One-time application of controlled-release blended fertilizer(CRBF,a mixture of five nitrogen(N)fertilizers in a certain ratio)can achieve high yield and N use efficiency(NUE)in rice(Oryza sativa L.).However,the effec...One-time application of controlled-release blended fertilizer(CRBF,a mixture of five nitrogen(N)fertilizers in a certain ratio)can achieve high yield and N use efficiency(NUE)in rice(Oryza sativa L.).However,the effects of CRBF with one-time application on root spatial distribution and physiological characteristics remain unclear.We measured the effects of CRBF with one-time application on rice yield,NUE,root morphology and growth,and N uptake capacity in field and root box experiments.Six N treatments were set up:no nitrogen(N0),high-yield three-split application of urea as a control(CK),urea(U)with broadcast,U with side-deep fertilization,CRBF with broadcast,and CRBF with side-deep fertilization.Our findings showed that root characters were positively correlated with yield and NUE.Compared to CK and U treatments,CRBF with one-time applications increased root characters(including root biomass,root N uptake,root activity,and the expression level of ammonium transporters)at tillering and heading stages.The root length,surface area and volume in the 0-10 cm soil layer enhanced under CRBF with one-time applications at tillering stage,and in the 0-20 cm soil layer at the heading stage.This contributed a5.96%-39.40% and 3.69%-16.87% increase in plant dry matter accumulation and N uptake,and a2.08%-18.28% and 14.60%-149.57% increase in yield and NUE,in 2022 and 2023,respectively.Taken together,our findings showed that one-time application of CRBF could increase rice yield and NUE by optimizing the root morphology distribution and N uptake.展开更多
Understanding livestock performance in typical steppe ecosystems is essential for optimizing grassland-livestock interactions and minimizing environmental impact.To assess the effects of different stocking rates on th...Understanding livestock performance in typical steppe ecosystems is essential for optimizing grassland-livestock interactions and minimizing environmental impact.To assess the effects of different stocking rates on the growth performance,energy and nitrogen utilization,methane(CH_(4))emissions,and grazing behavior of Tan sheep,a 2-year grazing experiment in the typical steppe was conducted.The grazing area was divided into 9 paddocks,each 0.5 ha,with 3 spatial replicates for each stocking rate treatment(4,8,and 13 sheep per paddock),corresponding to 2.7,5.3,and 8.7 sheep ha^(–1).The results showed that the neutral detergent fiber(NDF)and acid detergent fiber(ADF)contents of herbage varied between grazing years(P<0.05),with a positive correlation between stocking rate and crude fiber content in the herbage(P<0.05).Dry matter intake(DMI)decreased with increasing stocking rate(P<0.05),and the average daily gain(ADG)was highest at 2.7 sheep ha^(–1)(P<0.05).Compared to 2.7 and 8.7 sheep ha^(–1),the5.3 sheep ha^(–1)treatment exhibited the lowest nutrient digestibility for dry matter,nitrogen,and ether extract(P<0.05).Fecal nitrogen was lowest at 8.7 sheep ha^(–1)(P<0.05),while retained nitrogen as a proportion of nitrogen intake was highest.Digestive energy(DE),metabolic energy(ME),and the ratios of DE to gross energy(GE)and ME to GE were highest at 8.7 sheep ha^(–1)(P<0.05).In contrast,CH_4 emissions,CH_4 per DMI,and CH_(4)E as a proportion of GE were highest at 2.7 sheep ha^(–1)(P<0.05).Stocking rate and grazing year did not significantly affect rumen fermentation parameters,including volatile fatty acids,acetate,propionate,and the acetate/propionate ratio.At 8.7sheep ha^(–1),daily grazing time and inter-individual distance increased,while time allocated to grazing,walking,and ruminating/resting decreased as stocking rates increased(P<0.05).This study highlights the importance of adjusting stocking rates based on the nutritional value of forage and grazing year to optimize grazing management.展开更多
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ...Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.展开更多
Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and th...Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.展开更多
Reclaimed water irrigation has become an effective mean to alleviate the contradiction between water availability and its consumption worldwide.In this study,three types of irrigation water sources(rural sewage’s pri...Reclaimed water irrigation has become an effective mean to alleviate the contradiction between water availability and its consumption worldwide.In this study,three types of irrigation water sources(rural sewage’s primary treated water R1 and secondary treated water R2,and river water R3)meeting the requirements of water quality for farmland irrigation were selected,and three types of irrigation water levels(low water levelW1 of 0–80 mm,medium water level W2 of 0–100 mm,and high water level W3 of 0–150 mm)were adopted to carry out research on the influence mechanismS of different irrigation water sources and water levels on water and nitrogen use and crop growth in paddy field.The water quantity indicators(irrigation times and irrigation volume),soil ammonium nitrogen(NH4+-N)and nitrate nitrogen(NO3−-N),rice yield indicators(thousand-grain weight,the number of grains per spike,and the number of effective spikes),and quality indicators(the amount of protein,amylose,vitamin C,nitrate and nitrite content)of rice were measured.The results showed that,the average irrigation volume under W3 was 2.4 and 1.9 times of that under W1 and W2,respectively.Compared with R3,the peak consumption of rice was lagged behind under R1 and R2,and the nitrogen form in 0–40 cm soil layers under rural sewage irrigation was mainly NH4+-N.The changes of NO3−-N and NH4+-N in the 0–40 cm soil layer showed the trend of declining and then increasing.The water level control only had a significant effect on the change of NO3−-N in the 60–80 cm soil layer.Both irrigation water use efficiency and crop water use efficiency were gradually reduced with the increase of field water level control.The nitrogen utilization efficiency under rural sewage irrigation was significantly higher than that under R3.Compared with the R3,rural sewage irrigation could significantly increase the yield of rice,and as the field water level rose,the effect of yield promotion was more obvious.It was noteworthy that the grain of rice under R1 monitored the low nitrate and nitrite content,but no nitrate and nitrite was discovered under R2 and R3.Therefore,reasonable rural sewage irrigation(R2)and medium water level(W2)were beneficial to improve nitrogen utilization efficiency,crop yield and crop quality promotion.展开更多
Three yearling lambs with a rumen cannula were used to investigate the effects of supplementation with an urea-minerals lick block (ULB) on the kinetics of ruminal fibre digestion, nutrient digestibility and nitrog...Three yearling lambs with a rumen cannula were used to investigate the effects of supplementation with an urea-minerals lick block (ULB) on the kinetics of ruminal fibre digestion, nutrient digestibility and nitrogen (N) utilization office straw (RS), ammonia bicarbonate (AB)-treated RS (ABRS) and hay prepared from natural pasture. The digestibility of dry matter and organic matter of RS increased by 13.1% and 12.7% (P〈0.05) when the diet was supplemented with ULB, and approached to that of ABRS, indicating that the effect of ULB on digestibility of RS is similar to that of AB treatment. The digestibility of ABRS was slightly improved by the ULB feeding. Nitrogen retention was highest in lambs fed on ABRS alone, followed by hay with ULB, and was lowest in animals fed on RS with ULB. However, both the amount and proportion of N retention to N intake were enhanced by ULB supplementation to lambs fed on hay. The proportion of N retained to N digested decreased due to ULB supplementation to lambs fed on RS or ABRS. Supplementing ULB did not greatly influence the rumen degradation of either dry matter or crude protein in each of the three diets. RS and hay had similar values in the potential extent of digestion (PED) and digestion rate of PED (kd) of fibrous materials, but the discrete lag time for RS was lower than that for hay. The AB treatment significantly increased the PED (P〈0.05) and kd (P〈0.05) of RS. Neither the PED nor kd for RS and ABRS was influenced by ULB supplementation, but the kd for hay significantly increased due to ULB. The lag time for hay was also shortened by the ULB feeding. The ULB improved the digestion of fibre in the rumen of lambs fed on low quality roughage. It is inferred that while ULB is effective in increasing nutrient digestibility of low quality roughages by improving ruminal fibre digestion. A synchronized supply of N and energy to rumen microbes should be considered to improve the efficiency of N utilization when the basal diet is ammoniated straw.展开更多
The velocity of nitrogen release impacts nitrogen utilization efficiency and animal growth.Yet the crucial junctures linking nitrogen release and utilization from diverse feed ingredients to digestion kinetic paramete...The velocity of nitrogen release impacts nitrogen utilization efficiency and animal growth.Yet the crucial junctures linking nitrogen release and utilization from diverse feed ingredients to digestion kinetic parameters remain obscure.This study aimed to evaluate and subdivide in vitro protein digestion characteristics(such as release rate of free amino acids[FAA])of three commonly used protein feed ingredients and to correlate the characteristics with nitrogen utilization in vivo.Ten soybean meals(SBM),eleven cottonseed meals(CM),and nine rapeseed meals(RM)were selected for in vitro study.After predigested for 120 min,the characteristics were evaluated within the small intestine stage.The release rate of total FAA from CM was significantly lower than SBM or RM during the fast-release phase(0 to 20 min).The total FAA release rate in SBM was substantially lower than others during the slow-release phase(20 to 140 min).In the in vivo experiment,cannulated growing barrows(n=24;BW=43.2±2.8 kg)were allocated to 4 treatments(6 replicates for each treatment and 1 pig for each replicate).Three diets,each containing an equal concentration of crude protein(CP)supplied by either SBM,CM,or RM,fulfilled the requirements for essential amino acids.Nitrogen-free control diet was also included.There were strong correlations between plasma urea nitrogen(PUN)and the release rate of total FAA in both the fast-and slow-release phases(P<0.01).In summary,differences in in vitro digestion kinetic characteristics among SBM,CM,and RM were determined.It is believed that separating the total small intestine phase of total FAA release into the fast-and slow-release phases as the evaluation standard of protein feed ingredients and diets might effectively reveal their character and can be related to the PUN concentration of pigs.展开更多
Soil nitrogen(N)is the main limiting nutrient for plant growth,which is sensitive to variations in the soil oxygen environment.To provide insights into plant N accumulation and yield under aerated and drip irrigation,...Soil nitrogen(N)is the main limiting nutrient for plant growth,which is sensitive to variations in the soil oxygen environment.To provide insights into plant N accumulation and yield under aerated and drip irrigation,a greenhouse tomato experiment was conducted with six treatments,including three fertilization types:inorganic fertilizer(NPK);organic fertilizer(OM);chemical(75%of applied N)+organic fertilizer(25%)(NPK+OM)under drip irrigation(DI)and aerated irrigation(AI)methods.Under Al,total soil carbon mineralization(C_(min))was significantly higher(by 5.7-7.0%)than under DI irrigation.C_(min)in the fertilizer treatments followed the order NPK+OM>OM>NPK under both AI and DI.Potentially mineralizable C(C_(0))and N(N_(0))was greater under AI than under DI.Gross N mineralization,gross nitrification,and NH_(4)^(+)immobilization rates were significantly higher under the AINPK treatment than the DINPK treatment by 2.58-3.27-,1.25-1.44-,and 1-1.26-fold,respectively.These findings demonstrated that AI and the addition of organic fertilizer accelerated the turnover of soil organic matter and N transformation processes,thereby enhancing N availability.Moreover,the combination of AI and organic fertilizer application was found to promote root growth(8.4-10.6%),increase the duration of the period of rapid N accumulation(ΔT),and increase the maximum N accumulation rate(V_(max)),subsequently encouraging aboveground dry matter accumulation.Consequently,the AI treatment yield was significantly greater(by 6.3-12.4%)than under the DI treatment.Further,N partial factor productivity(NPFP)and N harvest index(NHI)were greater under AI than under DI,by 6.3 to 12.4%,and 4.6 to 8.1%,respectively.The rankings of yield and NPFP remained consistent,with NPK+OM>OM>NPK under both AI and DI treatments.These results highlighted the positive impacts of AI and organic fertilizer application on soil N availability,N uptake,and overall crop yield in tomato.The optimal management measure was identified as the AINPK+OM treatment,which led to more efficient N management,better crop growth,higher yield,and more sustainable agricultural practices.展开更多
Background Pigs fed diets with different ingredients but identical nutritional levels show significant differences in growth performance,indicating that growth may also be influenced by the synchronicity of dietary ca...Background Pigs fed diets with different ingredients but identical nutritional levels show significant differences in growth performance,indicating that growth may also be influenced by the synchronicity of dietary carbon and nitrogen supply.Therefore,this study aimed to determine glucose release kinetics of various feed ingredients,to investigate a glucose release pattern that is conducive to synchronized carbon–nitrogen supply,and to elucidate the underlying mechanisms by which this synchronization optimizes growth of pigs.Results We analyzed the glucose release kinetics of 23 feed ingredients in vitro and found that their glucose release rates and amounts varied greatly.Based on this,a nitrogen-free diet and 5 purified diets,which represented the observed variations in glucose release rates and quantities among feed ingredients,were designed for 18 ileal-cannulated pigs.The results demonstrated that slower glucose release pattern could disrupt the synchrony of dietary carbon and nitrogen supply,reducing the growth of pigs and increasing nitrogen losses.Specifically,the diet with slower and moderate amounts of glucose release showed a relatively slower release of amino acids.Pigs fed this diet had the lower amino acid digestibility and the enrichment of harmful bacteria,such as Streptococcus,in the terminal ileum.Conversely,the diets with slower and lower glucose release exhibited a relatively rapid release of amino acids but also resulted in poor growth.They increased glucogenic amino acid digestibility and potentially enriched bacteria involved in nitrogen cycling and carbon metabolism.Notably,only the diet with rapid glucose release achieved synchronized and rapid release of nutrients.Pigs fed this diet exhibited higher amino acid digestibility,decreased harmful bacteria enrichment,improved nutrient utilization,and enhanced short-term growth performance.Conclusions Our research analyzed significant differences in glucose release kinetics among swine feed ingredients and revealed that slow glucose release disrupted dietary carbon–nitrogen supply synchrony,shifting amino acid utilization and enriching pathogens,negatively impacting growth and nutrient utilization.Consequently,choosing feed ingredients releasing glucose at a rapid rate to balance dietary carbon and nitrogen supply helps promote pig growth,and ensures efficient feed utilization.展开更多
Straw return has demonstrated significant potential for enhancing carbon(C)sequestration and nitrogen(N)uptake while concurrently promoting plant productivity.However,the specific transport and distribution of C produ...Straw return has demonstrated significant potential for enhancing carbon(C)sequestration and nitrogen(N)uptake while concurrently promoting plant productivity.However,the specific transport and distribution of C produced by photosynthesis and exogenous N within the rice plant-soil system under straw return remains unclear.A long-term straw return pot trial experiment was conducted in a double cropping rice system,incorporating treatments of inorganic fertilizer application with straw removal(F),straw burning and ash return with reducing inorganic fertilizers(SBR),and straw return with reducing inorganic fertilizers(SR)to investigate C sequestration and exogenous N uptake using ^(13)C pulse and ^(15)N isotope tracer techniques.The SR treatment had significantly higher soil ^(13)C abundance,by 24.4 and 25.4%,respectively,^(13)C concentrations in aboveground plant parts,by 18.4 and 35.8%respectively,and ^(15)N concentrations in rice panicles,by 12.8 and 34.3%than the SBR and F treatments.This enhancement contributed to a higher total organic C concentration and increased rice grain yield in the SR treatment.Furthermore,the SR treatment had significantly higher photosynthetic C,by 9.8%,which was directly transferred to soil C.The SR treatment had a higher distribution of photosynthetic C in the leaves and stems,but a lower distribution in the panicle compared to the SBR treatment.This finding is advantageous for sequestering photosynthetic C into the soil through straw return;conversely,opposite trends were observed in ^(15)N distribution.In addition,rice plants in the SR treatment had increased N uptake from urea and soil N sources,enhancing N recovery by 9.2 and 12.5%,respectively,and reducing soil N residues.Correlation analysis showed that the SR treatment increased the concentrations of ^(13)C in leaves and roots while decreasing the ^(15)N abundance in all rice organs,thereby contributing to an increase in rice yield.The partial least square path model suggested that the increase in rice yield under the SR treatment was primarily linked to ^(13)C accumulation within the rice plant-soil system.The results suggest that straw return increases the sequestration of photosynthetic C and exogenous N in the rice plant-soil system and increases N utilization efficiency,which subsequently improves both rice and soil productivity.展开更多
This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics impr...This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics improvement of nitrogen nutrition in rice high-yield cultivation. This experiment was set to compare milk vetch, rapeseed,ryegrass and mixed of green manure on rice yield, rice growth dynamics and nitrogen uptake and utilization in rice. The results showed that among 4 different winter green manure, the treatment of MV-R-R(milk vetch-rice-rice) for the early rice yield was the most than others treatments. Compared with RG-R-R(ryegrass-rice-rice), RPR-R(rapeseed-rice-rice), MS-R-R(mixed green manure-rice-rice), the treatment of MVR-R inceased by 6.61%, 3.29%, 0.78%, respectively. The treatment of MV-R-R in N content in plant of rice was maximized in the tillering, booting, heading and maturity periods, respectively higher than the average of other treatments 9.68%, 19.72%,6.23% and 8.66%. At tillering, booting, heading and maturity, the treatment of MV-R-R were the highest in N uptake, RP-R-R minimum. The N periodic accumulation for MV-R-R were higher than other treatments in the tillering to booting, booting to heading and heading to maturity periods. The rates respectively were 21.81%, 68.73% and286.5%. In addition, N periodic accumulation and its ratio to total in the heading to maturity was minimum, maximum before tillering under green manure rotation system.So the cropping system of milk vetch-rice-rice could increase nitrogen use efficiency and improve N cycling.展开更多
[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and ut...[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and utilization efficiency for mid-season hybrid rice.[Method] By using mid-season rice varieties II-you 7 and Yuxiangyou203 as the experimental materials,field experiment was conducted at seven ecological sites in four provinces or cities in Southwestern China in 2009.A total of four nitrogen application levels were set as follows:by using 75 kg/hm2 of P2O5 and 75 kg/hm2 of K2O as the base fertilizer,extra 0,90,150 and 210 kg/hm2 of nitrogen fertilizer(in which,base fertilizer,base-tillering fertilizer and base-earing fertilizer respectively accounted for 60%,20% and 20%.) was applied,respectively.In the split-plot design,fertilizer was considered as the main factor while rice variety was taken as the secondary factor.A total of eight treatments were set with three replications.[Result] Highly significant differences of grain yield were found among seven locations,two varieties,four nitrogen application levels,interactions of site × variety and site × nitrogen application level,but the interaction of variety ×nitrogen application level had no significant influence on rice yield.There were highly significant effects of site,varieties and nitrogen application level on dry matter production,nitrogen content,nitrogen utilization efficiency.Highly significant negative correlations between uptake efficiency and utilization efficiency for nitrogen were found;and multiple stepwise regression analysis showed that nitrogen uptake-utilization efficiency were significantly influenced by different ecological sites,chemical quality of soil and the levels of nitrogen application.[Conclusion] The research will provide theoretical and practical basis for the highly efficient application of nitrogen in mid-season hybrid rice cultivation.展开更多
[Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitr...[Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitrogen application on grain yield, economic profit, nitrogen uptake and utilization efficiency, and soil inorganic nitrogen accumulation in winter wheat-summer maize rotation system were investigated. [Re- sult] Nitrogen application could significantly increase the y(eld of the winter wheat- summer maize rotation system, which increased by 17.76%-30.32% and 22.24%- 46.63% in two rotation cycles, respectively. The yield of the winter wheat-summer maize rotation system was the maximum in two rotation cycles with nitrogen appli- cation amount of 660.0 kg/hm2, which reached respectively 23 391.19 and 23 444.35 kg/hm2, the yield and economic benefit were the highest, the nitrogen fertilizer use efficiency was 22.2% and 30.7%, the agronomic efficiency was 8.3 and 11.3 kg/kg. However, the nitrogen fertilizer use efficiency and agronomic efficiency between ni- trogen application amount of 540.0 and 660.0 kg/hm2 showed no significant differ- ence. After two rotation cycles, inorganic nitrogen accumulation in 0-40 cm soil with nitrogen application amount of 540.0 kg/hm2 was almost equal to that before experi- ment. [Conclusion] Under the experimental conditions, comprehensively considering the grain yield, economic profit, nitrogen fertilizer efficiency and soil inorganic nitro- gen balance, the optimal nitrogen application amount was 625.3-660.0 kg/hm2 in high-yield winter wheat-summer maize rotation system.展开更多
With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield a...With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield and nitrogen efficiency of autumn maize.Increase in planting density with reduced nitrogen fertilizer application is one of the important paths to achieve high yield and high nitrogen utilization efficiency.Meanwhile,the effect needs to be verified for autumn maize.The semi-compact autumn maize variety Qinyu 58 was planted under different planting densities and nitrogen fertilizer amounts with the split plot design.Different nitrogen application rates were arranged in the main plots,including the conventional nitrogen application(N300,300 kg/hm^2),30%reduction from the conventional treatment(N210,210 kg/hm^2)and no nitrogen application(N0).Different planting densities were arranged in the sub-split plots,including the conventional planting density(D60,60000 plants/hm2),medium density(D78,78000 plants/hm^2)and high density(D93,93000 plants/hm2).The effects of nitrogen fertilizer,planting density and their interaction effects on canopy structure,dry matter accumulation,yield and nitrogen use efficiency of autumn maize were studied.The nitrogen application rate and planting density had obvious interaction effects on the yield formation of autumn maize.Compared with the conventional cultivation(N300D60),increasing the planting density with 30%reduction in nitrogen application(N210)can obviously increase the canopy light interception rate,LAI,dry matter accumulation and yield.However,there was no significant change in canopy light interception rate,LAI,dry matter accumulation,grain weight and yield between D93 and D78.Compared with N300D60,nitrogen translocation efficiency and nitrogen contribution proportion to grain nitrogen did not change significantly in autumn maize grown under N210 and D78 treatments,whereas nitrogen partial productivity,nitrogen agronomic efficiency and recovery and utilization efficiency of nitrogen fertilizer increased significantly.Moreover,high density(D93)planting at N210 plots significantly improved nitrogen transport efficiency and utilization efficiency in autumn maize.Therefore,the suitable planting density of the autumn maize variety Qinyu 58 in Hubei Province is recommended a value of 78000 plants/hm^2,with the nitrogen application rate of 210 kg/hm2,which can achieve the target of higher yield by increasing density and reducing nitrogen.展开更多
Nitrogen and potassium are important nutrientelements for rice.Besides supplied by the or- ganic manure,potassium nutrition of ricecomes dominantly from purple soils in Sichuanbasin.Potassium exists abundantly in mine...Nitrogen and potassium are important nutrientelements for rice.Besides supplied by the or- ganic manure,potassium nutrition of ricecomes dominantly from purple soils in Sichuanbasin.Potassium exists abundantly in mineralforms in the purple soils.Availability of soilpotassium for crop depends on the potassiumforms,the uptake ability of crops,and fertiliz-er practices.A pot culture experiment wasconducted to study the kinetics of potassiumuptake in the purple soil(total N 22.64g·kg,total K 24.36g·kg,available N 102.6mg·kg,available K 140.6mg·kg,acidsoluble K 936.0mg·kg,and pH 6.8).Ma-terials used were three Fhybrid rices,Eryou展开更多
Available irrigation resources are becoming increasingly scarce in the North China Plain (NCP),and nitrogen-use efficiency of crop production is also relatively low.Thus,it is imperative to improve the water-use effic...Available irrigation resources are becoming increasingly scarce in the North China Plain (NCP),and nitrogen-use efficiency of crop production is also relatively low.Thus,it is imperative to improve the water-use efficiency (WUE) and nitrogen fertilizer productivity on the NCP.Here,we conducted a two-year field experiment to explore the effects of different irrigation amounts (S60,60 mm;S90,90 mm;S120,120 mm;S150,150 mm) and nitrogen application rates (150,195 and 240 kg ha^(–1);denoted as N1,N2 and N3,respectively) under micro-sprinkling with water and nitrogen combined on the grain yield(GY),yield components,leaf area index (LAI),flag leaf chlorophyll content,dry matter accumulation (DM),WUE,and nitrogen partial factor productivity (NPFP).The results indicated that the GY and NPFP increased significantly with increasing irrigation amount,but there was no significant difference between S120 and S150;WUE significantly increased first but then decreased with increasing irrigation and S120 achieved the highest WUE.The increase in nitrogen was beneficial to improving the GY and WUE in S60 and S90,while the excessive nitrogen application (N3) significantly reduced the GY and WUE in S120 and S150 compared with those in the N2 treatment.The NPFP significantly decreased with increasing nitrogen rate under the same irrigation treatments.The synchronous increase in spike number (SN) and 1 000-grain weight (TWG)was the main reason for the large increase in GY by micro-sprinkling with increasing irrigation,and the differences in SN and TGW between S120 and S150 were small.Under S60 and S90,the TGW increased with increasing nitrogen application,which enhanced the GY,while N2 achieved the highest TWG in S120 and S150.At the filling stage,the LAI increased with increasing irrigation,and greater amounts of irrigation significantly increased the chlorophyll content in the flag leaf,which was instrumental in increasing DM after anthesis and increasing the TGW.Micro-sprinkling with increased amounts of irrigation or excessive nitrogen application decreased the WUE mainly due to the increase in total water consumption (ET)and the small increase or decrease in GY.Moreover,the increase in irrigation increased the total nitrogen accumulation or contents (TNC) of plants at maturity and reduced the residual nitrate-nitrogen in the soil (SNC),which was conducive to the increase in NPFP,but there was no significant difference in TNC between S120 and S150.Under the same irrigation treatments,an increase in nitrogen application significantly increased the residual SNC and decreased the NPFP.Overall,micro-sprinkling with 120 mm of irrigation and a total nitrogen application of 195 kg ha^(–1) can lead to increases in GY,WUE and NPFP on the NCP.展开更多
Nitrogen(N)fixation by legumes and nitrogen transfer to cereals have been considered as important pathways for overyielding and higher N use efficiency in cereal/legume intercropping systems.However,the extent to whic...Nitrogen(N)fixation by legumes and nitrogen transfer to cereals have been considered as important pathways for overyielding and higher N use efficiency in cereal/legume intercropping systems.However,the extent to which root morphology contributes to N fixation and transfer is unclear.A two-factorial greenhouse experiment was conducted to quantify the N fixation,transfer and root morphology characteristics of the maize/alfalfa intercropping system in two consecutive years using the 15N-urea leaf labeling method,and combining two N levels with three root separation techniques.N application could inhibit N fixation and transfer in a maize/alfalfa intercropping system.Irrespective of the N application level,compared with plastic sheet separation(PSS),no separation(NS)and nylon mesh separation(NNS)significantly increased the total biomass(36%)and total N content(28%),while the N fixation rate also sharply increased by 75 to 134%,and the amount of N transferred with no root barrier was 1.24–1.42 times greater than that with a mesh barrier.Redundancy analysis(RDA)showed that the crown root dry weight(CRDW)of maize and lateral root number(LRN)of alfalfa showed the strongest associations with N fixation and transfer.Our results highlight the importance of root contact for the enhancement of N fixation and transfer via changes in root morphology in maize/alfalfa intercropping systems,and the overyielding system was achieved via increases in maize growth,at the cost of smaller decreases in alfalfa biomass production.展开更多
In order to establish methods for indentification and screening of rice genotypes with high nitrogen (N) efficiency, N absorption efficiency (NAE), N utilization efficiency (NUE) and N harvest index (NHI) in t...In order to establish methods for indentification and screening of rice genotypes with high nitrogen (N) efficiency, N absorption efficiency (NAE), N utilization efficiency (NUE) and N harvest index (NHI) in ten rice genotypes were investgated at the elongation, booting, heading and maturity stages under six N levels in a pot experiment with soil-sand mixtures at various ratios. NAE in various rice genotypes firstly increased, peaked under a medium nitrogen rate of 0.177 g/kg and then decreased, but NUE and NHI always decreased with increasing nitrogen levels. NAE in various rice genotypes ever increased with growing process and NUE indicated a descending tendency of elongation stage〉heading stage〉maturity stage〉booting stage. N level influenced rice NAE, NUE and NHI most, followed by genotype, and the both effects were significant at 0.01 level. In addition, the interaction effects of genotype and nitrogen level on rice NAE and NUE were significant at 0.01 level, but not significant on rice NHI. Because the maximum differences of NAE and NUE were found at the elongation stage, it was thought to be the most suitable stage for identification and screening these two paremeters. Therefore, the optimum conditions for identification and screening of rice NAE, NUE and NHI in a pot experiment were the nitrogen rate of 0.157 g/kg at the elongation stage, low nitrogen at the elongation stage, and the nitrogen rate of 0.277 g/kg at the maturity stage, respectively.展开更多
The effects of the basal and top-dressing nitrogen (N) on N uptake and translocation, N utilization efficiency, grain yieldand quality of medium-gluten winter wheat Yangmai 10 were studied from 2000 to 2002. The main ...The effects of the basal and top-dressing nitrogen (N) on N uptake and translocation, N utilization efficiency, grain yieldand quality of medium-gluten winter wheat Yangmai 10 were studied from 2000 to 2002. The main results were as follows.Nitrogen content and nitrogen accumulation in plant at maturity increased with the amount of N application. Grain proteincontent and wet gluten content were significantly correlated with applied N. There was a significantly positive correlationbetween nitrogen accumulation before anthesis (NBA) and basal N fertilizer, and between nitrogen accumulation afteranthesis (NAA) and top-dressing N. N accumulated in grains was significantly correlated to NBA, NAA and N translocationfrom vegetative organs after anthesis (NTVA). NBA was significantly correlated with N application, but NAA and NTVAhad a quadratic curve correlation with applied N. N fertilizer use efficiency (NUE) had a quadratic curve correlation withapplied N, and the NUE was high when basal and top-dressing N was equally applied. For the medium-gluten wheatYangmai 10 under the same N application ratio, there was a N-regulating effect when the N application was less than266.55 kg ha-1, a stagnation of yield and quality when N application ranged from 266.55 to 309.08 kg ha-1, and an excessiveN application when the N application rate was greater than 309.08 kg ha-1. Under the conditions of this experiment, theprecise N application is 220-270 kg ha-1 with basal and top-dressing N equally used when a grain yield of more than 6 750kg ha-1, protein content higher than 12%, wet gluten content more than 30% and NUE greater than 40% could be obtained.展开更多
Nitrogen (N) application before transplanting, where N fertilizers are applied in seedling-bed and carried to the paddy field with seedlings, is a novel method proposed in this article aiming for improving nitrogen ...Nitrogen (N) application before transplanting, where N fertilizers are applied in seedling-bed and carried to the paddy field with seedlings, is a novel method proposed in this article aiming for improving nitrogen utilization efficiency (NUE) in rice. The effect of this method on mineral N distribution in the rhizosphere soil was investigated in a field experiment with a japonica variety, Ningjing 2, in seasons of 2004 and 2005. There were four levels of N applied 16 h before transplanting: zero N (NO), 207 kg ha^-1 (NL), 310.5 kg ha^-1 (NM), and 414 kg ha^-1 (NH). The result indicated that N fertilizer before transplantation had positive effect of increasing mineral N content in the rhizosphere soil of rice. Generally, N content in the rhizosphere soil of rice tended to increase with the amount of N fertilizer before transplanting, with the NH treatment having the largest effect. Additionally, N fertilizer before transplanting had significant influence on rice NUE and grain yield. Compared with other treatments, the NM treatment showed the largest influence, with basal-tillering NUE, total NUE, and grain yield being 15%, 12%, and 529.5 kg ha^-1 higher than those of NO treatment. This result indicated that N fertilizer before transplantation had positive effect on mineral N distribution in the rhizosphere soil of rice, thus improving NUE and grain yield.展开更多
基金supported by the National Key Research and Development Program of China(2023YFD2301304,2022YFD2301404-4,2023YFD2302600,and 2022YFE0116200)Open Subjects of the Key Laboratory of Agro-Environment in the Middle and Lower Yangtze River Plain,Ministry of Agriculture and Rural Affairs of China(2023F12)+1 种基金National Natural Science Foundation of China(32301964)Sanya Yazhou Bay Science and Technology City Project(SKJC-2023-02-004)。
文摘One-time application of controlled-release blended fertilizer(CRBF,a mixture of five nitrogen(N)fertilizers in a certain ratio)can achieve high yield and N use efficiency(NUE)in rice(Oryza sativa L.).However,the effects of CRBF with one-time application on root spatial distribution and physiological characteristics remain unclear.We measured the effects of CRBF with one-time application on rice yield,NUE,root morphology and growth,and N uptake capacity in field and root box experiments.Six N treatments were set up:no nitrogen(N0),high-yield three-split application of urea as a control(CK),urea(U)with broadcast,U with side-deep fertilization,CRBF with broadcast,and CRBF with side-deep fertilization.Our findings showed that root characters were positively correlated with yield and NUE.Compared to CK and U treatments,CRBF with one-time applications increased root characters(including root biomass,root N uptake,root activity,and the expression level of ammonium transporters)at tillering and heading stages.The root length,surface area and volume in the 0-10 cm soil layer enhanced under CRBF with one-time applications at tillering stage,and in the 0-20 cm soil layer at the heading stage.This contributed a5.96%-39.40% and 3.69%-16.87% increase in plant dry matter accumulation and N uptake,and a2.08%-18.28% and 14.60%-149.57% increase in yield and NUE,in 2022 and 2023,respectively.Taken together,our findings showed that one-time application of CRBF could increase rice yield and NUE by optimizing the root morphology distribution and N uptake.
基金supported by the National Natural Science Foundation of China(32161143028)the Key Technology of Grassland Ecological Civilization Demonstration Area in Ningxia Hui Autonomous Region,China(20210239)the Northwest Shelterbelt Construction Bureau of the National Forestry and Grassland Administration,China。
文摘Understanding livestock performance in typical steppe ecosystems is essential for optimizing grassland-livestock interactions and minimizing environmental impact.To assess the effects of different stocking rates on the growth performance,energy and nitrogen utilization,methane(CH_(4))emissions,and grazing behavior of Tan sheep,a 2-year grazing experiment in the typical steppe was conducted.The grazing area was divided into 9 paddocks,each 0.5 ha,with 3 spatial replicates for each stocking rate treatment(4,8,and 13 sheep per paddock),corresponding to 2.7,5.3,and 8.7 sheep ha^(–1).The results showed that the neutral detergent fiber(NDF)and acid detergent fiber(ADF)contents of herbage varied between grazing years(P<0.05),with a positive correlation between stocking rate and crude fiber content in the herbage(P<0.05).Dry matter intake(DMI)decreased with increasing stocking rate(P<0.05),and the average daily gain(ADG)was highest at 2.7 sheep ha^(–1)(P<0.05).Compared to 2.7 and 8.7 sheep ha^(–1),the5.3 sheep ha^(–1)treatment exhibited the lowest nutrient digestibility for dry matter,nitrogen,and ether extract(P<0.05).Fecal nitrogen was lowest at 8.7 sheep ha^(–1)(P<0.05),while retained nitrogen as a proportion of nitrogen intake was highest.Digestive energy(DE),metabolic energy(ME),and the ratios of DE to gross energy(GE)and ME to GE were highest at 8.7 sheep ha^(–1)(P<0.05).In contrast,CH_4 emissions,CH_4 per DMI,and CH_(4)E as a proportion of GE were highest at 2.7 sheep ha^(–1)(P<0.05).Stocking rate and grazing year did not significantly affect rumen fermentation parameters,including volatile fatty acids,acetate,propionate,and the acetate/propionate ratio.At 8.7sheep ha^(–1),daily grazing time and inter-individual distance increased,while time allocated to grazing,walking,and ruminating/resting decreased as stocking rates increased(P<0.05).This study highlights the importance of adjusting stocking rates based on the nutritional value of forage and grazing year to optimize grazing management.
基金supported by the the Guizhou Provincial Excellent Young Talents Project of Science and Technology,China(YQK(2023)002)the Guizhou Provincial Science and Technology Projects,China((2022)Key 008)+2 种基金the Guizhou Provincial Science and Technology Support Plan,China((2022)Key 026)the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province,China((2023)008)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions,China((2023)007)。
文摘Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.
基金partially supported by the National Key Research and Development Program of China(2021YFD1300201)Jilin Province Key Research and Development Program of China(20220202044NC)。
文摘Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.
基金financially supported by National Key Research and Development Program(2019YFC0408803)Basic Public Welfare Research Project of Zhejiang Province(LGN20E090001)+2 种基金Major Scientific and Technological Projects of Zhejiang Provincial Department of Water Resources(RA1913)Water Conservancy Science and Technology in Zhejiang Province(RC1918,RC2029)National Natural Science Foundation of China(52009044).
文摘Reclaimed water irrigation has become an effective mean to alleviate the contradiction between water availability and its consumption worldwide.In this study,three types of irrigation water sources(rural sewage’s primary treated water R1 and secondary treated water R2,and river water R3)meeting the requirements of water quality for farmland irrigation were selected,and three types of irrigation water levels(low water levelW1 of 0–80 mm,medium water level W2 of 0–100 mm,and high water level W3 of 0–150 mm)were adopted to carry out research on the influence mechanismS of different irrigation water sources and water levels on water and nitrogen use and crop growth in paddy field.The water quantity indicators(irrigation times and irrigation volume),soil ammonium nitrogen(NH4+-N)and nitrate nitrogen(NO3−-N),rice yield indicators(thousand-grain weight,the number of grains per spike,and the number of effective spikes),and quality indicators(the amount of protein,amylose,vitamin C,nitrate and nitrite content)of rice were measured.The results showed that,the average irrigation volume under W3 was 2.4 and 1.9 times of that under W1 and W2,respectively.Compared with R3,the peak consumption of rice was lagged behind under R1 and R2,and the nitrogen form in 0–40 cm soil layers under rural sewage irrigation was mainly NH4+-N.The changes of NO3−-N and NH4+-N in the 0–40 cm soil layer showed the trend of declining and then increasing.The water level control only had a significant effect on the change of NO3−-N in the 60–80 cm soil layer.Both irrigation water use efficiency and crop water use efficiency were gradually reduced with the increase of field water level control.The nitrogen utilization efficiency under rural sewage irrigation was significantly higher than that under R3.Compared with the R3,rural sewage irrigation could significantly increase the yield of rice,and as the field water level rose,the effect of yield promotion was more obvious.It was noteworthy that the grain of rice under R1 monitored the low nitrate and nitrite content,but no nitrate and nitrite was discovered under R2 and R3.Therefore,reasonable rural sewage irrigation(R2)and medium water level(W2)were beneficial to improve nitrogen utilization efficiency,crop yield and crop quality promotion.
基金Project (No. 011102193) supported by the Foundation of the Science and Technology Commission of Zhejiang Provincethe Foundation for Excellent Youth Teachers from the State Commission of Education, China
文摘Three yearling lambs with a rumen cannula were used to investigate the effects of supplementation with an urea-minerals lick block (ULB) on the kinetics of ruminal fibre digestion, nutrient digestibility and nitrogen (N) utilization office straw (RS), ammonia bicarbonate (AB)-treated RS (ABRS) and hay prepared from natural pasture. The digestibility of dry matter and organic matter of RS increased by 13.1% and 12.7% (P〈0.05) when the diet was supplemented with ULB, and approached to that of ABRS, indicating that the effect of ULB on digestibility of RS is similar to that of AB treatment. The digestibility of ABRS was slightly improved by the ULB feeding. Nitrogen retention was highest in lambs fed on ABRS alone, followed by hay with ULB, and was lowest in animals fed on RS with ULB. However, both the amount and proportion of N retention to N intake were enhanced by ULB supplementation to lambs fed on hay. The proportion of N retained to N digested decreased due to ULB supplementation to lambs fed on RS or ABRS. Supplementing ULB did not greatly influence the rumen degradation of either dry matter or crude protein in each of the three diets. RS and hay had similar values in the potential extent of digestion (PED) and digestion rate of PED (kd) of fibrous materials, but the discrete lag time for RS was lower than that for hay. The AB treatment significantly increased the PED (P〈0.05) and kd (P〈0.05) of RS. Neither the PED nor kd for RS and ABRS was influenced by ULB supplementation, but the kd for hay significantly increased due to ULB. The lag time for hay was also shortened by the ULB feeding. The ULB improved the digestion of fibre in the rumen of lambs fed on low quality roughage. It is inferred that while ULB is effective in increasing nutrient digestibility of low quality roughages by improving ruminal fibre digestion. A synchronized supply of N and energy to rumen microbes should be considered to improve the efficiency of N utilization when the basal diet is ammoniated straw.
基金supported by the National Natural Science Foundation of China(No.32330100 and 32125036)the National Key Research and Development Program of China(No.2021YFD1300201)the Hainan Province Science and Technology Special Fund(ZDYF2021XDNY177).
文摘The velocity of nitrogen release impacts nitrogen utilization efficiency and animal growth.Yet the crucial junctures linking nitrogen release and utilization from diverse feed ingredients to digestion kinetic parameters remain obscure.This study aimed to evaluate and subdivide in vitro protein digestion characteristics(such as release rate of free amino acids[FAA])of three commonly used protein feed ingredients and to correlate the characteristics with nitrogen utilization in vivo.Ten soybean meals(SBM),eleven cottonseed meals(CM),and nine rapeseed meals(RM)were selected for in vitro study.After predigested for 120 min,the characteristics were evaluated within the small intestine stage.The release rate of total FAA from CM was significantly lower than SBM or RM during the fast-release phase(0 to 20 min).The total FAA release rate in SBM was substantially lower than others during the slow-release phase(20 to 140 min).In the in vivo experiment,cannulated growing barrows(n=24;BW=43.2±2.8 kg)were allocated to 4 treatments(6 replicates for each treatment and 1 pig for each replicate).Three diets,each containing an equal concentration of crude protein(CP)supplied by either SBM,CM,or RM,fulfilled the requirements for essential amino acids.Nitrogen-free control diet was also included.There were strong correlations between plasma urea nitrogen(PUN)and the release rate of total FAA in both the fast-and slow-release phases(P<0.01).In summary,differences in in vitro digestion kinetic characteristics among SBM,CM,and RM were determined.It is believed that separating the total small intestine phase of total FAA release into the fast-and slow-release phases as the evaluation standard of protein feed ingredients and diets might effectively reveal their character and can be related to the PUN concentration of pigs.
基金supported by the National Natural Science Foundation of China for Young Scholars(52109066)the Postdoctoral Science Foundation of Shaanxi Province,China(2023BSHTBZZ29)the China Postdoctoral Science Foundation(2022M712604 and 2023T160534).
文摘Soil nitrogen(N)is the main limiting nutrient for plant growth,which is sensitive to variations in the soil oxygen environment.To provide insights into plant N accumulation and yield under aerated and drip irrigation,a greenhouse tomato experiment was conducted with six treatments,including three fertilization types:inorganic fertilizer(NPK);organic fertilizer(OM);chemical(75%of applied N)+organic fertilizer(25%)(NPK+OM)under drip irrigation(DI)and aerated irrigation(AI)methods.Under Al,total soil carbon mineralization(C_(min))was significantly higher(by 5.7-7.0%)than under DI irrigation.C_(min)in the fertilizer treatments followed the order NPK+OM>OM>NPK under both AI and DI.Potentially mineralizable C(C_(0))and N(N_(0))was greater under AI than under DI.Gross N mineralization,gross nitrification,and NH_(4)^(+)immobilization rates were significantly higher under the AINPK treatment than the DINPK treatment by 2.58-3.27-,1.25-1.44-,and 1-1.26-fold,respectively.These findings demonstrated that AI and the addition of organic fertilizer accelerated the turnover of soil organic matter and N transformation processes,thereby enhancing N availability.Moreover,the combination of AI and organic fertilizer application was found to promote root growth(8.4-10.6%),increase the duration of the period of rapid N accumulation(ΔT),and increase the maximum N accumulation rate(V_(max)),subsequently encouraging aboveground dry matter accumulation.Consequently,the AI treatment yield was significantly greater(by 6.3-12.4%)than under the DI treatment.Further,N partial factor productivity(NPFP)and N harvest index(NHI)were greater under AI than under DI,by 6.3 to 12.4%,and 4.6 to 8.1%,respectively.The rankings of yield and NPFP remained consistent,with NPK+OM>OM>NPK under both AI and DI treatments.These results highlighted the positive impacts of AI and organic fertilizer application on soil N availability,N uptake,and overall crop yield in tomato.The optimal management measure was identified as the AINPK+OM treatment,which led to more efficient N management,better crop growth,higher yield,and more sustainable agricultural practices.
基金supported by the National Key Research and Development Program of China(2021YFD1300201)the National Natural Science Foundation of China(32330100 and 32125036)+3 种基金the China Agricultural Research System(CARS-35)2115 Talent Development Program of China Agricultural Universitythe 111 Project(No.B16044)the 2023 Key Project of the Graduate Independent Innovation Research Fund at China Agricultural University。
文摘Background Pigs fed diets with different ingredients but identical nutritional levels show significant differences in growth performance,indicating that growth may also be influenced by the synchronicity of dietary carbon and nitrogen supply.Therefore,this study aimed to determine glucose release kinetics of various feed ingredients,to investigate a glucose release pattern that is conducive to synchronized carbon–nitrogen supply,and to elucidate the underlying mechanisms by which this synchronization optimizes growth of pigs.Results We analyzed the glucose release kinetics of 23 feed ingredients in vitro and found that their glucose release rates and amounts varied greatly.Based on this,a nitrogen-free diet and 5 purified diets,which represented the observed variations in glucose release rates and quantities among feed ingredients,were designed for 18 ileal-cannulated pigs.The results demonstrated that slower glucose release pattern could disrupt the synchrony of dietary carbon and nitrogen supply,reducing the growth of pigs and increasing nitrogen losses.Specifically,the diet with slower and moderate amounts of glucose release showed a relatively slower release of amino acids.Pigs fed this diet had the lower amino acid digestibility and the enrichment of harmful bacteria,such as Streptococcus,in the terminal ileum.Conversely,the diets with slower and lower glucose release exhibited a relatively rapid release of amino acids but also resulted in poor growth.They increased glucogenic amino acid digestibility and potentially enriched bacteria involved in nitrogen cycling and carbon metabolism.Notably,only the diet with rapid glucose release achieved synchronized and rapid release of nutrients.Pigs fed this diet exhibited higher amino acid digestibility,decreased harmful bacteria enrichment,improved nutrient utilization,and enhanced short-term growth performance.Conclusions Our research analyzed significant differences in glucose release kinetics among swine feed ingredients and revealed that slow glucose release disrupted dietary carbon–nitrogen supply synchrony,shifting amino acid utilization and enriching pathogens,negatively impacting growth and nutrient utilization.Consequently,choosing feed ingredients releasing glucose at a rapid rate to balance dietary carbon and nitrogen supply helps promote pig growth,and ensures efficient feed utilization.
基金supported by the National Natural Science Foundation of China(32160503)the Earmarked Fund for Jiangxi Agriculture Research System,China(JXARS-01)the National Key R&D Program of China(2023YFD2301303).
文摘Straw return has demonstrated significant potential for enhancing carbon(C)sequestration and nitrogen(N)uptake while concurrently promoting plant productivity.However,the specific transport and distribution of C produced by photosynthesis and exogenous N within the rice plant-soil system under straw return remains unclear.A long-term straw return pot trial experiment was conducted in a double cropping rice system,incorporating treatments of inorganic fertilizer application with straw removal(F),straw burning and ash return with reducing inorganic fertilizers(SBR),and straw return with reducing inorganic fertilizers(SR)to investigate C sequestration and exogenous N uptake using ^(13)C pulse and ^(15)N isotope tracer techniques.The SR treatment had significantly higher soil ^(13)C abundance,by 24.4 and 25.4%,respectively,^(13)C concentrations in aboveground plant parts,by 18.4 and 35.8%respectively,and ^(15)N concentrations in rice panicles,by 12.8 and 34.3%than the SBR and F treatments.This enhancement contributed to a higher total organic C concentration and increased rice grain yield in the SR treatment.Furthermore,the SR treatment had significantly higher photosynthetic C,by 9.8%,which was directly transferred to soil C.The SR treatment had a higher distribution of photosynthetic C in the leaves and stems,but a lower distribution in the panicle compared to the SBR treatment.This finding is advantageous for sequestering photosynthetic C into the soil through straw return;conversely,opposite trends were observed in ^(15)N distribution.In addition,rice plants in the SR treatment had increased N uptake from urea and soil N sources,enhancing N recovery by 9.2 and 12.5%,respectively,and reducing soil N residues.Correlation analysis showed that the SR treatment increased the concentrations of ^(13)C in leaves and roots while decreasing the ^(15)N abundance in all rice organs,thereby contributing to an increase in rice yield.The partial least square path model suggested that the increase in rice yield under the SR treatment was primarily linked to ^(13)C accumulation within the rice plant-soil system.The results suggest that straw return increases the sequestration of photosynthetic C and exogenous N in the rice plant-soil system and increases N utilization efficiency,which subsequently improves both rice and soil productivity.
基金Supported by Jiangxi Agricultural University Students’Platform for Innovation and Entrepreneurship Training Program(DC201305)Key Projects in the National Science&Technology Pillar Program(2012BAD14B14-01)~~
文摘This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics improvement of nitrogen nutrition in rice high-yield cultivation. This experiment was set to compare milk vetch, rapeseed,ryegrass and mixed of green manure on rice yield, rice growth dynamics and nitrogen uptake and utilization in rice. The results showed that among 4 different winter green manure, the treatment of MV-R-R(milk vetch-rice-rice) for the early rice yield was the most than others treatments. Compared with RG-R-R(ryegrass-rice-rice), RPR-R(rapeseed-rice-rice), MS-R-R(mixed green manure-rice-rice), the treatment of MVR-R inceased by 6.61%, 3.29%, 0.78%, respectively. The treatment of MV-R-R in N content in plant of rice was maximized in the tillering, booting, heading and maturity periods, respectively higher than the average of other treatments 9.68%, 19.72%,6.23% and 8.66%. At tillering, booting, heading and maturity, the treatment of MV-R-R were the highest in N uptake, RP-R-R minimum. The N periodic accumulation for MV-R-R were higher than other treatments in the tillering to booting, booting to heading and heading to maturity periods. The rates respectively were 21.81%, 68.73% and286.5%. In addition, N periodic accumulation and its ratio to total in the heading to maturity was minimum, maximum before tillering under green manure rotation system.So the cropping system of milk vetch-rice-rice could increase nitrogen use efficiency and improve N cycling.
基金Supported by Construction of Southwestern Rice Innovation System,Science and Technology Project on Food Production (2006BAD02-A05)Agriculture Science Technology Achievement TransformationFund (2006GB2F000256)+2 种基金Sichuan Provincial Foundation for Lead-ers of Disciplines in ScienceProject of Rice Breeding Technology ofSichuanProgram Promoted by Sichuan Financial Administration~~
文摘[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and utilization efficiency for mid-season hybrid rice.[Method] By using mid-season rice varieties II-you 7 and Yuxiangyou203 as the experimental materials,field experiment was conducted at seven ecological sites in four provinces or cities in Southwestern China in 2009.A total of four nitrogen application levels were set as follows:by using 75 kg/hm2 of P2O5 and 75 kg/hm2 of K2O as the base fertilizer,extra 0,90,150 and 210 kg/hm2 of nitrogen fertilizer(in which,base fertilizer,base-tillering fertilizer and base-earing fertilizer respectively accounted for 60%,20% and 20%.) was applied,respectively.In the split-plot design,fertilizer was considered as the main factor while rice variety was taken as the secondary factor.A total of eight treatments were set with three replications.[Result] Highly significant differences of grain yield were found among seven locations,two varieties,four nitrogen application levels,interactions of site × variety and site × nitrogen application level,but the interaction of variety ×nitrogen application level had no significant influence on rice yield.There were highly significant effects of site,varieties and nitrogen application level on dry matter production,nitrogen content,nitrogen utilization efficiency.Highly significant negative correlations between uptake efficiency and utilization efficiency for nitrogen were found;and multiple stepwise regression analysis showed that nitrogen uptake-utilization efficiency were significantly influenced by different ecological sites,chemical quality of soil and the levels of nitrogen application.[Conclusion] The research will provide theoretical and practical basis for the highly efficient application of nitrogen in mid-season hybrid rice cultivation.
基金Supported by Science and Technology Project for Food Production(2011BAD16B15)"11th Five-Year Plan"National Science and Technology Support Program(2008-BADA4B07)Sino-International Plant Nutrition Research Institute(IPNI)Cooperation Project(NMBF-HenanAU-2008)~~
文摘[Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitrogen application on grain yield, economic profit, nitrogen uptake and utilization efficiency, and soil inorganic nitrogen accumulation in winter wheat-summer maize rotation system were investigated. [Re- sult] Nitrogen application could significantly increase the y(eld of the winter wheat- summer maize rotation system, which increased by 17.76%-30.32% and 22.24%- 46.63% in two rotation cycles, respectively. The yield of the winter wheat-summer maize rotation system was the maximum in two rotation cycles with nitrogen appli- cation amount of 660.0 kg/hm2, which reached respectively 23 391.19 and 23 444.35 kg/hm2, the yield and economic benefit were the highest, the nitrogen fertilizer use efficiency was 22.2% and 30.7%, the agronomic efficiency was 8.3 and 11.3 kg/kg. However, the nitrogen fertilizer use efficiency and agronomic efficiency between ni- trogen application amount of 540.0 and 660.0 kg/hm2 showed no significant differ- ence. After two rotation cycles, inorganic nitrogen accumulation in 0-40 cm soil with nitrogen application amount of 540.0 kg/hm2 was almost equal to that before experi- ment. [Conclusion] Under the experimental conditions, comprehensively considering the grain yield, economic profit, nitrogen fertilizer efficiency and soil inorganic nitro- gen balance, the optimal nitrogen application amount was 625.3-660.0 kg/hm2 in high-yield winter wheat-summer maize rotation system.
文摘With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield and nitrogen efficiency of autumn maize.Increase in planting density with reduced nitrogen fertilizer application is one of the important paths to achieve high yield and high nitrogen utilization efficiency.Meanwhile,the effect needs to be verified for autumn maize.The semi-compact autumn maize variety Qinyu 58 was planted under different planting densities and nitrogen fertilizer amounts with the split plot design.Different nitrogen application rates were arranged in the main plots,including the conventional nitrogen application(N300,300 kg/hm^2),30%reduction from the conventional treatment(N210,210 kg/hm^2)and no nitrogen application(N0).Different planting densities were arranged in the sub-split plots,including the conventional planting density(D60,60000 plants/hm2),medium density(D78,78000 plants/hm^2)and high density(D93,93000 plants/hm2).The effects of nitrogen fertilizer,planting density and their interaction effects on canopy structure,dry matter accumulation,yield and nitrogen use efficiency of autumn maize were studied.The nitrogen application rate and planting density had obvious interaction effects on the yield formation of autumn maize.Compared with the conventional cultivation(N300D60),increasing the planting density with 30%reduction in nitrogen application(N210)can obviously increase the canopy light interception rate,LAI,dry matter accumulation and yield.However,there was no significant change in canopy light interception rate,LAI,dry matter accumulation,grain weight and yield between D93 and D78.Compared with N300D60,nitrogen translocation efficiency and nitrogen contribution proportion to grain nitrogen did not change significantly in autumn maize grown under N210 and D78 treatments,whereas nitrogen partial productivity,nitrogen agronomic efficiency and recovery and utilization efficiency of nitrogen fertilizer increased significantly.Moreover,high density(D93)planting at N210 plots significantly improved nitrogen transport efficiency and utilization efficiency in autumn maize.Therefore,the suitable planting density of the autumn maize variety Qinyu 58 in Hubei Province is recommended a value of 78000 plants/hm^2,with the nitrogen application rate of 210 kg/hm2,which can achieve the target of higher yield by increasing density and reducing nitrogen.
文摘Nitrogen and potassium are important nutrientelements for rice.Besides supplied by the or- ganic manure,potassium nutrition of ricecomes dominantly from purple soils in Sichuanbasin.Potassium exists abundantly in mineralforms in the purple soils.Availability of soilpotassium for crop depends on the potassiumforms,the uptake ability of crops,and fertiliz-er practices.A pot culture experiment wasconducted to study the kinetics of potassiumuptake in the purple soil(total N 22.64g·kg,total K 24.36g·kg,available N 102.6mg·kg,available K 140.6mg·kg,acidsoluble K 936.0mg·kg,and pH 6.8).Ma-terials used were three Fhybrid rices,Eryou
基金funded by the National Key Research and Development Program of China(2016YFD0300105 and 2016YFD0300401)the National Natural Science Foundation of China(31871563)the earmarked fund for China Agriculture Research System(CARS-3)。
文摘Available irrigation resources are becoming increasingly scarce in the North China Plain (NCP),and nitrogen-use efficiency of crop production is also relatively low.Thus,it is imperative to improve the water-use efficiency (WUE) and nitrogen fertilizer productivity on the NCP.Here,we conducted a two-year field experiment to explore the effects of different irrigation amounts (S60,60 mm;S90,90 mm;S120,120 mm;S150,150 mm) and nitrogen application rates (150,195 and 240 kg ha^(–1);denoted as N1,N2 and N3,respectively) under micro-sprinkling with water and nitrogen combined on the grain yield(GY),yield components,leaf area index (LAI),flag leaf chlorophyll content,dry matter accumulation (DM),WUE,and nitrogen partial factor productivity (NPFP).The results indicated that the GY and NPFP increased significantly with increasing irrigation amount,but there was no significant difference between S120 and S150;WUE significantly increased first but then decreased with increasing irrigation and S120 achieved the highest WUE.The increase in nitrogen was beneficial to improving the GY and WUE in S60 and S90,while the excessive nitrogen application (N3) significantly reduced the GY and WUE in S120 and S150 compared with those in the N2 treatment.The NPFP significantly decreased with increasing nitrogen rate under the same irrigation treatments.The synchronous increase in spike number (SN) and 1 000-grain weight (TWG)was the main reason for the large increase in GY by micro-sprinkling with increasing irrigation,and the differences in SN and TGW between S120 and S150 were small.Under S60 and S90,the TGW increased with increasing nitrogen application,which enhanced the GY,while N2 achieved the highest TWG in S120 and S150.At the filling stage,the LAI increased with increasing irrigation,and greater amounts of irrigation significantly increased the chlorophyll content in the flag leaf,which was instrumental in increasing DM after anthesis and increasing the TGW.Micro-sprinkling with increased amounts of irrigation or excessive nitrogen application decreased the WUE mainly due to the increase in total water consumption (ET)and the small increase or decrease in GY.Moreover,the increase in irrigation increased the total nitrogen accumulation or contents (TNC) of plants at maturity and reduced the residual nitrate-nitrogen in the soil (SNC),which was conducive to the increase in NPFP,but there was no significant difference in TNC between S120 and S150.Under the same irrigation treatments,an increase in nitrogen application significantly increased the residual SNC and decreased the NPFP.Overall,micro-sprinkling with 120 mm of irrigation and a total nitrogen application of 195 kg ha^(–1) can lead to increases in GY,WUE and NPFP on the NCP.
基金This study was financially supported by the National Natural Science Foundation of China(31471945)。
文摘Nitrogen(N)fixation by legumes and nitrogen transfer to cereals have been considered as important pathways for overyielding and higher N use efficiency in cereal/legume intercropping systems.However,the extent to which root morphology contributes to N fixation and transfer is unclear.A two-factorial greenhouse experiment was conducted to quantify the N fixation,transfer and root morphology characteristics of the maize/alfalfa intercropping system in two consecutive years using the 15N-urea leaf labeling method,and combining two N levels with three root separation techniques.N application could inhibit N fixation and transfer in a maize/alfalfa intercropping system.Irrespective of the N application level,compared with plastic sheet separation(PSS),no separation(NS)and nylon mesh separation(NNS)significantly increased the total biomass(36%)and total N content(28%),while the N fixation rate also sharply increased by 75 to 134%,and the amount of N transferred with no root barrier was 1.24–1.42 times greater than that with a mesh barrier.Redundancy analysis(RDA)showed that the crown root dry weight(CRDW)of maize and lateral root number(LRN)of alfalfa showed the strongest associations with N fixation and transfer.Our results highlight the importance of root contact for the enhancement of N fixation and transfer via changes in root morphology in maize/alfalfa intercropping systems,and the overyielding system was achieved via increases in maize growth,at the cost of smaller decreases in alfalfa biomass production.
基金supported by the National High-Tech Research&Development program(Grant No.2003AA206030)the National Natural Science Foundation of China(Grant No.30030090)
文摘In order to establish methods for indentification and screening of rice genotypes with high nitrogen (N) efficiency, N absorption efficiency (NAE), N utilization efficiency (NUE) and N harvest index (NHI) in ten rice genotypes were investgated at the elongation, booting, heading and maturity stages under six N levels in a pot experiment with soil-sand mixtures at various ratios. NAE in various rice genotypes firstly increased, peaked under a medium nitrogen rate of 0.177 g/kg and then decreased, but NUE and NHI always decreased with increasing nitrogen levels. NAE in various rice genotypes ever increased with growing process and NUE indicated a descending tendency of elongation stage〉heading stage〉maturity stage〉booting stage. N level influenced rice NAE, NUE and NHI most, followed by genotype, and the both effects were significant at 0.01 level. In addition, the interaction effects of genotype and nitrogen level on rice NAE and NUE were significant at 0.01 level, but not significant on rice NHI. Because the maximum differences of NAE and NUE were found at the elongation stage, it was thought to be the most suitable stage for identification and screening these two paremeters. Therefore, the optimum conditions for identification and screening of rice NAE, NUE and NHI in a pot experiment were the nitrogen rate of 0.157 g/kg at the elongation stage, low nitrogen at the elongation stage, and the nitrogen rate of 0.277 g/kg at the maturity stage, respectively.
基金supported by Foundation for University Key Teacher by the Ministry of Education of China(GG-901-11117-1003)the Research Fund from Jiangsu Province of China(BE2001333).
文摘The effects of the basal and top-dressing nitrogen (N) on N uptake and translocation, N utilization efficiency, grain yieldand quality of medium-gluten winter wheat Yangmai 10 were studied from 2000 to 2002. The main results were as follows.Nitrogen content and nitrogen accumulation in plant at maturity increased with the amount of N application. Grain proteincontent and wet gluten content were significantly correlated with applied N. There was a significantly positive correlationbetween nitrogen accumulation before anthesis (NBA) and basal N fertilizer, and between nitrogen accumulation afteranthesis (NAA) and top-dressing N. N accumulated in grains was significantly correlated to NBA, NAA and N translocationfrom vegetative organs after anthesis (NTVA). NBA was significantly correlated with N application, but NAA and NTVAhad a quadratic curve correlation with applied N. N fertilizer use efficiency (NUE) had a quadratic curve correlation withapplied N, and the NUE was high when basal and top-dressing N was equally applied. For the medium-gluten wheatYangmai 10 under the same N application ratio, there was a N-regulating effect when the N application was less than266.55 kg ha-1, a stagnation of yield and quality when N application ranged from 266.55 to 309.08 kg ha-1, and an excessiveN application when the N application rate was greater than 309.08 kg ha-1. Under the conditions of this experiment, theprecise N application is 220-270 kg ha-1 with basal and top-dressing N equally used when a grain yield of more than 6 750kg ha-1, protein content higher than 12%, wet gluten content more than 30% and NUE greater than 40% could be obtained.
文摘Nitrogen (N) application before transplanting, where N fertilizers are applied in seedling-bed and carried to the paddy field with seedlings, is a novel method proposed in this article aiming for improving nitrogen utilization efficiency (NUE) in rice. The effect of this method on mineral N distribution in the rhizosphere soil was investigated in a field experiment with a japonica variety, Ningjing 2, in seasons of 2004 and 2005. There were four levels of N applied 16 h before transplanting: zero N (NO), 207 kg ha^-1 (NL), 310.5 kg ha^-1 (NM), and 414 kg ha^-1 (NH). The result indicated that N fertilizer before transplantation had positive effect of increasing mineral N content in the rhizosphere soil of rice. Generally, N content in the rhizosphere soil of rice tended to increase with the amount of N fertilizer before transplanting, with the NH treatment having the largest effect. Additionally, N fertilizer before transplanting had significant influence on rice NUE and grain yield. Compared with other treatments, the NM treatment showed the largest influence, with basal-tillering NUE, total NUE, and grain yield being 15%, 12%, and 529.5 kg ha^-1 higher than those of NO treatment. This result indicated that N fertilizer before transplantation had positive effect on mineral N distribution in the rhizosphere soil of rice, thus improving NUE and grain yield.