New fluorine substituted heterobicyclic nitrogen system as imidozolopyrimidines (2,3), pyrimido- 1,2,4-triazinones (4-7), 1,2,4-triazinyl-1,2,4-triazine (12-16), 1,2,4-triazinyl-1,2,4-triazinones (14-17) and substitut...New fluorine substituted heterobicyclic nitrogen system as imidozolopyrimidines (2,3), pyrimido- 1,2,4-triazinones (4-7), 1,2,4-triazinyl-1,2,4-triazine (12-16), 1,2,4-triazinyl-1,2,4-triazinones (14-17) and substituted thiobarbituric acids (19-20), have been synthesized using the reaction of 3- amino-5,6-di (4'-fluorophenyl)-1,2,4-triazine (1) with α,β–bifunctional compounds. Structures of the title compounds were characterized by UV, IR, 1H/13C-NMR and mass spectrometric method. The studied compounds were tested for CDK2 inhibiting activity in DNA damage, as well as in vitro anti-tumor activity.展开更多
The synthesis, preparation, chemical reactivities and biological activity of simple heterocyclic and heteropolycyclic nitrogen systems as small units as functional pyrazoles, pyridine and pyrimidine, and the related f...The synthesis, preparation, chemical reactivities and biological activity of simple heterocyclic and heteropolycyclic nitrogen systems as small units as functional pyrazoles, pyridine and pyrimidine, and the related fused systems are reviewed. Among the various possible routes to the formation, isomeric structures have been cited because of patented reaching advanced phases of clinical trials, from 2000 to 2020.展开更多
Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as...Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.展开更多
Strip-till(ST),including straw mulching in the inter-row and localized fertilization in the intra-row,is a conservation tillage system for improving soil quality and crop growth.However,the yield advantage of maize un...Strip-till(ST),including straw mulching in the inter-row and localized fertilization in the intra-row,is a conservation tillage system for improving soil quality and crop growth.However,the yield advantage of maize under ST compared to conventional tillage(CT)remains unstable,and the strategies to increase maize yield under ST are unclear.This study aims to understand the physiological mechanism underlining maize yield formation under ST by comparing two maize cultivars,DKM753 and DK517,with contrasting yield performance in ST versus CT systems.Compared to CT,ST resulted in a 4.5%yield increase for DKM753 but a 5.6%decrease for DK517.These yield differences were primarily attributed to variations in grain number per ear(GN).During the rapid growth stage(V14-R3),i.e.,two weeks before and after silking,DKM753 showed a 6.7%increase in maximum growth rate(V_(max))and a 6.3%increase in average growth rate(V)under ST,whereas DK517 exhibited decline of 8.5%in V_(max) and 12.3%in V.Significant positive correlations are observed between V_(max) and V with GN under ST(R^(2)=0.79 and R^(2)=0.90,respectively).Enhanced dry matter accumulation in DKM753 under ST was attributed to increased leaf expansion rates,contributing to a larger photosynthate source.The straw mulching and localized nitrogen fertilization increased root-zone nitrogen availability at silking in ST compared to CT.DKM753 had a greater root system which made better use of the soil N and lead to an increased leaf nitrogen accumulation by 14.9%under ST.It is concluded that maize yield under the strip-till system is determined by grain number per ear,which can be increased by increasing nitrogen accumulation,plant growth,and ear development around silking stage.A sound root system can efficiently utilize soil nitrogen resources under the strip-till system,increasing plant nitrogen accumulation and thereby promoting plant growth.展开更多
Plant roots interact with diverse fungi that are essential for maintaining the productivity and sustainability of pasture ecosystems,but how these root-associated fungi(RAF)differ between forage species and how they r...Plant roots interact with diverse fungi that are essential for maintaining the productivity and sustainability of pasture ecosystems,but how these root-associated fungi(RAF)differ between forage species and how they respond to nutrient enrichment and fungicide application are not well understood.Here,we constructed an 11-year experiment involving fungicide application(with or without)nested within four levels of experimental nitrogen(N)addition treatments in an alpine pasture,and the RAF communities,root traits,tissue nutrients,and shoot biomass of two dominant forage species(Carex capillifolia and Elymus nutans)were analyzed.The RAF community composition showed striking differences between the plant species and was strongly affected by both N addition level and fungicide applications.Fungicide,but not N application,dramatically reduced the RAF richness of all functional guilds in both plant species,and fungicide also simplified the co-occurrence network of the RAF for C.capillifolia.The RAF community correlated strongly with root traits,whereas their relationships became weakened or even vanished at the level of the individual plant species.The importance of RAF to plant nutrients and productivity varied between plant species,with significant contributions in C.capillifolia but not in E.nutans.This is the first report elucidating the long-term effect of fungicides on RAF in alpine pastures,and our findings emphasize the host-specific responses of RAF community structure and function to anthropogenic disturbances.展开更多
The inhibitory effects of zinc oxide nanoparticles(ZnO NPs)and impacts of N-acylhomoserine lactone(AHL)-based quorum sensing(QS)on biological nitrogen removal(BNR)performance have beenwell-investigated.However,the eff...The inhibitory effects of zinc oxide nanoparticles(ZnO NPs)and impacts of N-acylhomoserine lactone(AHL)-based quorum sensing(QS)on biological nitrogen removal(BNR)performance have beenwell-investigated.However,the effects of ammonia nitrogen(NH_(4)^(+)-N)concentrations on NP toxicity and AHL regulation have seldom been addressed yet.This study consulted on the impacts of ZnO NPs on BNR systems when high NH_(4)^(+)-N concentrationwas available.The synergistic toxic effects of high-strength NH_(4)^(+)-N(200 mg/L)and ZnO NPs resulted in decreased ammonia oxidation rates and dropped the nitrogen removal efficiencies by 17.5%±0.2%.The increased extracellular polymeric substances(EPS)production was observed in response to the high NH_(4)^(+)-N and ZnO NP stress,which indicated the defensemechanism against the toxic effects in the BNR systemswas stimulated.Furthermore,the regulatory effects of exogenous N-decanoyl-homoserine lactone(C_(10)-HSL)-mediated QS system on NP-stressed BNR systems were revealed to improve the BNR performance under different NH_(4)^(+)-N concentrations.The C_(10)-HSL regulated the intracellular reactive oxygen species levels,denitrification functional enzyme activities,and antioxidant enzyme activities,respectively.This probably synergistically enhanced the defense mechanism against NP toxicity.However,compared to the low NH_(4)^(+)-N concentration of 60 mg/L,the efficacy of C_(10)-HSL was inhibited at high NH_(4)^(+)-N levels of 200 mg/L.The findings provided the significant application potential of QS system for BNR when facing toxic compound shock threats.展开更多
Long-term straw return with appropriate nitrogen(N)fertilization increases seedcotton yield and fiber quality,and the root system plays an important role in cotton production.However,under straw return and N fertiliza...Long-term straw return with appropriate nitrogen(N)fertilization increases seedcotton yield and fiber quality,and the root system plays an important role in cotton production.However,under straw return and N fertilization,the relationship between the cotton boll-loading capacity of the root system and seedcotton yield remains unclear.In this study,a ten years of long-term field experiment was conducted in a wheat-cotton rotation system.The effects of straw treatments(straw return and straw removal)and N rates(N0,N75,N150 and N300 representing 0,75,150 and 300 kg N ha^(-1),respectively)on cotton root activity,boll-loading capacity of the root system and their relationship to seedcotton yield from 2019 to 2022 were quantified.The results showed that straw return with an appropriate N fertilization of N150 increased root biomass,the rate and components of root-bleeding sap,as well as boll-loading capacity of the root system and seedcotton yield,but decreased the ratio of root to shoot biomass.Furthermore,the root-bleeding sap rate reached the maximum at 30 d post anthesis(DPA)during the peak boll setting stage.However,the contents of nitrate-N,free amino acids and soluble sugar in root-bleeding sap decreased from 10 DPA.Notably,in 2021 and at 30 DPA,the highest contents of nitrate-N(4.8μg mL^(-1))and free amino acids(8.3μg mL^(-1)),as well as soluble sugar(3.4μg mL^(-1))were observed at N150 under straw return.The increase in seedcotton yield is positively correlated to the soluble sugar content.Straw return significantly increased the boll-loading capacity of the root system,which first increased but then decreased with the increase in N fertilization.Under straw return with N150,the maximum seecotton yield(3455-4544 kg ha^(-1))was recorded,and the largest boll loading(49-54 boll 100 g^(-1))and boll capacity(242-292 g 100 g^(-1))of root system at the boll opening stage were observed.Therefore,straw return with appropriate N fertilization improved root activity and the boll-loading capacity of the root system,thereby increasing seedcotton yield.This study provides new insights into improving seedcotton yield from the perspective of coordinating cotton growth.展开更多
Amid global climate change, rising levels of nitrogen(N) deposition have attracted considerable attention for their potential effects on the carbon cycle of terrestrial ecosystems. The desert steppes are a crucial yet...Amid global climate change, rising levels of nitrogen(N) deposition have attracted considerable attention for their potential effects on the carbon cycle of terrestrial ecosystems. The desert steppes are a crucial yet vulnerable ecosystem in arid areas, but their response to the combination of N addition and precipitation(a crucial factor in arid areas) remains underexplored. This study systematically explored the impact of N addition and precipitation on net ecosystem exchange(NEE) in a desert steppe in northern China. Specifically, we conducted a 2-a experiment from 2022 to 2023 with eight N addition treatments in the Urat desert steppe of Inner Mongolia Autonomous Region, China, to examine changes in NEE and explore its driving factors. The structural equation model(SEM) and multiple regression model were applied to determine the relationship of NEE with plant community characteristics and soil physical-chemical properties. Statistical results showed that N addition has no significant effect on NEE.However, it has a significant impact on the functional traits of desert steppe plant communities. SEM results further revealed that N addition has no significant effect on NEE in the desert steppe, whereas annual precipitation can influence NEE variations. The multiple regression model analysis indicated that plant functional traits play an important role in explaining the changes in NEE, accounting for 62.15% of the variation in NEE. In addition, plant height, as an important plant functional trait indicator, shows stronger reliability in predicting the changes in NEE and becomes a more promising predictor. These findings provide valuable insights into the complex ecological mechanisms governing plant community responses to precipitation and nutrient availability in the arid desert steppes, contributing to the improved monitoring and prediction of desert steppe ecosystem responses to global climate change.展开更多
Straw return has demonstrated significant potential for enhancing carbon(C)sequestration and nitrogen(N)uptake while concurrently promoting plant productivity.However,the specific transport and distribution of C produ...Straw return has demonstrated significant potential for enhancing carbon(C)sequestration and nitrogen(N)uptake while concurrently promoting plant productivity.However,the specific transport and distribution of C produced by photosynthesis and exogenous N within the rice plant-soil system under straw return remains unclear.A long-term straw return pot trial experiment was conducted in a double cropping rice system,incorporating treatments of inorganic fertilizer application with straw removal(F),straw burning and ash return with reducing inorganic fertilizers(SBR),and straw return with reducing inorganic fertilizers(SR)to investigate C sequestration and exogenous N uptake using ^(13)C pulse and ^(15)N isotope tracer techniques.The SR treatment had significantly higher soil ^(13)C abundance,by 24.4 and 25.4%,respectively,^(13)C concentrations in aboveground plant parts,by 18.4 and 35.8%respectively,and ^(15)N concentrations in rice panicles,by 12.8 and 34.3%than the SBR and F treatments.This enhancement contributed to a higher total organic C concentration and increased rice grain yield in the SR treatment.Furthermore,the SR treatment had significantly higher photosynthetic C,by 9.8%,which was directly transferred to soil C.The SR treatment had a higher distribution of photosynthetic C in the leaves and stems,but a lower distribution in the panicle compared to the SBR treatment.This finding is advantageous for sequestering photosynthetic C into the soil through straw return;conversely,opposite trends were observed in ^(15)N distribution.In addition,rice plants in the SR treatment had increased N uptake from urea and soil N sources,enhancing N recovery by 9.2 and 12.5%,respectively,and reducing soil N residues.Correlation analysis showed that the SR treatment increased the concentrations of ^(13)C in leaves and roots while decreasing the ^(15)N abundance in all rice organs,thereby contributing to an increase in rice yield.The partial least square path model suggested that the increase in rice yield under the SR treatment was primarily linked to ^(13)C accumulation within the rice plant-soil system.The results suggest that straw return increases the sequestration of photosynthetic C and exogenous N in the rice plant-soil system and increases N utilization efficiency,which subsequently improves both rice and soil productivity.展开更多
Climate warming and atmospheric nitrogen(N)deposition have profound influences on the terrestrial biosphere.However,how these two global change drivers affect phytoplankton which are important primary producers in wet...Climate warming and atmospheric nitrogen(N)deposition have profound influences on the terrestrial biosphere.However,how these two global change drivers affect phytoplankton which are important primary producers in wetlands with large carbon stocks and complex hydrological fluctuations remain largely unclear.As part of a two-year field experiment in a freshwater wetland,this study was conducted to investigate the effects of nighttime warming and N addition on phytoplankton biomass in the North China Plain.The results showed that neither nighttime warming nor N addition influenced the Shannon-Wiener index of phytoplankton community.Nighttime warming did not change phytoplankton biomass,likely due to the different warming impacts on dominant phyla and in different seasons.Decreased phytoplankton biomass in spring because of the increased water pH and submerged plant coverage was compensated by the enhanced biomass in autumn due to the reduced dissolved oxygen and submerged plant coverage,leading to the neutral change of phytoplankton biomass under warming.Nitrogen addition elevated phytoplankton biomass by 11.6%,which could be attributed to the enhanced nutrient availability and reduced submerged plant coverage.Positive relationships of methane(CH4)emission rates at the water-air interface with phytoplankton biomass indicated the potentially crucial role of phytoplankton in mediating wetland CH4 cycling through photosynthesis-driven metabolisms.The findings suggested the seasonal variation of phytoplankton and their potential responses to nighttime warming and N deposition,which may provide a more accurate basis for assessing the global change-carbon feedback in wetland ecosystems.展开更多
The Arno River Basin(Central Italy)is affected by a considerable anthropogenic pressure due to the presence of large cities and widespread industrial and agricultural practices.In this work,26 water samples from the A...The Arno River Basin(Central Italy)is affected by a considerable anthropogenic pressure due to the presence of large cities and widespread industrial and agricultural practices.In this work,26 water samples from the Arno River and its main tributaries were analyzed to assess the water pollution status.The geochemical composition of the Arno River changes from the source(dominated by a Ca-HCO_(3) facies)to the mouth(where a Na-Cl(SO4)chemistry prevails)with an increasing quality deterioration,as suggested by the Chemical Water Quality Index,due to anthropogenic contributions and seawater intrusion before flowing into the Ligurian Sea.The Ombrone and Usciana tributaries introduce anthropogenic pollutants into the Arno River,whilst Elsa tributary supplies significant contents of geogenic sulfate.The concentrations of dissolved nitrate and nitrite(up to 63 and 9 mg/L,respectively)and the respective isotopic values of𝛿15N and𝛿18O were also determined to understand origin and fate of the N-species in the Arno River Basin surface waters.The combined application of𝛿15N-NO_(3) and𝛿18O-NO_(3) and N-source apportionment modelling allowed the identification of soil organic nitrogen and sewage and domestic wastes as primary sources for dissolved NO_(3)-.The𝛿15N-NO_(2) and𝛿18O-NO_(2) values suggest that the nitrification process affects the ARB waters,thus controlling the abundances and proportion of the N-species.Our work indicates that additional efforts are needed to improve management strategies to reduce the release of nitrogenated species to the surface waters of the Arno River Basin,since little progress has been made from the early 2000s.展开更多
[Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental...[Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental pollution and formulating countermeasures to control the nonpoint source pollution from agriculture.[Method] Water samples collected in four typical crop rotation systems distributed in seven towns(townships) in the north of Erhai Lake basin were investigated,as well as the fertilizer input,to explore the dynamic change of nitrogen and phosphorus content in surface water of farmland and ditch water,and the correlation between fertilizer input and the concentrations of nitrogen and phosphorus in the surface water of farmland and in the ditch water.[Result] The results showed that nitrogen loss in surface water of farmland in different crop rotation systems differed greatly,and the risk of nitrogen loss was 38% lower in broad bean-rice crop rotation than that in garlic-rice crop rotation.The water soluble nitrogen was the primary form of nitrogen loss.The content of water soluble nitrogen was significantly higher in garlic-rice crop rotation than that in the other rotation systems,and the concentrations of nitrogen in the surface water of farmland in different crop rotation systems followed the sequence below:garlic-rice crop rotationryegrass-rice crop rotationbroad bean-rice crop rotationrape-rice crop rotation.The loss of phosphorus in the surface water of farmland was relatively low and phosphorus combined with silt was the primary form for phosphorus loss.There was no significant difference of the loss of various forms of phosphorus in different crop rotation systems.The contents of total nitrogen and total phosphorus in the surface water of farmland were higher than that in ditch water,with increasing rates of total nitrogen and total phosphorus in ditch water of 72% and 82%,respectively.Topdressing was the critical reason for the high concentrations of nitrogen and phosphorus in the surface water,which also caused the increasing load to the ditch water.[Conclusion] Both the nitrogen and phosphorus loss were the highest in garlic-rice crop rotation.Reasonable crop rotation systems should be established based on both the environmental and economic benefits.This study provided references for controlling the nonpoint source pollution of farmland and improving the water quality of Erhai Lake.展开更多
Nitrogen is one of the most important elements that can limit plant growth in forest ecosystems. Studies of nitrogen mineralization, nitrogen saturation and nitrogen cycle in forest ecosystems is very necessary for un...Nitrogen is one of the most important elements that can limit plant growth in forest ecosystems. Studies of nitrogen mineralization, nitrogen saturation and nitrogen cycle in forest ecosystems is very necessary for understanding the productivity of stand, nutrient cycle and turnover of nitrogen of forest ecosystems. Based on comparison and analysis of domestic and in-ternational academic references related to studies on nitrogen mineralization, nitrogen saturation and nitrogen cycle in recent 10 years, the current situation and development of the study on these aspects, and the problems existed in current researches were reviewed. At last, some advices were given for future researches.展开更多
[Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitr...[Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitrogen application on grain yield, economic profit, nitrogen uptake and utilization efficiency, and soil inorganic nitrogen accumulation in winter wheat-summer maize rotation system were investigated. [Re- sult] Nitrogen application could significantly increase the y(eld of the winter wheat- summer maize rotation system, which increased by 17.76%-30.32% and 22.24%- 46.63% in two rotation cycles, respectively. The yield of the winter wheat-summer maize rotation system was the maximum in two rotation cycles with nitrogen appli- cation amount of 660.0 kg/hm2, which reached respectively 23 391.19 and 23 444.35 kg/hm2, the yield and economic benefit were the highest, the nitrogen fertilizer use efficiency was 22.2% and 30.7%, the agronomic efficiency was 8.3 and 11.3 kg/kg. However, the nitrogen fertilizer use efficiency and agronomic efficiency between ni- trogen application amount of 540.0 and 660.0 kg/hm2 showed no significant differ- ence. After two rotation cycles, inorganic nitrogen accumulation in 0-40 cm soil with nitrogen application amount of 540.0 kg/hm2 was almost equal to that before experi- ment. [Conclusion] Under the experimental conditions, comprehensively considering the grain yield, economic profit, nitrogen fertilizer efficiency and soil inorganic nitro- gen balance, the optimal nitrogen application amount was 625.3-660.0 kg/hm2 in high-yield winter wheat-summer maize rotation system.展开更多
[Objective] This study aimed to explore the effects of continuous application of controlled release nitrogen fertilizer under double rice cropping system. [Method] By modeling three types of paddy soils in Dong-Ting L...[Objective] This study aimed to explore the effects of continuous application of controlled release nitrogen fertilizer under double rice cropping system. [Method] By modeling three types of paddy soils in Dong-Ting Lake area, four treatments as no fertilizer (CK), urea, controlled release nitrogen fertilizer (CRNF) and 70% controlled release nitrogen fertilizer (70% CRNF) were designed in the micro-plot trials from 2005 to 2008. [Result] The rice yield in treatment CRNF at N 150 kg/hm2 was increased by 10.3%, 8.0% and 2.4% compared with treatment of urea, in alluvial sandy loamy paddy soil (ALS), purple calcareous clayey paddy soil (PCS), and reddish yellow loamy paddy soil (RYS), respectively; and the yield in treatment of 70% CRNF was increased by 6.1%, 2.6% and -0.8%, respectively. The ranking order of nitrogen uptake amount by plant in early rice and late rice was CRNF 70% CRNF urea CK in all three types of soil. Nitrogen utilization efficiency of CRNF in above three types of soil was 60.7%, 59.6% and 56.3%, increased by 23.8%, 19.4% and 16.3% compared with that in treatment of urea, respectively. Nitrogen utilization efficiency of CRNF in early rice was increased year by year, and was higher than that of 70% CRNF during the whole experiment stage, while that in late rice was increased first and then decreased from the 3rd year. [Conclusion] Continuous application CRNF could alleviate the decreasing of soil nitrogen fertility and organic carbon especially in ALS, increase rice yield and nitrogen utilization efficiency in double-rice cropping system.展开更多
In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems. Cereal-legume intercropping is widely used to enh...In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems. Cereal-legume intercropping is widely used to enhance crop yield and improve resource use efficiency, especially in Southwest China. To optimize N utilization and increase grain yield, we conducted a two-year field experiment with single-factor randomized block designs of a maize-soybean intercropping system (IMS). Three N rates, NN (no nitrogen application), LN (lower N application: 270 kg N ha-1), and CN (conventional N application: 330 kg N ha-1), and three topdressing distances of LN (LND), e.g., 15 cm (LND1), 30 cm (LND2) and 45 cm (LND3) from maize rows were evaluated. At the beginning seed stage (R5), the leghemoglobin content and nitrogenase activity of LND3 were 1.86 mg plant-1 and 0.14 mL h-1 plant-1, and those of LND1 and LND2 were increased by 31.4 and 24.5%, 6.4 and 32.9% compared with LND3, respectively. The ureide content and N accumulation of soybean organs in LND1 and LND2 were higher than those of LND3. The N uptake, NUE and N agronomy efficiency (NAE) of IMS under CN were 308.3 kg ha-1, 28.5%, and 5.7 kg grain kg-1 N, respectively; however, those of LN were significantly increased by 12.4, 72.5, and 51.6% compared with CN, respectively. The total yield in LND1 and LND2 was increased by 12.3 and 8.3% compared with CN, respectively. Those results suggested that LN with distances of 15-30 cm from the topdressing strip to the maize row was optimal in maize-soybean intercropping. Lower N input with an optimized fertilization location for IMS increased N fixation and N use efficiency without decreasing grain yield.展开更多
To study whether integrative fertilization [growing milk vetch in winter and reducing the dose of chemical nitrogen(N) fertilizer] can improve rice yield, and to reveal the underlying regulatory mechanisms for integra...To study whether integrative fertilization [growing milk vetch in winter and reducing the dose of chemical nitrogen(N) fertilizer] can improve rice yield, and to reveal the underlying regulatory mechanisms for integrative fertilization, a three-year field trial including two treatments, milk vetch-rice-rice(MRR) and winter fallow-rice-rice(FRR), was conducted in 2010, 2011 and 2012.Our results demonstrated that the MRR treatment could significantly improve rice yield compared with the FRR treatment, especially when the application ratio of milk vetch and chemical fertilizer was 1:2.MRR treatment increased the effective panicle number and the spikelet number per panicle.In addition, a higher tillering number, leaf area index, photosynthetic-potential and photosynthetic-potential to grain ratio were observed in MRR treatment, which could provide enough dry matter for yield formation.Moreover, in MRR treatment, we discovered a higher transportation ratio and transformation ratio of dry matter in culm and leaves, and a stronger total sink capacity and spikelet-root bleeding intensity at the heading stage and 15 d after heading.Furthermore, the MRR treatment showed higher total N, phosphorus and potassium uptakes than FRR treatment, which was associated with the higher root dry weight in each soil layers.These results suggest that growing milk vetch in winter can improve rice yield under less chemical N fertilizer application, which is due to the improvement of soil nutrient status and the increased of rice root growth and development.展开更多
Agronomically optimizing the timing and rates of nitrogen(N) fertilizer application can increase crop yield and decrease N loss to the environment. Wheat(Triticum aestivum L.)–peanut(Arachis hypogaea L.) relay interc...Agronomically optimizing the timing and rates of nitrogen(N) fertilizer application can increase crop yield and decrease N loss to the environment. Wheat(Triticum aestivum L.)–peanut(Arachis hypogaea L.) relay intercropping systems are a mainstay of economic and food security in China. We performed a field experiment to investigate the effects of N fertilizer on N recovery efficiency, crop yield, and N loss rate in wheat–peanut relay intercropping systems in the Huang-Huai-Hai Plain, China during 2015–2017. The N was applied on the day before sowing, the jointing stage(G30) or the booting stage(G40) of winter wheat, and the anthesis stage(R1) of peanut in the following percentage splits: 50-50-0-0(N1), 35-35-0-30(N2), and 35-0-35-30(N3), using 300 kg N ha-1, with 0 kg N ha-1(N0) as control. ^(15)N-labeled(20.14 atom %) urea was used to trace the fate of N in microplots. The yields of wheat and peanut increased by 12.4% and 15.4% under the N2 and N3 treatments, relative to those under the N1 treatment. The ^(15)N recovery efficiencies( ^(15)NRE) were 64.9% and 58.1% for treatments N2 and N3, significantly greater than that for the N1 treatment(45.3%). The potential N loss rates for the treatments N2 and N3 were23.7% and 7.0%, significantly lower than that for treatment N1(30.1%). Withholding N supply until the booting stage(N3) did not reduce the wheat grain yield; however, it increased the N content derived from ^(15)N-labeled urea in peanuts, promoted the distribution of ^(15)N to pods, and ultimately increased pod yields in comparison with those obtained by topdressing N at jointing stage(N2). In comparison with N2, the N uptake and N recovery efficiency(NRE) of N3 was increased by 12.0% and 24.1%,respectively, while the apparent N loss decreased by 16.7%. In conclusion, applying N fertilizer with three splits and delaying topdressing fertilization until G40 of winter wheat increased total grain yields and NRE and reduced N loss. This practice could be an environment-friendly N management strategy for wheat–peanut relay intercropping systems in China.展开更多
To explore the optimal land-use for soil carbon (C) sequestration in Inner Mongolian grasslands, we investigated C and nitrogen (N) storage in soil and soil fractions in 8 floristi- cally and topographically simil...To explore the optimal land-use for soil carbon (C) sequestration in Inner Mongolian grasslands, we investigated C and nitrogen (N) storage in soil and soil fractions in 8 floristi- cally and topographically similar sites which subjected to different lancl-use types (free-grazing, grazing exclusion, mowing, winter grazing, and reclamation). Compared with free-grazing grasslands, C and N storage in the 0-50 cm layer increased by 18.3% (15.5 Mg C ha-1) and 9.3% (0.8 Mg N ha-1) after 10-yr of grazing exclusion, respectively, and 21.9% (18.5 Mg C ha-1) and 11.5% (0.9 Mg N ha-1) after 30-yr grazing exclusion, respectively. Similarly, soil C and N storage increased by 15.3% (12.9 Mg C ha-1) and 10.2% (0.8 Mg N ha-1) after 10-yr mowing, respectively, and 19.2% (16.2 Mg C ha-1) and 7.1% (0.6 Mg N ha-1) after 26-yr mowing, respectively. In contrast, soil C and N storage declined by 10.6% (9.0 Mg C ha-1) and 11.4% (0.9 Mg N ha-1) after 49-yr reclamation, respectively. Moreover, increases in C and N storage mainly occurred in sand and silt fractions in the 0-10 cm soil layer with grazing exclusion and mowing. Our findings provided evidence that Inner Mongolian grassslands have the capacity to sequester C and N in soil with improved management practices, which were in the order: grazing exclusion 〉 mowing 〉 winter grazing 〉 reclamation.展开更多
In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrie...In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases.展开更多
文摘New fluorine substituted heterobicyclic nitrogen system as imidozolopyrimidines (2,3), pyrimido- 1,2,4-triazinones (4-7), 1,2,4-triazinyl-1,2,4-triazine (12-16), 1,2,4-triazinyl-1,2,4-triazinones (14-17) and substituted thiobarbituric acids (19-20), have been synthesized using the reaction of 3- amino-5,6-di (4'-fluorophenyl)-1,2,4-triazine (1) with α,β–bifunctional compounds. Structures of the title compounds were characterized by UV, IR, 1H/13C-NMR and mass spectrometric method. The studied compounds were tested for CDK2 inhibiting activity in DNA damage, as well as in vitro anti-tumor activity.
文摘The synthesis, preparation, chemical reactivities and biological activity of simple heterocyclic and heteropolycyclic nitrogen systems as small units as functional pyrazoles, pyridine and pyrimidine, and the related fused systems are reviewed. Among the various possible routes to the formation, isomeric structures have been cited because of patented reaching advanced phases of clinical trials, from 2000 to 2020.
基金financially supported by the National Natural Science Foundation of China(No.21675131)the Volkswagen Foundation(Freigeist Fellowship No.89592)+1 种基金the Natural Science Foundation of Chongqing(No.2020jcyj-zdxmX0003,CSTB2023NSCQ-MSX0924)the National Research Foundation,Singapore,and A*STAR(Agency for Science Technology and Research)under its LCER Phase 2 Programme Hydrogen&Emerging Technologies FI,Directed Hydrogen Programme(Award No.U2305D4003).
文摘Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.
基金the National Key Research and Development Program of China(2022YFD1500705)National Natural Science Foundation of China(U19A2035)for financial support。
文摘Strip-till(ST),including straw mulching in the inter-row and localized fertilization in the intra-row,is a conservation tillage system for improving soil quality and crop growth.However,the yield advantage of maize under ST compared to conventional tillage(CT)remains unstable,and the strategies to increase maize yield under ST are unclear.This study aims to understand the physiological mechanism underlining maize yield formation under ST by comparing two maize cultivars,DKM753 and DK517,with contrasting yield performance in ST versus CT systems.Compared to CT,ST resulted in a 4.5%yield increase for DKM753 but a 5.6%decrease for DK517.These yield differences were primarily attributed to variations in grain number per ear(GN).During the rapid growth stage(V14-R3),i.e.,two weeks before and after silking,DKM753 showed a 6.7%increase in maximum growth rate(V_(max))and a 6.3%increase in average growth rate(V)under ST,whereas DK517 exhibited decline of 8.5%in V_(max) and 12.3%in V.Significant positive correlations are observed between V_(max) and V with GN under ST(R^(2)=0.79 and R^(2)=0.90,respectively).Enhanced dry matter accumulation in DKM753 under ST was attributed to increased leaf expansion rates,contributing to a larger photosynthate source.The straw mulching and localized nitrogen fertilization increased root-zone nitrogen availability at silking in ST compared to CT.DKM753 had a greater root system which made better use of the soil N and lead to an increased leaf nitrogen accumulation by 14.9%under ST.It is concluded that maize yield under the strip-till system is determined by grain number per ear,which can be increased by increasing nitrogen accumulation,plant growth,and ear development around silking stage.A sound root system can efficiently utilize soil nitrogen resources under the strip-till system,increasing plant nitrogen accumulation and thereby promoting plant growth.
基金supported by the National Key Research and Development Program of China(2023YFF0805602)the National Natural Science Foundation of China(U21A20186,32171579,32371592 and 32471674)the Natural Science Foundation of Gansu Province,China(23JRRA1029 and 23JRRA1034)。
文摘Plant roots interact with diverse fungi that are essential for maintaining the productivity and sustainability of pasture ecosystems,but how these root-associated fungi(RAF)differ between forage species and how they respond to nutrient enrichment and fungicide application are not well understood.Here,we constructed an 11-year experiment involving fungicide application(with or without)nested within four levels of experimental nitrogen(N)addition treatments in an alpine pasture,and the RAF communities,root traits,tissue nutrients,and shoot biomass of two dominant forage species(Carex capillifolia and Elymus nutans)were analyzed.The RAF community composition showed striking differences between the plant species and was strongly affected by both N addition level and fungicide applications.Fungicide,but not N application,dramatically reduced the RAF richness of all functional guilds in both plant species,and fungicide also simplified the co-occurrence network of the RAF for C.capillifolia.The RAF community correlated strongly with root traits,whereas their relationships became weakened or even vanished at the level of the individual plant species.The importance of RAF to plant nutrients and productivity varied between plant species,with significant contributions in C.capillifolia but not in E.nutans.This is the first report elucidating the long-term effect of fungicides on RAF in alpine pastures,and our findings emphasize the host-specific responses of RAF community structure and function to anthropogenic disturbances.
基金supported by the National Natural Science Foundation of China(No.52270119).
文摘The inhibitory effects of zinc oxide nanoparticles(ZnO NPs)and impacts of N-acylhomoserine lactone(AHL)-based quorum sensing(QS)on biological nitrogen removal(BNR)performance have beenwell-investigated.However,the effects of ammonia nitrogen(NH_(4)^(+)-N)concentrations on NP toxicity and AHL regulation have seldom been addressed yet.This study consulted on the impacts of ZnO NPs on BNR systems when high NH_(4)^(+)-N concentrationwas available.The synergistic toxic effects of high-strength NH_(4)^(+)-N(200 mg/L)and ZnO NPs resulted in decreased ammonia oxidation rates and dropped the nitrogen removal efficiencies by 17.5%±0.2%.The increased extracellular polymeric substances(EPS)production was observed in response to the high NH_(4)^(+)-N and ZnO NP stress,which indicated the defensemechanism against the toxic effects in the BNR systemswas stimulated.Furthermore,the regulatory effects of exogenous N-decanoyl-homoserine lactone(C_(10)-HSL)-mediated QS system on NP-stressed BNR systems were revealed to improve the BNR performance under different NH_(4)^(+)-N concentrations.The C_(10)-HSL regulated the intracellular reactive oxygen species levels,denitrification functional enzyme activities,and antioxidant enzyme activities,respectively.This probably synergistically enhanced the defense mechanism against NP toxicity.However,compared to the low NH_(4)^(+)-N concentration of 60 mg/L,the efficacy of C_(10)-HSL was inhibited at high NH_(4)^(+)-N levels of 200 mg/L.The findings provided the significant application potential of QS system for BNR when facing toxic compound shock threats.
基金supported by the Jiangsu Agricultural Science and Technology Innovation Fund(CX(22)2015)the Fundamental Research Funds for the Central Universities(XUEKEN2022008)+1 种基金the Innovation Center for Modern Crop Production Cosponsored by Province and Ministry(CIC-MCP)the Cotton Industry Technology Research System of Shandong Province(SDAIT-03).
文摘Long-term straw return with appropriate nitrogen(N)fertilization increases seedcotton yield and fiber quality,and the root system plays an important role in cotton production.However,under straw return and N fertilization,the relationship between the cotton boll-loading capacity of the root system and seedcotton yield remains unclear.In this study,a ten years of long-term field experiment was conducted in a wheat-cotton rotation system.The effects of straw treatments(straw return and straw removal)and N rates(N0,N75,N150 and N300 representing 0,75,150 and 300 kg N ha^(-1),respectively)on cotton root activity,boll-loading capacity of the root system and their relationship to seedcotton yield from 2019 to 2022 were quantified.The results showed that straw return with an appropriate N fertilization of N150 increased root biomass,the rate and components of root-bleeding sap,as well as boll-loading capacity of the root system and seedcotton yield,but decreased the ratio of root to shoot biomass.Furthermore,the root-bleeding sap rate reached the maximum at 30 d post anthesis(DPA)during the peak boll setting stage.However,the contents of nitrate-N,free amino acids and soluble sugar in root-bleeding sap decreased from 10 DPA.Notably,in 2021 and at 30 DPA,the highest contents of nitrate-N(4.8μg mL^(-1))and free amino acids(8.3μg mL^(-1)),as well as soluble sugar(3.4μg mL^(-1))were observed at N150 under straw return.The increase in seedcotton yield is positively correlated to the soluble sugar content.Straw return significantly increased the boll-loading capacity of the root system,which first increased but then decreased with the increase in N fertilization.Under straw return with N150,the maximum seecotton yield(3455-4544 kg ha^(-1))was recorded,and the largest boll loading(49-54 boll 100 g^(-1))and boll capacity(242-292 g 100 g^(-1))of root system at the boll opening stage were observed.Therefore,straw return with appropriate N fertilization improved root activity and the boll-loading capacity of the root system,thereby increasing seedcotton yield.This study provides new insights into improving seedcotton yield from the perspective of coordinating cotton growth.
基金supported by the Major Science and Technology Project of Inner Mongolia Autonomous Region (2024JBGS0011-02)Foundation for Innovative Research Groups in Basic Research of Gansu Province (25JRRA490)+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences (2022437)National Natural Science Foundation of China (42207538)。
文摘Amid global climate change, rising levels of nitrogen(N) deposition have attracted considerable attention for their potential effects on the carbon cycle of terrestrial ecosystems. The desert steppes are a crucial yet vulnerable ecosystem in arid areas, but their response to the combination of N addition and precipitation(a crucial factor in arid areas) remains underexplored. This study systematically explored the impact of N addition and precipitation on net ecosystem exchange(NEE) in a desert steppe in northern China. Specifically, we conducted a 2-a experiment from 2022 to 2023 with eight N addition treatments in the Urat desert steppe of Inner Mongolia Autonomous Region, China, to examine changes in NEE and explore its driving factors. The structural equation model(SEM) and multiple regression model were applied to determine the relationship of NEE with plant community characteristics and soil physical-chemical properties. Statistical results showed that N addition has no significant effect on NEE.However, it has a significant impact on the functional traits of desert steppe plant communities. SEM results further revealed that N addition has no significant effect on NEE in the desert steppe, whereas annual precipitation can influence NEE variations. The multiple regression model analysis indicated that plant functional traits play an important role in explaining the changes in NEE, accounting for 62.15% of the variation in NEE. In addition, plant height, as an important plant functional trait indicator, shows stronger reliability in predicting the changes in NEE and becomes a more promising predictor. These findings provide valuable insights into the complex ecological mechanisms governing plant community responses to precipitation and nutrient availability in the arid desert steppes, contributing to the improved monitoring and prediction of desert steppe ecosystem responses to global climate change.
基金supported by the National Natural Science Foundation of China(32160503)the Earmarked Fund for Jiangxi Agriculture Research System,China(JXARS-01)the National Key R&D Program of China(2023YFD2301303).
文摘Straw return has demonstrated significant potential for enhancing carbon(C)sequestration and nitrogen(N)uptake while concurrently promoting plant productivity.However,the specific transport and distribution of C produced by photosynthesis and exogenous N within the rice plant-soil system under straw return remains unclear.A long-term straw return pot trial experiment was conducted in a double cropping rice system,incorporating treatments of inorganic fertilizer application with straw removal(F),straw burning and ash return with reducing inorganic fertilizers(SBR),and straw return with reducing inorganic fertilizers(SR)to investigate C sequestration and exogenous N uptake using ^(13)C pulse and ^(15)N isotope tracer techniques.The SR treatment had significantly higher soil ^(13)C abundance,by 24.4 and 25.4%,respectively,^(13)C concentrations in aboveground plant parts,by 18.4 and 35.8%respectively,and ^(15)N concentrations in rice panicles,by 12.8 and 34.3%than the SBR and F treatments.This enhancement contributed to a higher total organic C concentration and increased rice grain yield in the SR treatment.Furthermore,the SR treatment had significantly higher photosynthetic C,by 9.8%,which was directly transferred to soil C.The SR treatment had a higher distribution of photosynthetic C in the leaves and stems,but a lower distribution in the panicle compared to the SBR treatment.This finding is advantageous for sequestering photosynthetic C into the soil through straw return;conversely,opposite trends were observed in ^(15)N distribution.In addition,rice plants in the SR treatment had increased N uptake from urea and soil N sources,enhancing N recovery by 9.2 and 12.5%,respectively,and reducing soil N residues.Correlation analysis showed that the SR treatment increased the concentrations of ^(13)C in leaves and roots while decreasing the ^(15)N abundance in all rice organs,thereby contributing to an increase in rice yield.The partial least square path model suggested that the increase in rice yield under the SR treatment was primarily linked to ^(13)C accumulation within the rice plant-soil system.The results suggest that straw return increases the sequestration of photosynthetic C and exogenous N in the rice plant-soil system and increases N utilization efficiency,which subsequently improves both rice and soil productivity.
基金supported by the Science and Technology Project of Hebei Education Department(No.QN2023028)the Natural Science Foundation of Hebei Province(No.C2022201042)+1 种基金the High-level Talent Research Funding Project of Hebei University(Nos.521000981405 and 521000981186)the Collaborative Innovation Center for Baiyangdian Basin Ecological Protection and Beijing-Tianjin-Hebei Sustainable Development.
文摘Climate warming and atmospheric nitrogen(N)deposition have profound influences on the terrestrial biosphere.However,how these two global change drivers affect phytoplankton which are important primary producers in wetlands with large carbon stocks and complex hydrological fluctuations remain largely unclear.As part of a two-year field experiment in a freshwater wetland,this study was conducted to investigate the effects of nighttime warming and N addition on phytoplankton biomass in the North China Plain.The results showed that neither nighttime warming nor N addition influenced the Shannon-Wiener index of phytoplankton community.Nighttime warming did not change phytoplankton biomass,likely due to the different warming impacts on dominant phyla and in different seasons.Decreased phytoplankton biomass in spring because of the increased water pH and submerged plant coverage was compensated by the enhanced biomass in autumn due to the reduced dissolved oxygen and submerged plant coverage,leading to the neutral change of phytoplankton biomass under warming.Nitrogen addition elevated phytoplankton biomass by 11.6%,which could be attributed to the enhanced nutrient availability and reduced submerged plant coverage.Positive relationships of methane(CH4)emission rates at the water-air interface with phytoplankton biomass indicated the potentially crucial role of phytoplankton in mediating wetland CH4 cycling through photosynthesis-driven metabolisms.The findings suggested the seasonal variation of phytoplankton and their potential responses to nighttime warming and N deposition,which may provide a more accurate basis for assessing the global change-carbon feedback in wetland ecosystems.
文摘The Arno River Basin(Central Italy)is affected by a considerable anthropogenic pressure due to the presence of large cities and widespread industrial and agricultural practices.In this work,26 water samples from the Arno River and its main tributaries were analyzed to assess the water pollution status.The geochemical composition of the Arno River changes from the source(dominated by a Ca-HCO_(3) facies)to the mouth(where a Na-Cl(SO4)chemistry prevails)with an increasing quality deterioration,as suggested by the Chemical Water Quality Index,due to anthropogenic contributions and seawater intrusion before flowing into the Ligurian Sea.The Ombrone and Usciana tributaries introduce anthropogenic pollutants into the Arno River,whilst Elsa tributary supplies significant contents of geogenic sulfate.The concentrations of dissolved nitrate and nitrite(up to 63 and 9 mg/L,respectively)and the respective isotopic values of𝛿15N and𝛿18O were also determined to understand origin and fate of the N-species in the Arno River Basin surface waters.The combined application of𝛿15N-NO_(3) and𝛿18O-NO_(3) and N-source apportionment modelling allowed the identification of soil organic nitrogen and sewage and domestic wastes as primary sources for dissolved NO_(3)-.The𝛿15N-NO_(2) and𝛿18O-NO_(2) values suggest that the nitrification process affects the ARB waters,thus controlling the abundances and proportion of the N-species.Our work indicates that additional efforts are needed to improve management strategies to reduce the release of nitrogenated species to the surface waters of the Arno River Basin,since little progress has been made from the early 2000s.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest,China(201003014-6)the National Natural Science Foundation of China(31160413)~~
文摘[Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental pollution and formulating countermeasures to control the nonpoint source pollution from agriculture.[Method] Water samples collected in four typical crop rotation systems distributed in seven towns(townships) in the north of Erhai Lake basin were investigated,as well as the fertilizer input,to explore the dynamic change of nitrogen and phosphorus content in surface water of farmland and ditch water,and the correlation between fertilizer input and the concentrations of nitrogen and phosphorus in the surface water of farmland and in the ditch water.[Result] The results showed that nitrogen loss in surface water of farmland in different crop rotation systems differed greatly,and the risk of nitrogen loss was 38% lower in broad bean-rice crop rotation than that in garlic-rice crop rotation.The water soluble nitrogen was the primary form of nitrogen loss.The content of water soluble nitrogen was significantly higher in garlic-rice crop rotation than that in the other rotation systems,and the concentrations of nitrogen in the surface water of farmland in different crop rotation systems followed the sequence below:garlic-rice crop rotationryegrass-rice crop rotationbroad bean-rice crop rotationrape-rice crop rotation.The loss of phosphorus in the surface water of farmland was relatively low and phosphorus combined with silt was the primary form for phosphorus loss.There was no significant difference of the loss of various forms of phosphorus in different crop rotation systems.The contents of total nitrogen and total phosphorus in the surface water of farmland were higher than that in ditch water,with increasing rates of total nitrogen and total phosphorus in ditch water of 72% and 82%,respectively.Topdressing was the critical reason for the high concentrations of nitrogen and phosphorus in the surface water,which also caused the increasing load to the ditch water.[Conclusion] Both the nitrogen and phosphorus loss were the highest in garlic-rice crop rotation.Reasonable crop rotation systems should be established based on both the environmental and economic benefits.This study provided references for controlling the nonpoint source pollution of farmland and improving the water quality of Erhai Lake.
基金Forest Ecosystem Research of Liangshui & Maorshan Station of Heilongjiang Province (CFERN, No. 2001-02).
文摘Nitrogen is one of the most important elements that can limit plant growth in forest ecosystems. Studies of nitrogen mineralization, nitrogen saturation and nitrogen cycle in forest ecosystems is very necessary for understanding the productivity of stand, nutrient cycle and turnover of nitrogen of forest ecosystems. Based on comparison and analysis of domestic and in-ternational academic references related to studies on nitrogen mineralization, nitrogen saturation and nitrogen cycle in recent 10 years, the current situation and development of the study on these aspects, and the problems existed in current researches were reviewed. At last, some advices were given for future researches.
基金Supported by Science and Technology Project for Food Production(2011BAD16B15)"11th Five-Year Plan"National Science and Technology Support Program(2008-BADA4B07)Sino-International Plant Nutrition Research Institute(IPNI)Cooperation Project(NMBF-HenanAU-2008)~~
文摘[Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitrogen application on grain yield, economic profit, nitrogen uptake and utilization efficiency, and soil inorganic nitrogen accumulation in winter wheat-summer maize rotation system were investigated. [Re- sult] Nitrogen application could significantly increase the y(eld of the winter wheat- summer maize rotation system, which increased by 17.76%-30.32% and 22.24%- 46.63% in two rotation cycles, respectively. The yield of the winter wheat-summer maize rotation system was the maximum in two rotation cycles with nitrogen appli- cation amount of 660.0 kg/hm2, which reached respectively 23 391.19 and 23 444.35 kg/hm2, the yield and economic benefit were the highest, the nitrogen fertilizer use efficiency was 22.2% and 30.7%, the agronomic efficiency was 8.3 and 11.3 kg/kg. However, the nitrogen fertilizer use efficiency and agronomic efficiency between ni- trogen application amount of 540.0 and 660.0 kg/hm2 showed no significant differ- ence. After two rotation cycles, inorganic nitrogen accumulation in 0-40 cm soil with nitrogen application amount of 540.0 kg/hm2 was almost equal to that before experi- ment. [Conclusion] Under the experimental conditions, comprehensively considering the grain yield, economic profit, nitrogen fertilizer efficiency and soil inorganic nitro- gen balance, the optimal nitrogen application amount was 625.3-660.0 kg/hm2 in high-yield winter wheat-summer maize rotation system.
基金Supported by the National Key Technology Research and Development Program of China during the11th Five-Year Plan Period(2008BADA4B08)Science and Technology Innovation Project of Hunan Academy of Agricultural Sciences(2010hnnkycx56)~~
文摘[Objective] This study aimed to explore the effects of continuous application of controlled release nitrogen fertilizer under double rice cropping system. [Method] By modeling three types of paddy soils in Dong-Ting Lake area, four treatments as no fertilizer (CK), urea, controlled release nitrogen fertilizer (CRNF) and 70% controlled release nitrogen fertilizer (70% CRNF) were designed in the micro-plot trials from 2005 to 2008. [Result] The rice yield in treatment CRNF at N 150 kg/hm2 was increased by 10.3%, 8.0% and 2.4% compared with treatment of urea, in alluvial sandy loamy paddy soil (ALS), purple calcareous clayey paddy soil (PCS), and reddish yellow loamy paddy soil (RYS), respectively; and the yield in treatment of 70% CRNF was increased by 6.1%, 2.6% and -0.8%, respectively. The ranking order of nitrogen uptake amount by plant in early rice and late rice was CRNF 70% CRNF urea CK in all three types of soil. Nitrogen utilization efficiency of CRNF in above three types of soil was 60.7%, 59.6% and 56.3%, increased by 23.8%, 19.4% and 16.3% compared with that in treatment of urea, respectively. Nitrogen utilization efficiency of CRNF in early rice was increased year by year, and was higher than that of 70% CRNF during the whole experiment stage, while that in late rice was increased first and then decreased from the 3rd year. [Conclusion] Continuous application CRNF could alleviate the decreasing of soil nitrogen fertility and organic carbon especially in ALS, increase rice yield and nitrogen utilization efficiency in double-rice cropping system.
基金supported by the National Key Research and Development Program of China (2016YFD0300202)the National Natural Science Foundation of China (31671625, 31271669)
文摘In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems. Cereal-legume intercropping is widely used to enhance crop yield and improve resource use efficiency, especially in Southwest China. To optimize N utilization and increase grain yield, we conducted a two-year field experiment with single-factor randomized block designs of a maize-soybean intercropping system (IMS). Three N rates, NN (no nitrogen application), LN (lower N application: 270 kg N ha-1), and CN (conventional N application: 330 kg N ha-1), and three topdressing distances of LN (LND), e.g., 15 cm (LND1), 30 cm (LND2) and 45 cm (LND3) from maize rows were evaluated. At the beginning seed stage (R5), the leghemoglobin content and nitrogenase activity of LND3 were 1.86 mg plant-1 and 0.14 mL h-1 plant-1, and those of LND1 and LND2 were increased by 31.4 and 24.5%, 6.4 and 32.9% compared with LND3, respectively. The ureide content and N accumulation of soybean organs in LND1 and LND2 were higher than those of LND3. The N uptake, NUE and N agronomy efficiency (NAE) of IMS under CN were 308.3 kg ha-1, 28.5%, and 5.7 kg grain kg-1 N, respectively; however, those of LN were significantly increased by 12.4, 72.5, and 51.6% compared with CN, respectively. The total yield in LND1 and LND2 was increased by 12.3 and 8.3% compared with CN, respectively. Those results suggested that LN with distances of 15-30 cm from the topdressing strip to the maize row was optimal in maize-soybean intercropping. Lower N input with an optimized fertilization location for IMS increased N fixation and N use efficiency without decreasing grain yield.
基金supported by the National Key Technology Research and Development Program(Grant No.2013BAD07B12)the grant from Jiangxi Province(555 Talents Program)
文摘To study whether integrative fertilization [growing milk vetch in winter and reducing the dose of chemical nitrogen(N) fertilizer] can improve rice yield, and to reveal the underlying regulatory mechanisms for integrative fertilization, a three-year field trial including two treatments, milk vetch-rice-rice(MRR) and winter fallow-rice-rice(FRR), was conducted in 2010, 2011 and 2012.Our results demonstrated that the MRR treatment could significantly improve rice yield compared with the FRR treatment, especially when the application ratio of milk vetch and chemical fertilizer was 1:2.MRR treatment increased the effective panicle number and the spikelet number per panicle.In addition, a higher tillering number, leaf area index, photosynthetic-potential and photosynthetic-potential to grain ratio were observed in MRR treatment, which could provide enough dry matter for yield formation.Moreover, in MRR treatment, we discovered a higher transportation ratio and transformation ratio of dry matter in culm and leaves, and a stronger total sink capacity and spikelet-root bleeding intensity at the heading stage and 15 d after heading.Furthermore, the MRR treatment showed higher total N, phosphorus and potassium uptakes than FRR treatment, which was associated with the higher root dry weight in each soil layers.These results suggest that growing milk vetch in winter can improve rice yield under less chemical N fertilizer application, which is due to the improvement of soil nutrient status and the increased of rice root growth and development.
基金supported by the National Key Technology R&D Program of China (2014BAD11B04-2)the National Natural Science Foundation of China (30840056, 31171496)Shandong Modern Agricultural Technology and Industry System (SDAIT-04-01)
文摘Agronomically optimizing the timing and rates of nitrogen(N) fertilizer application can increase crop yield and decrease N loss to the environment. Wheat(Triticum aestivum L.)–peanut(Arachis hypogaea L.) relay intercropping systems are a mainstay of economic and food security in China. We performed a field experiment to investigate the effects of N fertilizer on N recovery efficiency, crop yield, and N loss rate in wheat–peanut relay intercropping systems in the Huang-Huai-Hai Plain, China during 2015–2017. The N was applied on the day before sowing, the jointing stage(G30) or the booting stage(G40) of winter wheat, and the anthesis stage(R1) of peanut in the following percentage splits: 50-50-0-0(N1), 35-35-0-30(N2), and 35-0-35-30(N3), using 300 kg N ha-1, with 0 kg N ha-1(N0) as control. ^(15)N-labeled(20.14 atom %) urea was used to trace the fate of N in microplots. The yields of wheat and peanut increased by 12.4% and 15.4% under the N2 and N3 treatments, relative to those under the N1 treatment. The ^(15)N recovery efficiencies( ^(15)NRE) were 64.9% and 58.1% for treatments N2 and N3, significantly greater than that for the N1 treatment(45.3%). The potential N loss rates for the treatments N2 and N3 were23.7% and 7.0%, significantly lower than that for treatment N1(30.1%). Withholding N supply until the booting stage(N3) did not reduce the wheat grain yield; however, it increased the N content derived from ^(15)N-labeled urea in peanuts, promoted the distribution of ^(15)N to pods, and ultimately increased pod yields in comparison with those obtained by topdressing N at jointing stage(N2). In comparison with N2, the N uptake and N recovery efficiency(NRE) of N3 was increased by 12.0% and 24.1%,respectively, while the apparent N loss decreased by 16.7%. In conclusion, applying N fertilizer with three splits and delaying topdressing fertilization until G40 of winter wheat increased total grain yields and NRE and reduced N loss. This practice could be an environment-friendly N management strategy for wheat–peanut relay intercropping systems in China.
基金National Natural Science Foundation of China, No31070431 No.40803024 Strategic Priority Research Program--Climate Change: Carbon Budget and Related Issues of the Chinese Academy of Sciences, No.XDA05050602
文摘To explore the optimal land-use for soil carbon (C) sequestration in Inner Mongolian grasslands, we investigated C and nitrogen (N) storage in soil and soil fractions in 8 floristi- cally and topographically similar sites which subjected to different lancl-use types (free-grazing, grazing exclusion, mowing, winter grazing, and reclamation). Compared with free-grazing grasslands, C and N storage in the 0-50 cm layer increased by 18.3% (15.5 Mg C ha-1) and 9.3% (0.8 Mg N ha-1) after 10-yr of grazing exclusion, respectively, and 21.9% (18.5 Mg C ha-1) and 11.5% (0.9 Mg N ha-1) after 30-yr grazing exclusion, respectively. Similarly, soil C and N storage increased by 15.3% (12.9 Mg C ha-1) and 10.2% (0.8 Mg N ha-1) after 10-yr mowing, respectively, and 19.2% (16.2 Mg C ha-1) and 7.1% (0.6 Mg N ha-1) after 26-yr mowing, respectively. In contrast, soil C and N storage declined by 10.6% (9.0 Mg C ha-1) and 11.4% (0.9 Mg N ha-1) after 49-yr reclamation, respectively. Moreover, increases in C and N storage mainly occurred in sand and silt fractions in the 0-10 cm soil layer with grazing exclusion and mowing. Our findings provided evidence that Inner Mongolian grassslands have the capacity to sequester C and N in soil with improved management practices, which were in the order: grazing exclusion 〉 mowing 〉 winter grazing 〉 reclamation.
基金funded by the Special Fund for AgroScientific Research in the Public Interest of China (20110300508, 201203030)supported in partial by the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD05B05-3, 2013BAD07B11)the International Plant Nutrition Institute, Canada (IPNI China Program: Hunan-17)
文摘In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases.