期刊文献+
共找到1,123篇文章
< 1 2 57 >
每页显示 20 50 100
Effects of Nitrogen Level and High Temperature Stress on Yield, SPAD Value and Soluble Sugar Content of Early Rice Ganxin 203 被引量:4
1
作者 杨军 余秋英 +10 位作者 陈小荣 朱昌兰 彭小松 贺晓鹏 傅军如 欧阳林娟 边建民 胡丽芳 孙晓棠 徐杰 贺浩华 《Agricultural Science & Technology》 CAS 2016年第2期385-390,共6页
This study aimed to investigate the combined effects of nitrogen level (high and ordinary) and high temperature stress (37 ℃, 4 d) at the late panicle ini- tiation stage on yield, SPAD value and soluble sugar con... This study aimed to investigate the combined effects of nitrogen level (high and ordinary) and high temperature stress (37 ℃, 4 d) at the late panicle ini- tiation stage on yield, SPAD value and soluble sugar content of Ganxin 203, an early rice cultivar. The results showed that under both high and ordinary nitrogen levels, high temperature stress reduced the seed-setting rate, yield per stem, SPAD value and soluble sugar content of Ganxin 203; under both high and ordinary tem- peratures, high nitrogen level increased the seed-setting rate, yield per stem and soluble sugar content of Ganxin 203; the seed-setting rate, yield per stem and yield per plant of Ganxin 203 under high temperature and high nitrogen level were higher than those under high temperature and ordinary nitrogen level. It suggests that ap- propriate high nitrogen level contributes to weakening the negative effects of high temperature stress on rice yield. 展开更多
关键词 RICE Late panicle initiation stage High temperature YIELD SPAD value nitrogen level
在线阅读 下载PDF
Responses of chlorophyll fluorescence and nitrogen level of Leymus chinensis seedling to changes of soil moisture and temperature 被引量:4
2
作者 XUZhen-zhu ZHOUGuang-sheng LIHui 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第4期666-669,共4页
Controlled experiment of Leymus chinensis seedlings grown in the environmental growth chambers at 3 soil moisture levels and 3 temperature levels was conducted in order to improve the understanding how leaf photosynth... Controlled experiment of Leymus chinensis seedlings grown in the environmental growth chambers at 3 soil moisture levels and 3 temperature levels was conducted in order to improve the understanding how leaf photosynthetic parameters will respond to climatic change. The results indicated that soil drought and high temperature decreased the photochemical efficiency of photosystem(F v/F m), the overall photochemical quantum yield of PSII(yield), the coefficient of photochemical fluorescence quenching(q\-P), but increased the coefficient of non-photochemical fluorescence quenching(q\-N). Severe soil drought would decrease F v/F m and yield by 3.12% and 37.04% under 26℃ condition, respectively, and 6.60% and 73.33% under 32℃ condition, respectively, suggesting that higher temperature may enhance the negative effects of soil drought. All the soil drought treatments resulted in the decline in leaf nitrogen content. There was no significant effect of temperature on leaf nitrogen level, but higher temperature significantly reduced the root nitrogen content and the ratio of root nitrogen to leaf nitrogen, indicating the different strategies of adaptation to soil drought and temperature. It was also implied that higher temperature would enhance the effect of soil drought on leaf photosynthetic capacity, decrease the adaptability of Leymus chinensis to drought. 展开更多
关键词 chlorophyll fluorescence nitrogen level Leymus chinensis soil moisture soil temperature
在线阅读 下载PDF
Liquid nitrogen level meter for high-temperature superconductor (HTS) 被引量:1
3
作者 PARK Heecheol JEONG Hwanjun +3 位作者 LEE Changyeung KIM Purn CHO Jangwon KIM Seokho 《Journal of Central South University》 SCIE EI CAS 2012年第11期3100-3104,共5页
Many kinds of high temperature superconductor (HTS) power machines such as HTS cable, HTS fault current limitcr and HTS magnet are cooled by liquid nitrogen. The level of liquid nitrogen should be monitored and cont... Many kinds of high temperature superconductor (HTS) power machines such as HTS cable, HTS fault current limitcr and HTS magnet are cooled by liquid nitrogen. The level of liquid nitrogen should be monitored and controlled to ensure the thermal stability and the dielectric strength as well. To measure the level, capacitance method and differential pressure method are usually used. However, each method has installation difficulties and measurement errors for unsteady state operation with varying system pressure. A new liquid level meter using a 2G HTS conductor is described, which has similar structure with the liquid helium level meter with NbTi filament. The level meter is fabricated with a parallel connected heater, which helps the separation of the superconducting region and normal region, considering the critical temperature, large heat capacity of conductor and cooling characteristics. The level of liquid nitrogen can be obtained from the measured voltage signal along the 2G HTS conductor. Design, fabrication and test results of the new liquid nitrogen level meter are presented. 展开更多
关键词 high temperature superconductivity liquid nitrogen level meter QUENCH
在线阅读 下载PDF
Evaluating the Impact of Different Tillage Regimes and Nitrogen Levels on Yield and Yield Components of Maize (Zea mays L.) 被引量:1
4
作者 Muhammad Naeem Shahid M. Shahid Ibni Zamir +5 位作者 Ihtisham-Ul Haq M. Kamran Khan Mazhar Hussain Usman Afzal M. Asim Ihtisham Ali 《American Journal of Plant Sciences》 2016年第6期789-797,共9页
A field study to evaluate the impact of different tillage regimes and nitrogen levels on yield and yield components of maize (Zea mays L.), was conducted during autumn 2014 at Students Farm, Department of Agronomy, Un... A field study to evaluate the impact of different tillage regimes and nitrogen levels on yield and yield components of maize (Zea mays L.), was conducted during autumn 2014 at Students Farm, Department of Agronomy, University of Agriculture, Faisalabad. The experiment was laid out in RCBD (Randomized Complete Block Design), with split plot arrangement having three replications. The experiment was comprised of three tillage regimes (Minimum, Conventional and Deep) and three nitrogen levels viz: 100, 200 and 300 kg&bull;ha<sup>-1</sup>. Urea was used as a source of nitrogen, sulphate of potash as a source of potassium and triple super phosphate as a source of phosphorous. The amount of phosphorous and potash was constant in all the treatments i.e. 125 kg&bull;ha<sup>-1</sup> and 100 kg&bull;ha<sup>-1</sup> respectively. Results of present study are summarized as yield parameters are significantly affected by different nitrogen levels and tillage regimes. Maximum number of plants at harvest (7.93), number of grain rows per cob (17.70), number of grains per row (34.31), number of grains per cob (678.58), and cob weight (187.50 g) were observed in deep tillage at 200 kg&bull;ha<sup>-1</sup> nitrogen application. 1000-grain weight (275.52 g), biological yield (15.66 t&bull;ha<sup>-1</sup>), grain yield (6.16 t&bull;ha<sup>-1</sup>) and dried stalk yield (9.91 t&bull;ha<sup>-1</sup>) were observed maximum in deep tillage at 200 kg&bull;ha<sup>-1</sup> nitrogen application. Harvest index significantly affected by tillage regimes and maximum harvest index (39.58%) were recorded in deep tillage which was statistically at par with conventional tillage (38.83%). It was concluded that higher grain yield of maize can be obtained by deep tillage with the application of 200 kg&bull;ha<sup>-1</sup> nitrogen application under the prevailing conditions of Faisalabad. 展开更多
关键词 Tillage Regimes nitrogen levels Deep Tillage Biological Yield Harvest Index
在线阅读 下载PDF
Research on Glutamate Dehydrogenase Activity in Sugar Beet (Beta vulgaris L) under Different Nitrogen Levels
5
作者 Yan Guiping, Li Wenhua and Ma Fengming (Northeast Agricultural University, Harbin 150030, P R C) 《Journal of Northeast Agricultural University(English Edition)》 CAS 1998年第2期117-121,共5页
The experiment of Glutamate Dehydrogenase (GDH) activity in various plant parts under different nitrogen levels in frame culture during the whole period of growth was carried out on campus of Northeast Agricltural Uni... The experiment of Glutamate Dehydrogenase (GDH) activity in various plant parts under different nitrogen levels in frame culture during the whole period of growth was carried out on campus of Northeast Agricltural University in 1993. The result showed that GDH activity in leaf blades under four nitrogen applied levels rose rapidly to the acme from the seedling to foliage rapid growth stage, then diminished rapidly to the lower level at the latter stage of foliage rapid growth. This level was kept to harvest. GDH activity in roots at each growth stage under all nitrogen levels exhibited little disparity and did not show ostensible regularity of changes. GDH activity in leaf blades was stimulated with nitrogen, however, it reduced with nitrogen fertilizer applying further. GDH activity in leaf blades was the biggest compared with crowns, petioles and roots, which suggested that it could represent the highest enzyme activityof the whole plant. 展开更多
关键词 sugar beet nitrogen level glutamate dehydrogenase
全文增补中
Effects of arbuscular mycorrhizal fungi and Bacillus on the competitive growth of exotic Flaveria bidentis under different soil nitrogen levels
6
作者 Jie-Yu Yang Jun Li +4 位作者 Ya-Ning Jia Yu-Wan Zhu Shao-Lin Li Ji-Hua Wu Feng-Juan Zhang 《Journal of Plant Ecology》 2025年第4期276-293,共18页
Arbuscular mycorrhizal fungi(AMF)and Bacillus play a crucial role in promoting the growth and defense of exotic plants,and their interaction may further enhance plant invasions.Soil nitrogen level is an important fact... Arbuscular mycorrhizal fungi(AMF)and Bacillus play a crucial role in promoting the growth and defense of exotic plants,and their interaction may further enhance plant invasions.Soil nitrogen level is an important factor that affects the interaction.However,the effect of the interaction on the growth and defensive ability of exotic plants under different nitrogen levels remains unclear.In this study,a pot experiment was conducted using Rhizoglomus intraradices(RI)and Bacillus megaterium(BM),one of the dominant AMF and Bacillus in the rhizosphere of Flaveria bidentis,with three soil nitrogen levels(0,3.75 and 7.5 g m^(−2))and four inoculation treatments(uninoculated,inoculation with RI,inoculation with BM and co-inoculated with RI and BM).Significant correlations were observed between microbial inoculations and indicators of plant growth and defense across varying soil nitrogen levels.Co-inoculation notably enhanced both plant growth and defense compared to single inoculations,especially under the nitrogen concentration of 3.75 g m^(−2).Specifically,compared to single inoculation,co-inoculation increased the biomass of F.bidentis by 8.27%and 16.4%,as well as the flavonoids concentration by 21.89%-30.95%and phenolic acids concentration by 54.22%-60.93%,respectively.These enhancements in growth and defensive compound production likely promote the competitive ability of F.bidentis and its resistance to biotic and abiotic stresses,thereby contributing to its successful invasion. 展开更多
关键词 Flaveria bidentis arbuscular mycorrhizal fungi(AMF) BACILLUS competitive growth soil nitrogen levels
原文传递
Variation of Nitrogen Uptake and Utilization Efficiency of Mid-Season Hybrid Rice at Different Ecological Sites under Different Nitrogen Application Levels 被引量:3
7
作者 徐富贤 熊洪 +4 位作者 张林 郭晓艺 朱永川 周兴兵 刘茂 《Agricultural Science & Technology》 CAS 2011年第7期1001-1009,1012,共10页
[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and ut... [Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and utilization efficiency for mid-season hybrid rice.[Method] By using mid-season rice varieties II-you 7 and Yuxiangyou203 as the experimental materials,field experiment was conducted at seven ecological sites in four provinces or cities in Southwestern China in 2009.A total of four nitrogen application levels were set as follows:by using 75 kg/hm2 of P2O5 and 75 kg/hm2 of K2O as the base fertilizer,extra 0,90,150 and 210 kg/hm2 of nitrogen fertilizer(in which,base fertilizer,base-tillering fertilizer and base-earing fertilizer respectively accounted for 60%,20% and 20%.) was applied,respectively.In the split-plot design,fertilizer was considered as the main factor while rice variety was taken as the secondary factor.A total of eight treatments were set with three replications.[Result] Highly significant differences of grain yield were found among seven locations,two varieties,four nitrogen application levels,interactions of site × variety and site × nitrogen application level,but the interaction of variety ×nitrogen application level had no significant influence on rice yield.There were highly significant effects of site,varieties and nitrogen application level on dry matter production,nitrogen content,nitrogen utilization efficiency.Highly significant negative correlations between uptake efficiency and utilization efficiency for nitrogen were found;and multiple stepwise regression analysis showed that nitrogen uptake-utilization efficiency were significantly influenced by different ecological sites,chemical quality of soil and the levels of nitrogen application.[Conclusion] The research will provide theoretical and practical basis for the highly efficient application of nitrogen in mid-season hybrid rice cultivation. 展开更多
关键词 Mid-season hybrid rice Ecological site Soil chemical characteristics nitrogen application level nitrogen uptake and utilization efficiency
在线阅读 下载PDF
Studies on Glutamine Synthetase Activity in Sugar Beet (BetavulgarisL.) under Different Levels of Nitrogen 被引量:1
8
作者 YanGuiping YanHui 《Journal of Northeast Agricultural University(English Edition)》 CAS 1995年第1期17-24,共8页
It was shown from the experiment that glutamine synthetase activity (GSA) in both leaf blades and roots under different nitrogen levels rose rapidly to reach its peak from seedling stage to foliage rapid growth stage ... It was shown from the experiment that glutamine synthetase activity (GSA) in both leaf blades and roots under different nitrogen levels rose rapidly to reach its peak from seedling stage to foliage rapid growth stage and declined to its lowest level at the latter stage of root rapid growth, and then increased slightly. GSA in leaf blades had positive correlation with nitrogen level during the whole period of growth. GSA in roots showed the same tendency as it in leaf blades at the early middle stage of growth, but at the latter stage of growth, no positive correlation was established. GSA in leaf blades was the strongest compared with crowns, petioles and roots, and could represent the highest enzyme activity of the whole plant. GSA had quadratic curvilinear correlation with root yield and sugar production. GSA in leaf blades had significant positive correlation with α-NH2-N at the foliage rapid growth stage. 展开更多
关键词 SUGARBEET glutamine synthetase nitrogen level root yield and quality
在线阅读 下载PDF
Research on Glutamate Synthase Activity in Sugar Beet(Beta Vulgaris L.)under Different Levels of Nitrogen 被引量:7
9
作者 Yan Guiping, Ma Fengming, Li Wenhua and Gao Jiguo (Northeast Agricultural University, Harbin 150030 PRC) 《Journal of Northeast Agricultural University(English Edition)》 CAS 1998年第1期5-11,共7页
The experiment of glutamate synthase activity (GOGATA) in both leaf blades and roots under different nitrogen levels was carried out at Northeast Agricultural University in 1993. The result showed that GOGATA rose rap... The experiment of glutamate synthase activity (GOGATA) in both leaf blades and roots under different nitrogen levels was carried out at Northeast Agricultural University in 1993. The result showed that GOGATA rose rapidly to reach its peak from seedling stage to foliage rapid growth stage, and then declined gradually. GOGATA was enhanced with increasing nitrogen levels and had significant positive correlation with nitrogen levels at the middle stage of growth GOGATA in leaf blades was the strongest compared with crowns, petioles and roots, thus, it could represent the highest enzyme activity of the whole plant. GOGATA had quadratic curvilinear correlation with root yield and sugar production. GOGATA in leaf blades had significant positive correlation with α-NH 2-N at the foliage rapid growth stage while GOGATA in roots existed this relation at the latter stage of growth. GOGATA in roots had significant negative correlation with sugar content at harvest. 展开更多
关键词 sugar beet glutamate synthase nitrogen level root yield and quality
全文增补中
Effects of Different Nitrogen Fertilizer Levels on Lodging and Yield of Rice 被引量:5
10
作者 杨和川 武立权 +3 位作者 韩新峰 邵辉 柯健 王荣富 《Agricultural Science & Technology》 CAS 2012年第7期1456-1459,共4页
[Objective] This study aimed to investigate the effects of different fertilizer levels on lodging and yield of rice. [Method] A total of four treatments were designed and applied with 6, 9, 12 and 15 kg of nitrogen fe... [Objective] This study aimed to investigate the effects of different fertilizer levels on lodging and yield of rice. [Method] A total of four treatments were designed and applied with 6, 9, 12 and 15 kg of nitrogen fertilizer, respectively. After seedling transplanting, the biological characteristics of rice at different growth stages in each treatment and the biological and economic characteristics of rice after lodging were determined for statistical analysis. [Result] Application with 15 kg of nitrogen fertilizer had significant promotion effect on the increase of rice yield; compared with the control (6 kg of nitrogen fertilizer), rice yield in three experimental treatments (9, 12 and 15 kg of nitrogen fertilizer, respectively) increased by 50.74%, 89.11% and 94.48%, respectively; lodging-resistance mechanical strengths of the three experimental treatments were 103.97%, 132.01% and 89.83% of the control, respectively; rice lodging resistance of treatment C (12 kg of nitrogen fertilizer) was the strongest, with the highest yield. [Conclusion] This study provides reference data and technical support for the rational fertilization of rice production. 展开更多
关键词 DIFFERENT nitrogen fertilizer levelS RICE Fresh weight YIELD LODGING
在线阅读 下载PDF
Effects of Nitrogen Application Levels on Ammonia Volatilization and Nitrogen Utilization during Rice Growing Season 被引量:11
11
作者 LIN Zhong-cheng DAI Qi-gen +8 位作者 YE Shi-chao WU Fu-guan JIA Yu-shu CHEN Jing-dou XU Lu-sheng ZHANG Hong-cheng Huo Zhong-yang Xu Ke WEt Hai-yan 《Rice science》 SCIE 2012年第2期125-134,共10页
We conducted field trials of rice grown in sandy soil and clay soil to determine the effects of nitrogen application levels on the concentration of NH4+-N in surface water, loss of ammonia through volatilization from... We conducted field trials of rice grown in sandy soil and clay soil to determine the effects of nitrogen application levels on the concentration of NH4+-N in surface water, loss of ammonia through volatilization from paddy fields, rice production, nitrogen-use efficiency, and nitrogen content in the soil profile. The concentration of NH4+-N in surface water and the amount of ammonia lost through volatilization increased with increasing nitrogen application level, and peaked at 1-3 d after nitrogen application. Less ammonia was lost via volatilization from clay soil than from sandy soil. The amounts of ammonia lost via volatilization after nitrogen application differed depending on the stage when it was applied, from the highest loss to the lowest: N application to promote tillering 〉 the first N topdressing to promote panicle initiation (applied at the last 4-leaf stage) 〉 basal fertilizer 〉 the second N topdressing to promote panicle initiation (applied at the last 2-leaf stage). The total loss of ammonia via volatilization from clay soil was 10.49-87.06 kg/hm2, equivalent to 10.92%-21.76% of the nitrogen applied. The total loss of ammonia via volatilization from sandy soil was 11.32-102.43 kg/hm2, equivalent to 11.32%-25.61 % of the nitrogen applied. The amount of ammonia lost via volatilization and the concentration of NH4+-N in surface water peaked simultaneously after nitrogen application; both showed maxima at the tillering stage with the ratio between them ranging from 23.76% to 33.65%. With the increase in nitrogen application level, rice production and nitrogen accumulation in plants increased, but nitrogen-use efficiency decreased. Rice production and nitrogen accumulation in plants were slightly higher in clay soil than in sandy soil. In the soil, the nitrogen content was the lowest at a depth of 40-50 cm. In any specific soil layer, the soil nitrogen content increased with increasing nitrogen application level, and the soil nitrogen content was higher in clay soil than in sandy soil. In terms of ammonia volatilization, the amount of ammonia lost via volatilization increased markedly when the nitrogen application level exceeded 250 kg/hm2 in the rice growing season. However, for rice production, a suitable nitrogen application level is approximately 300 kg/hm2. Therefore, taking the needs for high crop yields and environmental protection into account, the appropriate nitrogen application level was 250-300 kg/hm2 in these conditions. 展开更多
关键词 ammonia volatilization nitrogen application level soil type nitrogen-use efficiency RICE
在线阅读 下载PDF
Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics
12
作者 Hong Ren Zheng Liu +4 位作者 Xinbing Wang Wenbin Zhou Baoyuan Zhou Ming Zhao Congfeng Li 《Journal of Integrative Agriculture》 2025年第11期4195-4210,共16页
Long-term excessive nitrogen(N)application neither increases nor enhances grain yield and N use efficiency(NUE)of maize,yet the mechanisms involving root morphological and physiological characteristics remain unclear.... Long-term excessive nitrogen(N)application neither increases nor enhances grain yield and N use efficiency(NUE)of maize,yet the mechanisms involving root morphological and physiological characteristics remain unclear.This study aimed to elucidate the mechanisms underlying stagnant grain yield under excessive N application by examining root morphological and physiological characteristics.A 10-year N fertilizer trial was conducted in Jilin Province,Northeast China,cultivating maize at three N fertilizer levels(zero N,N0;recommended N,N2;and high N level,N4)from 2019 to 2021.Two widely cultivated maize genotypes,‘Xianyu 335’(XY335)and‘Zhengdan 958’(ZD958),were evaluated.Grain yield,N content,root morphology,and physiological characteristics were analyzed to assess the relationships between N uptake,N utilization,plant growth,and root systems under different N treatments.Compared to N0,root biomass,post-silking N uptake,and grain yield improved significantly with increased N input,while no significant differences emerged between recommended N and high N.High N application enhanced root length and root surface area but decreased root activity(measured by TTC(2,3,5-triphenyltetrazolium chloride)method),nitrate reductase activity,and root activity absorbing area across genotypes.Root length and root to shoot ratio negatively affected N uptake(by-1.2 and-24.6%),while root surface area,root activity,nitrate reductase activity,and root activity absorbing area contributed positively.The interaction between cultivar and N application significantly influenced NUE.XY335 achieved the highest NUE(11.6%)and N recovery efficiency(18.4%)through superior root surface area(23.6%),root activity(12.5%),nitrate reductase activity(8.3%),and root activity absorbing area(6.9%)compared to other treatments.Recommended N application enhanced Post N uptake,NUE,and grain yield through improved root characteristics,while high N application failed to increase or decreased NUE by reducing these parameters.This study demonstrates that root surface area,root activity,nitrate reductase activity,and root activity absorbing area limit NUE increase under high N application. 展开更多
关键词 MAIZE nitrogen level root characteristics genotypic difference nitrogen use efficiency
在线阅读 下载PDF
Effects of Nitrogen Top-dressing Levels on Carbon-nitrogen Metabolism and Yield of Desmodium styracifoliumon
13
作者 ZHOU Jiamin CHEN Chaojun +3 位作者 YIN Xiaohong HUANG Min PENG Fuyuan ZHU Xiaoqi 《Journal of Northeast Agricultural University(English Edition)》 CAS 2011年第2期36-40,共5页
In order to research effects of the nitrogen top-dressing levels on carbon-nitrogen metabolism and yield of Desmodium styracifolium, a field experiment was conducted on the research farm of Guangxi University in 2007.... In order to research effects of the nitrogen top-dressing levels on carbon-nitrogen metabolism and yield of Desmodium styracifolium, a field experiment was conducted on the research farm of Guangxi University in 2007. Some physiological indexes and yield ofD. styracifolium were compared among five nitrogen top-dressing levels (0, 37.5, 75.0, 112.5 and 150.0 kg N. hm-2). Results showed that the nitrogen top-dressing could significantly increase the contents of chlorophyll, soluble protein, sucrose and nitrogen as well as nitrate reducase activity. However, there were no significant differences in most of these indexes under high nitrogen levels. Consistently, there was no significant difference in yield among nitrogen top-dressing levels of 75 kg N.hm-2, 112.5 kg N. hm-2 and 150 kg N-hm-2. Therefore, the optimum nitrogen top-dressing level ofD. styracifolium was 75 kg N. hm-2. 展开更多
关键词 Desmodium styraciflium nitrogen top-dressing level YIELD carbon-nitrogen metabolism
在线阅读 下载PDF
Regulation of Nitrogen on Potato under NaCl Stress 被引量:1
14
作者 张瑞玖 陈有君 +3 位作者 蒙美莲 郦海龙 周长艳 冯琰 《Agricultural Science & Technology》 CAS 2010年第11期65-67,共3页
The effects of nitrogen on physiological and biochemical characteristics of potato cultivar Zihuabai under NaCl stress were studied in culture condition.The results show that,under NaCl stress,the contents of proline,... The effects of nitrogen on physiological and biochemical characteristics of potato cultivar Zihuabai under NaCl stress were studied in culture condition.The results show that,under NaCl stress,the contents of proline,chlorophyll and protein and root system vitality first increase and then decrease with the increase of nitrogen level,and reach the top under 4.17 mmol/L NH4NO3 level.Wherein,the contents of chlorophyll,protein and root system vitality are respectively 69.88%,13.07% and 59.29% higher than that of the control under 4.17 mmol/L NH4NO3 level;the activities of superoxide dismutase(SOD)and peroxidase(POD)increase generally under NaCl stress with the increase of nitrogen level,and reach the peaks [111.83 U/g and 25.467 U/(g·min)],which are 37.73% and 35.46% higher than that of control,at 6.25 mmol/L NH4NO3 level. 展开更多
关键词 POTATO NaCl stress nitrogen level Physiological and biochemical characteristics
在线阅读 下载PDF
Effcts of Irrigation Patterns and Nitrogen Fertilization on Rice Yield and Microbial Community Structure in Paddy Soil 被引量:17
15
作者 LI Ya-Juan CHEN Xing +2 位作者 I.H.SHAMSI FANG Ping LIN Xian-Yong 《Pedosphere》 SCIE CAS CSCD 2012年第5期661-672,共12页
Water and nitrogen (N) are considered the most important factors affecting rice production and play vital roles in regulating soil microbial biomass, activity, and community. The effects of irrigation patterns and N... Water and nitrogen (N) are considered the most important factors affecting rice production and play vital roles in regulating soil microbial biomass, activity, and community. The effects of irrigation patterns and N fertilizer levels on the soil microbial community structure and yield of paddy rice were investigated in a pot experiment. The experiment was designed with four N levels of 0 (NO), 126 (N1), 157.5 (N2), and 210 kg N ha^(-1) (N3) under two irrigation patterns of continuous water-logging irrigation (WLI) and water- controlled irrigation (WCI). Phospholipid fatty acid (PLFA) analysis was conducted to track the dynamics of soil microbial communities at tillering, grain-filling, and maturity stages. The results showed that the maximums of grain yield, above-ground biomass, and total N uptake were all obtained in the N2 treatment under WCI. Similar variations in total PLFAs, as well as bacterial and fungM PLFAs, were found, with an increase from the tillering to the grain-filling stage and a decrease at the maturity stage except for actinomycetic PLFAs, which decreased continuously from the tillering to the maturity stage. A shift in composition of the microbial community at different stages of the plant growth was indicated by principal component analysis (PCA), in which the samples at the vegetative stage (tillering stage) were separated from those at the reproductive stage (grain-filling and maturity stages). Soil microbial biomass, measured as total PLFAs, was significantly higher under WCI than that under WLI mainly at the grain-filling stage, whereas the fungal PLFAs detected under WCI were significantly higher than those under WLI at the tillering, grain-filling, and maturity stages. The application of N fertilizer also significantly increased soil microbial biomass and the main microbial groups both under WLI and WCI conditions. The proper combination of irrigation management and N fertilizer level in this study was the N2 (157.5 kg N ha^(-1)) treatment under the water-controlled irrigation pattern. 展开更多
关键词 irrigation management nitrogen levels phospholipid fatty acid rice growth stage soil microorganism
原文传递
水库水位变动影响下消落带沉积物氮磷吸附解吸行为与释放通量估算
16
作者 吴默涵 苏小四 +1 位作者 宋铁军 郝源 《地学前缘》 北大核心 2026年第1期14-24,共11页
水库水位变动而形成的消落带作为水陆交错带的关键界面,其沉积物氮磷释放是影响水库水质的重要因素。然而,周期性水位变动引发的消落带氧化还原环境交替变化导致消落带氮磷的释放行为及其对水库水质的影响贡献尚不完全清楚。本研究以吉... 水库水位变动而形成的消落带作为水陆交错带的关键界面,其沉积物氮磷释放是影响水库水质的重要因素。然而,周期性水位变动引发的消落带氧化还原环境交替变化导致消落带氮磷的释放行为及其对水库水质的影响贡献尚不完全清楚。本研究以吉林省某大型水库为研究对象,通过采集淹水前、淹水期和退水期水库地表水和消落带沉积物样品,阐明水位变动下消落带沉积物氮磷释放规律及其对水库水质影响的贡献。研究结果表明:在整个水位波动周期(淹水前—淹水期—退水期),库水氨氮和磷酸根浓度呈现先增加后减小的趋势。沉积物氨氮含量先降低后升高,而无机磷含量则先增加后降低。吸附解吸实验表明酸性条件下(pH=5)沉积物对氨氮和磷酸盐的吸附量较大,而碱性条件(pH=9)下沉积物氮磷解吸作用较强。在退水期,沉积物对氮磷表现出较强的解吸作用。质量平衡法表明,沉积物氮和磷的释放通量分别为324.15 t和8.18 t,其对水库地表水无机氮、磷变化的贡献率分别高达47.22%和57.72%。本项研究对于识别水库内源污染机制,预测水环境风险,保障居民饮水安全和推动水资源可持续管理提供重要科学依据。 展开更多
关键词 水库消落带 水位波动 氮磷含量 释放通量 吸附解吸
在线阅读 下载PDF
Effect of Corn Stalks Treated with Carbonylamines in Different Concentrate and Forage Rations and Nitrogen Conditions on Rumen Fermentation in Vitro
17
作者 LU Guang-lin LI Dong-feng YANG Lian-yu 《Animal Husbandry and Feed Science》 CAS 2011年第3期9-12,共4页
[ Objective] To investigate the effects of concentrate/roughage ratios and nitrogen levels on in-vitro rumen fermentation of urea-treating corn stalk. [ Method] The concentrate/roughage ratios were 7: 3, 5:5 and 3:... [ Objective] To investigate the effects of concentrate/roughage ratios and nitrogen levels on in-vitro rumen fermentation of urea-treating corn stalk. [ Method] The concentrate/roughage ratios were 7: 3, 5:5 and 3: 7. The crude protein levels were 11% and 14%. The in-vitro culture time was 2, 4, 6 and 48 h. [ Result] The pH value of broth decreased significantly with the decline in the proportion of roughage ( P 〈 0.01 ) and with the increase in the crude protein levels (P 〈 0.05). The ammonium nitrogen concentration and acetic acid/propionic acid ratio of the fermen- ted products decreased with the increase in the crude protein levels and proportion of concentrate in diet. The diet with concentrate/roughage ratio of 5:5 and crude protein level of 14% had significantly higher digestibility of dry matter and organic matter than other diets ( P 〈 0.05). The digesti- bility of organic matter increased gradually with the increasing proportion of concentrate and crude protein level. With the increase in the proportion of concentrate, the microbial protein levels increased remarkably, while the acetic acid/propionic acid ratio declined. [ Conclusion] The concentrate/ roughage ratios and nitrogen levels affect rumen fermentation and microbial growth during in-vitro culture. However, the best supplementary feeding results of urea-treatinq corn stalks can be obtained when the concentrate/rouahaae ratio is below 5:5 and the crude protein level is 14%. 展开更多
关键词 Concentrate/roughage ratio nitrogen level DIET Rumen fermentation
在线阅读 下载PDF
Effects of Different Nitrogen Fertilizer Treatments on Soil Enzymatic Activities in Mulberry Gardens 被引量:1
18
作者 Yan ZENG Jinsheng HUANG +3 位作者 Liuqiang ZHOU Meifu HUANG Rulin XIE Hongwei TAN 《Agricultural Biotechnology》 CAS 2014年第5期38-41,共4页
[ Objective] The present experiment was undertaken to investigate the effects of different nitrogen fertilizer application levels on soil enzymatic activities in mulberry gardens, thus providing reference for rational... [ Objective] The present experiment was undertaken to investigate the effects of different nitrogen fertilizer application levels on soil enzymatic activities in mulberry gardens, thus providing reference for rational application of nitrogen fertilizer and production of high-quality mulberry leaves. [Method] Field experiments were conducted with three different nitrogen fertilizer application levels: N, ( 120.75 kg/hm2 ), N2 ( 172.5 kg/hm2 ), and N3 (207 kg/hm2 ). Activities of catalase, urease, acid phosphatase and invertase in soil applied with different amount of nitrogen fertilizer were determined to analyze the correlation between soil enzymatic activities and mulberry leaf yield. [ Result] Activities of urease and invertase in soil were improved with the increasing application level of nitrogen fertil- izer; activities of catalase and acid phosphatase reached the highest in treatment N2. Activities of invertase and urease in soil exhibited significant positive correla- tions; activities of invertase and phosphatase exhibited significant positive correlations; extremely significant positive correlations were found between mulberry leaf yield and activities of urease, phosphatase and invertase in soil. [ Conclusion] Rationally applying nitrogen fertilizer can improve activities of invertase, phosphatase and urease in mulberry gardens ; activities of urease and invertase in soil can be used as indicators to evaluate soil properties in mulberry gardens. 展开更多
关键词 Mulberry gardens Soil enzyme activities nitrogen application level
在线阅读 下载PDF
The effects of high temperature level on square Bt protein concen-tration of Bt cotton 被引量:5
19
作者 WANG Jun CHEN Yuan +5 位作者 YAO Meng-hao LI Yuan WEN Yu-jin CHEN Yuan ZHANG Xiang CHEN De-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第10期1971-1979,共9页
Higher boll worm survival rates were detected after high temperature presented during square period in Bt cotton. The objective of this study was to investigate the effects of high temperature level on the Bt efficacy... Higher boll worm survival rates were detected after high temperature presented during square period in Bt cotton. The objective of this study was to investigate the effects of high temperature level on the Bt efficacy of two different types of Bt cotton cultivars at squaring stage. During the 2011 to 2013 cotton growth seasons, high temperature treatments ranged from 34 to 44°C in climate chambers, and field experiments under high temperature weather with various temperature levels were conducted to investigate the effects of the high temperature level on square Bt protein concentration and nitrogen metabolism. The climate chamber experiments showed that the square insecticidal protein contents reduced after 24 h elevated temperature treatments for both cultivars, whereas significant declines of the square insecticidal protein contents were detected at temperature 〉38°C, and only slightly numerical reductions were observed when temperature below 38°C. Similar high temperature responses were also observed at the two field experimental sites in 2013. Correspondingly, high temperature below 38°C seems have little effect on the square amino acid concentrations, soluble protein contents, glutamic-pyruvic transaminase(GPT) and glutamic-oxalacetic transaminase(GOT) activities as well as protease and peptidase activities; however, when the temperature was above 38°C, reduced soluble protein contents, enhanced amino acid concentrations, decreased GPT and GOT activities, bolstered protease and peptidase activities in square were detected. In general, the higher the temperature is(〉38°C), the larger the changes for the above compound contents and key enzymes activities of the square protein cycle. The findings indicated that the unstable insect resistance of the square was related to high temperature level during square stage. 展开更多
关键词 Bt cotton SQUARE high temperature level STRESS Bt protein nitrogen metabolism
在线阅读 下载PDF
绿肥部分替代化肥氮对土壤物理性状的影响 被引量:3
20
作者 秦文利 张静 +10 位作者 肖广敏 崔素倩 叶建勋 智健飞 张立锋 谢楠 冯伟 刘振宇 潘璇 代云霞 刘忠宽 《草业学报》 北大核心 2025年第6期27-45,共19页
2020-2022年度以毛叶苕子和玉米为材料,采用二因素裂区田间试验设计,主处理为冬闲田(FF)、冬闲田种植毛叶苕子并全量还田(HV)2种模式,副处理为玉米0(0N)、135.0(50%N)和270.0 kg·hm^(-2)(100%N)3个施氮水平,研究了毛叶苕子还田和... 2020-2022年度以毛叶苕子和玉米为材料,采用二因素裂区田间试验设计,主处理为冬闲田(FF)、冬闲田种植毛叶苕子并全量还田(HV)2种模式,副处理为玉米0(0N)、135.0(50%N)和270.0 kg·hm^(-2)(100%N)3个施氮水平,研究了毛叶苕子还田和施氮水平对玉米0~10 cm、10~20 cm土层土壤团聚体组成与分布、团聚体平均重量直径(MWD)、几何平均直径(GMD)、破坏率(PAD)、可蚀性因子(K)、容重(BD)、总孔隙度(TP)、毛管孔隙度(CP)、非毛管孔隙度(NCP)、最大持水量(MWHC)、毛管持水量(CWHC)、非毛管持水量(NCWHC)、土壤有机碳(SOC)含量、团聚体有机碳(AOC)含量及玉米产量的影响,以期从土壤物理性状变化为绿肥部分替代化肥氮实现作物稳产增产提供科学依据。结果表明,与FF模式相比,HV模式0~10 cm、10~20 cm土层>0.25 mm水稳定性团聚体总含量(R0.25)、MWD、GMD、TP、CP、NCP、MWHC、CWHC、NCWHC、SOC含量分别显著增加8.95%、40.84%、30.57%、5.89%、1.47%、4.42%、15.01%、6.41%、27.08%、7.29%和13.13%、62.87%、51.68%、5.02%、0.76%、4.25%、13.11%、3.32%、27.86%、7.10%;PAD、K和BD分别显著降低8.83%、20.79%、5.99%和12.14%、30.73%、7.31%。HV模式下各土层各粒径AOC含量及玉米产量均显著提高。施氮水平对各土层各粒径AOC含量、R0.25及其他物理性状指标、玉米产量影响显著或极显著。HV模式50%N处理0~10 cm、10~20 cm土层的SOC含量、>5 mm AOC含量及0~10 cm土层的0.50~1.00 mm AOC含量、10~20 cm土层的BD、TP、CP、NCP、MWD、CWHC、NCWHC及玉米产量较FF模式100%N处理变化均不显著,0~10 cm、10~20 cm土层的2.00~5.00 mm、1.00~2.00 mm、0.25~0.50 mm、<0.25 mm AOC含量及10~20 cm土层0.50~1.00 mm的AOC含量,0~10 cm、10~20 cm土层的R0.25、MWD、GMD,0~10 cm土层的TP、NCP、MWHC、NCWHC均显著提高,0~10 cm、10~20 cm土层的PAD、K及0~10 cm土层的BD均显著下降。各粒径AOC含量与SOC含量之间、各粒级团聚体含量与其AOC含量之间、土壤物理性状指标与各粒级团聚体含量之间、玉米产量与土壤物理性状指标之间均呈显著或极显著相关。因此,绿肥还田后土壤有机碳含量的提高是促进团粒结构形成,增强土壤抗侵蚀、持水能力的重要基础。绿肥对土壤氮、有机碳的输入是其部分替代氮肥、改善土壤物理性状、实现减氮增产的重要前提。 展开更多
关键词 毛叶苕子 施氮水平 土壤有机碳含量 土壤物理性状 玉米产量
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部