Increasing use of pyrethroid insecticides has resulted in concerns regarding potential effects on human health and ecosystems. Cypermethrin and its metabolite 3-phenoxybenzoic acid(PBA) have exerted adverse biological...Increasing use of pyrethroid insecticides has resulted in concerns regarding potential effects on human health and ecosystems. Cypermethrin and its metabolite 3-phenoxybenzoic acid(PBA) have exerted adverse biological impacts on the environment;therefore,it is critically important to develop different methods to enhance their degradation. In this study,incubation experiments were conducted using samples of an Aquic Inceptisol supplied with nitrogen(N) in the form of NH4NO3 at different levels to investigate the effect of nitrogen on the degradation of cypermethrin and PBA in soil. The results indicated that appropriate N application can promote the degradation of cypermethrin and PBA in soil. The maximum degradation rates were 80.0% for cypermethrin after 14 days of incubation in the treatment with N at a rate of 122.1 kg ha-1 and 41.0% for PBA after 60 days of incubation in the treatment with N at a rate of 182.7 kg ha-1. The corresponding rates in the treatments without nitrogen were 62.7% for cypermethrin and 27.8% for PBA. However,oversupplying N significantly reduced degradation of these compounds. Enhancement of degradation could be explained by the stimulation of microbial activity after the addition of N. In particular,dehydrogenase activities in the soil generally increased with the addition of N,except in the soil where N was applied at the highest level. The lower degradation rate measured in the treatment with an oversupply of N may be attributed to the microbial metabolism shifts induced by high N.展开更多
In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grai...In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grains) were realized with low(high) boron source flow rate during the growth processes.The transition of micro-grains to nano-grains is speculated to be strongly(weekly) related with the boron(nitrogen) flow rate.The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate.The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples,which are related to the combined phase composition,boron doping level and texture structure.There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.展开更多
An increase in atmospheric nitrogen (N) deposition can promote soil acidification, which may increase the release of ethylene (C2H4) under forest floors. Unfortunately, knowledge of whether increasing N deposition...An increase in atmospheric nitrogen (N) deposition can promote soil acidification, which may increase the release of ethylene (C2H4) under forest floors. Unfortunately, knowledge of whether increasing N deposition and C2H4 releases have synergistic effects on soil methane (CH4) uptake is limited and certainly deserves to be examined. We conducted some field measurements and laboratory experiments to examine this issue. The addition of (NH4)2SO4 or NH4Cl at a rate of 45 kg N ha-1 yr-1 reduced the soil CH4 uptake under a temperate old-growth forest in northeast China, and there were synergistic effects of N amendments in the presence of C2H4 concentrations equal to atmospheric CH4 concentration on the soil CH4 uptake, particularly in the NH4Cl-treated plots. Effective concentrations of added C2H4 on the soil CH4 uptake were smaller in NH+4 -treated plots than in KNO3-treated plots. The concentration of ca 0.3 μl C2H4 L-1 in the headspace gases reduced by 20% soil atmospheric CH4 uptake in the NH4Cl-treated plots, and this concentration was easily produced in temperate forest topsoils under short-term anoxic conditions. Together with short-term stimulating effects of N amendments and soil acidification on C2H4 production from forest soils, our observations suggest that knowledge of synergistic effects of NH+4 , rather than NO3- , amendments and C2H4 on the in situ soil CH4 uptake is critical for understanding the role of atmospheric N deposition and cycling of C2H4 under forest floors in reducing global atmospheric CH4 uptake by forests. Synergistic functions of NH4+ -N deposition and C2H4 release due to soil acidification in reducing atmospheric CH4 uptake by forests are discussed.展开更多
The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm...The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m^2 and high level 0.45 W/m^2 significantly affected the whole nitrogen metabolism in soybean seedlings (p 〈 0.05). It restricted uptake and transport of NO3^-, inhibited activity of some key nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one.展开更多
Nitrogen doping is a promising way to modulate the electrical properties of graphene to realize graphene-based electronics and promise fascinating properties and applications.Herein,we report a method to noncovalently...Nitrogen doping is a promising way to modulate the electrical properties of graphene to realize graphene-based electronics and promise fascinating properties and applications.Herein,we report a method to noncovalently assembly titanium(Ⅳ) bis(ammoniumlactato) dihydroxide(Ti complex) on nitrogen-doped graphene to create a reliable hybrids which can be used as a reversible chemical induced switching.As the adsorption and desorption of Ti complex in sequential treatments,the conductance of the nitrogen-doped graphene transistors was finely modulated.Control experiments with pristine graphene clearly demonstrated the important effort of the nitrogen in this chemical sensor.Under optimized conditions,nitrogen-doped graphene transistors open up new ways to develop multifunctional devices with high sensitivity.展开更多
The effect of nitrogen pressure on optical properties of hydrogen-free diamond-like carbon (DLC) films deposited by pulsed laser ablation graphite in different background pressures of nitrogen is reported. By varying ...The effect of nitrogen pressure on optical properties of hydrogen-free diamond-like carbon (DLC) films deposited by pulsed laser ablation graphite in different background pressures of nitrogen is reported. By varying nitrogen pressures from 0.05 to 15.00 Pa, the photoluminescence is gradually increased and optical transmittance is gradually decreased. Atomic force microscopy (AFM) is used to observe the surface morphology of the DLC films. The results indicate that the surface becomes unsmoothed and there a...展开更多
Nitrogen plasma treatment effect on GS-CNFs (graphene seeted vertically aligned carbon nanofibers) has been studied. GS-CNFs were grown on nickel coated cupper substrates by DC-plasma CVD (chemical vapor deposition...Nitrogen plasma treatment effect on GS-CNFs (graphene seeted vertically aligned carbon nanofibers) has been studied. GS-CNFs were grown on nickel coated cupper substrates by DC-plasma CVD (chemical vapor deposition) at relatively low temperature. GS-CNFs were studied by SEM (scanning electron microscopy), HR-TEM (high-resolution transmission electron microscopy), XPS and Raman measurements. GS-CNFs are composed of cylindrical shaped having pure graphite sheets with about 5 μm length and nanometer size tips and roots diameter. Nitrogen plasma treatment causes nitrogen chemical etching on the graphene seeted carbon nanofibers were disordered its fine shape and increase the graphetization due to nitrogen incorporation.展开更多
Red brick,cement brick and ceramsite were taken as the substrate of constructed wetland,and removal effect of ammonia nitrogen by the mixed substrate under different combination manners and aeration condition was expl...Red brick,cement brick and ceramsite were taken as the substrate of constructed wetland,and removal effect of ammonia nitrogen by the mixed substrate under different combination manners and aeration condition was explored. Research results showed that cement brick had the best removal effect on ammonia nitrogen,followed by red brick and ceramsite; aeration was favorable for the removal of ammonia nitrogen by each substrate and the mixed substrate; removal rate sequence of ammonia nitrogen by each mixed substrate was red brick + cement brick > red brick + cement brick + ceramsite > cement brick + ceramsite > red brick + ceramsite; the combination of red brick + cement brick had the best removal effect on ammonia nitrogen in domestic sewage. Comprehensively considering,the mixed substrate of red brick + cement brick has better stability and higher ammonia nitrogen removal rate,and it is suitable as the mixed adsorption substrate of constructed wetland.展开更多
The effect of forests clear felling and associated burning on the population of soil nitrogen transforming bacteria and actinomycetes are reported at three pair sites of Chittagong University campus, Bangla- desh in m...The effect of forests clear felling and associated burning on the population of soil nitrogen transforming bacteria and actinomycetes are reported at three pair sites of Chittagong University campus, Bangla- desh in monsoon tropical climate. Clear felled area or burnt site and 15-21 year mixed plantation of native and exotic species, situated side by side on low hill having Typic Dystrochrepts soil was represented at each pair site. At all the three pair sites, clear felled area or burnt site showed very significantly (p~_0.001) lower population of actinomycetes, Rhizobium, Nitrosomonas, Nitrobacter and ammonifying as well as deni- trifying bacteria compared to their adjacent mixed plantation. From en- vironmental consideration, this finding has implication in managing natural ecosystem.展开更多
Nitrogen and potassium are important nutrientelements for rice.Besides supplied by the or- ganic manure,potassium nutrition of ricecomes dominantly from purple soils in Sichuanbasin.Potassium exists abundantly in mine...Nitrogen and potassium are important nutrientelements for rice.Besides supplied by the or- ganic manure,potassium nutrition of ricecomes dominantly from purple soils in Sichuanbasin.Potassium exists abundantly in mineralforms in the purple soils.Availability of soilpotassium for crop depends on the potassiumforms,the uptake ability of crops,and fertiliz-er practices.A pot culture experiment wasconducted to study the kinetics of potassiumuptake in the purple soil(total N 22.64g·kg,total K 24.36g·kg,available N 102.6mg·kg,available K 140.6mg·kg,acidsoluble K 936.0mg·kg,and pH 6.8).Ma-terials used were three Fhybrid rices,Eryou展开更多
Interference effects on the photoionization cross sections between two neighbouring atoms are considered based on the coherent scattering of the ionized electrons by the two nuclei when their separation is less than o...Interference effects on the photoionization cross sections between two neighbouring atoms are considered based on the coherent scattering of the ionized electrons by the two nuclei when their separation is less than or comparable to the de Broglie wave length of the ionized electrons. As an example, the single atomic nitrogen ionization cross section and the total cross sections of two nitrogen atoms with coherently added photoionization amplitudes are calculated from the threshold to about А (1 А=0.1 nm) of the photon energy. The photoionization cross sections of atomic nitrogen are obtained by using the close-coupling R-matrix method. In the calculation 19 states are included. The ionization energy of the atomic nitrogen and the photoionization cross sections agree well with the experimental results. Based on the R-matrix results of atomic nitrogen, the interference effects between two neighbouring nitrogen atoms are obtained. It is shown that the interference effects are considerable when electrons are ionized just above the threshold, even for the separations between the two atoms are larger than two times of the bond length of N2 molecules. Therefore, in hot and dense samples, effects caused by the coherent interference between the neighbours are expected to be observable for the total photoionization cross sections.展开更多
The nitrogen and sulfur co-doped carbon dots(N, S-CDs) with increased luminescence were synthesized by a hydrothermal process in one green pot by using glucose, and a new sulfur-doping source of sodium sulfite was dev...The nitrogen and sulfur co-doped carbon dots(N, S-CDs) with increased luminescence were synthesized by a hydrothermal process in one green pot by using glucose, and a new sulfur-doping source of sodium sulfite was developed.The synergistic effect of the N and S groups was well discussed through the structure analysis of Fourier transform infrared spectra and x-ray photoelectron spectra. The surface states of N, S-CDs embody more complicated functional groups, and S element exists as –SSO3, –C–SO3, and SO-42groups due to the introduction of sodium sulfite. The sulfur-containing groups passivate the surface of the CDs, and the relatively high sulfur groups may reduce the non-radiation centers. The fluorescence is affected by the hydroxyl group of the solvent. The quenching of Fe3+ ion to fluorescence and the sensitivity of fluorescence to p H were also investigated.展开更多
基金the National Key Basic Research Program of China (No.2002CB410810) and the PPI/PPIC Chinaprogram.
文摘Increasing use of pyrethroid insecticides has resulted in concerns regarding potential effects on human health and ecosystems. Cypermethrin and its metabolite 3-phenoxybenzoic acid(PBA) have exerted adverse biological impacts on the environment;therefore,it is critically important to develop different methods to enhance their degradation. In this study,incubation experiments were conducted using samples of an Aquic Inceptisol supplied with nitrogen(N) in the form of NH4NO3 at different levels to investigate the effect of nitrogen on the degradation of cypermethrin and PBA in soil. The results indicated that appropriate N application can promote the degradation of cypermethrin and PBA in soil. The maximum degradation rates were 80.0% for cypermethrin after 14 days of incubation in the treatment with N at a rate of 122.1 kg ha-1 and 41.0% for PBA after 60 days of incubation in the treatment with N at a rate of 182.7 kg ha-1. The corresponding rates in the treatments without nitrogen were 62.7% for cypermethrin and 27.8% for PBA. However,oversupplying N significantly reduced degradation of these compounds. Enhancement of degradation could be explained by the stimulation of microbial activity after the addition of N. In particular,dehydrogenase activities in the soil generally increased with the addition of N,except in the soil where N was applied at the highest level. The lower degradation rate measured in the treatment with an oversupply of N may be attributed to the microbial metabolism shifts induced by high N.
基金financially supported by The Program for New Century Excellent Talents in University (NCET)the National Natural Science Foundation of China (NSFC) under Grant No.50772041
文摘In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grains) were realized with low(high) boron source flow rate during the growth processes.The transition of micro-grains to nano-grains is speculated to be strongly(weekly) related with the boron(nitrogen) flow rate.The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate.The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples,which are related to the combined phase composition,boron doping level and texture structure.There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.
基金funded jointly by the National Natural Science Foundation of China (Grant Nos. 41021004, 20777071 and 20477044)the Key Project of Knowledge Innovation Program from the Chinese Academy of Sciences (KZCX2-YW-432)the Hundred Talents Project from the Chinese Academy of Sciences
文摘An increase in atmospheric nitrogen (N) deposition can promote soil acidification, which may increase the release of ethylene (C2H4) under forest floors. Unfortunately, knowledge of whether increasing N deposition and C2H4 releases have synergistic effects on soil methane (CH4) uptake is limited and certainly deserves to be examined. We conducted some field measurements and laboratory experiments to examine this issue. The addition of (NH4)2SO4 or NH4Cl at a rate of 45 kg N ha-1 yr-1 reduced the soil CH4 uptake under a temperate old-growth forest in northeast China, and there were synergistic effects of N amendments in the presence of C2H4 concentrations equal to atmospheric CH4 concentration on the soil CH4 uptake, particularly in the NH4Cl-treated plots. Effective concentrations of added C2H4 on the soil CH4 uptake were smaller in NH+4 -treated plots than in KNO3-treated plots. The concentration of ca 0.3 μl C2H4 L-1 in the headspace gases reduced by 20% soil atmospheric CH4 uptake in the NH4Cl-treated plots, and this concentration was easily produced in temperate forest topsoils under short-term anoxic conditions. Together with short-term stimulating effects of N amendments and soil acidification on C2H4 production from forest soils, our observations suggest that knowledge of synergistic effects of NH+4 , rather than NO3- , amendments and C2H4 on the in situ soil CH4 uptake is critical for understanding the role of atmospheric N deposition and cycling of C2H4 under forest floors in reducing global atmospheric CH4 uptake by forests. Synergistic functions of NH4+ -N deposition and C2H4 release due to soil acidification in reducing atmospheric CH4 uptake by forests are discussed.
基金Project supported by the National Natural Science Foundation of China(No.30570323)Foundation of State Developing and Reforming Committee(No.IFZ20051210)
文摘The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m^2 and high level 0.45 W/m^2 significantly affected the whole nitrogen metabolism in soybean seedlings (p 〈 0.05). It restricted uptake and transport of NO3^-, inhibited activity of some key nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one.
文摘Nitrogen doping is a promising way to modulate the electrical properties of graphene to realize graphene-based electronics and promise fascinating properties and applications.Herein,we report a method to noncovalently assembly titanium(Ⅳ) bis(ammoniumlactato) dihydroxide(Ti complex) on nitrogen-doped graphene to create a reliable hybrids which can be used as a reversible chemical induced switching.As the adsorption and desorption of Ti complex in sequential treatments,the conductance of the nitrogen-doped graphene transistors was finely modulated.Control experiments with pristine graphene clearly demonstrated the important effort of the nitrogen in this chemical sensor.Under optimized conditions,nitrogen-doped graphene transistors open up new ways to develop multifunctional devices with high sensitivity.
基金supported by the Natural Science Foundationof Shandong Province (Grant No. Y2002A09).
文摘The effect of nitrogen pressure on optical properties of hydrogen-free diamond-like carbon (DLC) films deposited by pulsed laser ablation graphite in different background pressures of nitrogen is reported. By varying nitrogen pressures from 0.05 to 15.00 Pa, the photoluminescence is gradually increased and optical transmittance is gradually decreased. Atomic force microscopy (AFM) is used to observe the surface morphology of the DLC films. The results indicate that the surface becomes unsmoothed and there a...
文摘Nitrogen plasma treatment effect on GS-CNFs (graphene seeted vertically aligned carbon nanofibers) has been studied. GS-CNFs were grown on nickel coated cupper substrates by DC-plasma CVD (chemical vapor deposition) at relatively low temperature. GS-CNFs were studied by SEM (scanning electron microscopy), HR-TEM (high-resolution transmission electron microscopy), XPS and Raman measurements. GS-CNFs are composed of cylindrical shaped having pure graphite sheets with about 5 μm length and nanometer size tips and roots diameter. Nitrogen plasma treatment causes nitrogen chemical etching on the graphene seeted carbon nanofibers were disordered its fine shape and increase the graphetization due to nitrogen incorporation.
基金Supported by Youth Innovative Talents Project of Provincial Major Scientific Research Project of Guangdong University in 2015(2015KQNCX225)Social Development Project of Dongguan City in2014(2014106101025)Youth Fund Project of City College of Dongguan University of Technology in 2015(2015QJZ008Z)
文摘Red brick,cement brick and ceramsite were taken as the substrate of constructed wetland,and removal effect of ammonia nitrogen by the mixed substrate under different combination manners and aeration condition was explored. Research results showed that cement brick had the best removal effect on ammonia nitrogen,followed by red brick and ceramsite; aeration was favorable for the removal of ammonia nitrogen by each substrate and the mixed substrate; removal rate sequence of ammonia nitrogen by each mixed substrate was red brick + cement brick > red brick + cement brick + ceramsite > cement brick + ceramsite > red brick + ceramsite; the combination of red brick + cement brick had the best removal effect on ammonia nitrogen in domestic sewage. Comprehensively considering,the mixed substrate of red brick + cement brick has better stability and higher ammonia nitrogen removal rate,and it is suitable as the mixed adsorption substrate of constructed wetland.
文摘The effect of forests clear felling and associated burning on the population of soil nitrogen transforming bacteria and actinomycetes are reported at three pair sites of Chittagong University campus, Bangla- desh in monsoon tropical climate. Clear felled area or burnt site and 15-21 year mixed plantation of native and exotic species, situated side by side on low hill having Typic Dystrochrepts soil was represented at each pair site. At all the three pair sites, clear felled area or burnt site showed very significantly (p~_0.001) lower population of actinomycetes, Rhizobium, Nitrosomonas, Nitrobacter and ammonifying as well as deni- trifying bacteria compared to their adjacent mixed plantation. From en- vironmental consideration, this finding has implication in managing natural ecosystem.
文摘Nitrogen and potassium are important nutrientelements for rice.Besides supplied by the or- ganic manure,potassium nutrition of ricecomes dominantly from purple soils in Sichuanbasin.Potassium exists abundantly in mineralforms in the purple soils.Availability of soilpotassium for crop depends on the potassiumforms,the uptake ability of crops,and fertiliz-er practices.A pot culture experiment wasconducted to study the kinetics of potassiumuptake in the purple soil(total N 22.64g·kg,total K 24.36g·kg,available N 102.6mg·kg,available K 140.6mg·kg,acidsoluble K 936.0mg·kg,and pH 6.8).Ma-terials used were three Fhybrid rices,Eryou
基金Project supported by the National Natural Science Foundation of China (Grant No 10734140)the National Basic Research Program of China (Grant No 2007CB815105)
文摘Interference effects on the photoionization cross sections between two neighbouring atoms are considered based on the coherent scattering of the ionized electrons by the two nuclei when their separation is less than or comparable to the de Broglie wave length of the ionized electrons. As an example, the single atomic nitrogen ionization cross section and the total cross sections of two nitrogen atoms with coherently added photoionization amplitudes are calculated from the threshold to about А (1 А=0.1 nm) of the photon energy. The photoionization cross sections of atomic nitrogen are obtained by using the close-coupling R-matrix method. In the calculation 19 states are included. The ionization energy of the atomic nitrogen and the photoionization cross sections agree well with the experimental results. Based on the R-matrix results of atomic nitrogen, the interference effects between two neighbouring nitrogen atoms are obtained. It is shown that the interference effects are considerable when electrons are ionized just above the threshold, even for the separations between the two atoms are larger than two times of the bond length of N2 molecules. Therefore, in hot and dense samples, effects caused by the coherent interference between the neighbours are expected to be observable for the total photoionization cross sections.
基金Project by the National Natural Science Foundation of China(Grant Nos.51571085,11805052,and 61705062)the Research Project for Basic and Forefront Technology of Henan Province,China(Grant No.162300410219)the Doctor Foundation of Henan Polytechnic University,China(Grant No.B2014049)
文摘The nitrogen and sulfur co-doped carbon dots(N, S-CDs) with increased luminescence were synthesized by a hydrothermal process in one green pot by using glucose, and a new sulfur-doping source of sodium sulfite was developed.The synergistic effect of the N and S groups was well discussed through the structure analysis of Fourier transform infrared spectra and x-ray photoelectron spectra. The surface states of N, S-CDs embody more complicated functional groups, and S element exists as –SSO3, –C–SO3, and SO-42groups due to the introduction of sodium sulfite. The sulfur-containing groups passivate the surface of the CDs, and the relatively high sulfur groups may reduce the non-radiation centers. The fluorescence is affected by the hydroxyl group of the solvent. The quenching of Fe3+ ion to fluorescence and the sensitivity of fluorescence to p H were also investigated.