lin-Ping Wang Kuang Li +7 位作者 Hua-Long Ding Le Xu Chen Huang Jiao-Jiao Zhou Cong-TaoWen Pei-Lin Zhang Wei-Wei Wang Lu-Yang Chen 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1072-1082,共11页
An efficient electrocatalyst is indispensable to significantly reduce energy consumption and accelerate the conversion efficiency of water splitting.In this work,the honeycomb-like porous MoCo alloy on nitrogen-doped ... An efficient electrocatalyst is indispensable to significantly reduce energy consumption and accelerate the conversion efficiency of water splitting.In this work,the honeycomb-like porous MoCo alloy on nitrogen-doped three-dimensional(3D)porous graphene substrate(Mo_(0.3)Co_(0.7)@NPG)has been synthesized from the annealing of layered double hydroxide(MoCo-LDH@NPG).Especially,the Mo_(0.3)Co_(0.7)@NPG exhibits low hydrogen evolution overpotential of 75 mV(10 mA·cm^(-2))and a Tafel slope of 69.9 mV·dec^(-1),which can be attributed to highly conductive NPG substrate,the unique nanostructure and the synergistic effect of Mo and Co.Moreover,the Mo_(0.3)Co_(0.7)@NPG can maintain the original morphology and high catalytic activity after 50-h stability test.This work proposes a general strategy to synthesize a multi-element alloy on conductive substrates with high porosity for electrocatalytic reaction. 展开更多
关键词 MoCo alloy Three-dimensional nitrogen-doped porous graphene Hydrogen evolution reaction(HER)
原文传递
Preparation of Nitrogen-doped TiO2 Nanoparticle Catalyst and Its Catalytic Activity under Visible Light 被引量:15
17
作者 於煌 郑旭煦 +3 位作者 殷钟意 陶丰 房蓓蓓 侯苛山 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第6期802-807,共6页
N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4C1 as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation paramete... N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4C1 as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation parameters and their impact on the structure and photocatalytic activity under ultraviolet (UV) and visible light irra-diation were carried out. Multiple techniques (XRD, TEM, DRIF, DSC, and XPS) were commanded to characterize the crystal structures and chemical binding of N-doped TiO2. Its photocatalytic activity was examined by the deg- radation of organic compounds. The catalytic activity of the prepared N-doped TiO2 nanoparticles under visible light (λ〉400nm) irradiation is evidenced by the decomposition of 4-chlorophenol, showing that nitrogen atoms in the N-doped TiO2 nanoparticle catalyst are responsible for the visible light catalytic activity. The N-doped TiO2 nanoparticle catalyst prepared with this modified route exhibits higher catalytic activity under UV irradiation in contrast to TiO2 without N-doping. It is suggested that the doped nitrogen here is located at the interstitial site of TiO2 lattice. 展开更多
关键词 PHOTOCATALYSIS TIO2 visible light nitrogen-doping PREPARATION
在线阅读 下载PDF
Nitrogen-doped porous carbon nanofoams with enhanced electrochemical kinetics for superior sodium-ion capacitor 被引量:6
18
作者 K.Ramachandran Gokila Subburam +8 位作者 Xian-Hu Liu Ming-Gang Huang Chun Xu Dickon H.L.Ng Ying-Xue Cui Guo-Chun Li Jing-Xia Qiu Chuan Wang Jia-Biao Lian 《Rare Metals》 SCIE EI CAS CSCD 2022年第7期2481-2490,共10页
Many electrochemical energy storage devices,such as batteries,supercapacitors,and metal ion capacitors,rely on effective and inexpensive electrode materials.Herein,we have developed highly active nitrogen-doped porous... Many electrochemical energy storage devices,such as batteries,supercapacitors,and metal ion capacitors,rely on effective and inexpensive electrode materials.Herein,we have developed highly active nitrogen-doped porous carbon nanofoams(NPCNs-600-N)for sodium-ion capacitors(SICs).NPCNs-600-N have a highly porous framework,extended interlayer spacing(0.41 nm),and lots of surface functional groups.Accordingly,NPCNs-600-N achieves a high reversible capacity(301 mAh·g^(-1)at 0.05 A·g^(-1)),superior rate capability(112 mAh·g^(-1)at 5.00 A·g^(-1)),and ultra-stable cyclability.The excellent rate and cycling performance originate from the abundant active sites and porous architecture of NPCNs-600-N.Further-more,SICs device is constructed by employing the NPCNs-600-N as the battery-like anode and commercial superconductive carbon black as the capacitive cathode,which delivers high energy/power densities of 92 Wh·kg^(-1)/15984 W·kg^(-1)with a remarkable cyclability(93%reten-tion over 5000 cycles at 1.00 A·g^(-1)).The methodology of the work enables the simultaneous tuning of the porous architectures and surface function groups of carbon for high-performance SICs. 展开更多
关键词 Carbon nanofoams nitrogen-doping Porous structure Kinetics analysis Sodium-ion capacitors
原文传递
Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO_(2) adsorbents 被引量:3
19
作者 Changdan Ma Jiali Bai +2 位作者 Xin Hu Zhuohan Jiang Linlin Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第3期533-543,共11页
In this report, nitrogen-doped porous carbons were synthesized from polyacrylonitrile fiber by a facile two-step synthesis process i.e. carbonization followed by KOH activation. Activation temperature and KOH/carbon r... In this report, nitrogen-doped porous carbons were synthesized from polyacrylonitrile fiber by a facile two-step synthesis process i.e. carbonization followed by KOH activation. Activation temperature and KOH/carbon ratio are two parameters to tune the porosity and surface chemical properties of sorbents. The as-obtained sorbents were carefully characterized.Special attention was paid concerning the change of sorbents’ morphology with respect to synthesis conditions. Under the activation temperatures of this study, the sorbents can still retain their fibrous structure when the KOH/carbon mass ratio is 1. Further increasing the KOH amount will destroy the original morphology of polyacrylonitrile fiber. CO_(2)adsorption performance tests show that a sorbent retaining the fibrous shape possesses the highest CO_(2)uptake of 3.95 mmol/g at 25℃and 1 bar. Comprehensive investigation found that the mutual effect of narrow microporosity and doped N content govern the CO_(2)adsorption capacity of these adsorbents. Furthermore, these polyacrylonitrile fiber-derived carbons present multiple outstanding CO_(2)capture properties such as excellent recyclability, high CO_(2)/N_(2)selectivity, fast adsorption kinetics, suitable heat of adsorption, and good dynamic adsorption capacity. Hence, nitrogen-doped porous carbons with fibrous structure are promising in CO_(2)capture. 展开更多
关键词 CO_(2)adsorption nitrogen-doping porous carbon Fibrous morphology Polyacrylonitrile fiber KOH activation
原文传递
Nitrogen-doped porous carbon nanosheets as both anode and cathode for advanced potassium-ion hybrid capacitors 被引量:3
20
作者 Quanzhou Du Yuhua Zhao +5 位作者 Yujuan Chen Jianming Liu Huanhuan Li Guangyue Bai Kelei Zhuo Jianji Wang 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期579-588,共10页
Potassium-ion hybrid capacitors(PIHCs)as a burgeoning research hotspot are an ideal replacement for lithium-ion hybrid capacitors(LIHCs).Here,we report nitrogen-doped porous carbon nanosheets(NPCNs)with enlarged inter... Potassium-ion hybrid capacitors(PIHCs)as a burgeoning research hotspot are an ideal replacement for lithium-ion hybrid capacitors(LIHCs).Here,we report nitrogen-doped porous carbon nanosheets(NPCNs)with enlarged interlayer spacing,abundant defects,and favorable mesoporous structures.The structural changes of NPCNs in potassiation and depotassiation processes are analyzed by using Raman spectroscopy and transmission electron microscopy.Due to the unique structure of NPCNs,the PIHC device assembled using NPCNs as both the anode and cathode material(double-functional self-matching material)exhibits a superior energy density of 128 Wh kg^(-1)with a capacity retention of 90.8%after 9000 cycles.This research can promote the development of double-functional self-matching materials for hybrid energy storage devices with ultra-high performance. 展开更多
关键词 Potassium-ion Porous carbon Hybrid capacitor Energy storage nitrogen-doping
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部