期刊文献+
共找到160篇文章
< 1 2 8 >
每页显示 20 50 100
Effects of Nitrogen Doping on Microstructures and Irradiation Resistance of Ti-Zr-Nb-V-Mo Refractory High-Entropy Alloy 被引量:1
1
作者 Huanzhi Zhang Tianxin Li +3 位作者 Qianqian Wang Zhenbo Zhu Hefei Huang Yiping Lu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第6期1007-1018,共12页
Interstitial strengthening with nitrogen(N)is one of the effective ways to improve the mechanical properties of HEAs,but the effects of N on the microstructures and mechanical properties of the irradiated HEAs have no... Interstitial strengthening with nitrogen(N)is one of the effective ways to improve the mechanical properties of HEAs,but the effects of N on the microstructures and mechanical properties of the irradiated HEAs have not been studied extensively.Here,the microstructures and mechanical properties of N-free and N-doped Ti_(2)ZrNbV_(0.5)Mo_(0.2)HEAs before and after He irradiation were investigated.The results showed that the solid solution strengthening caused by interstitial N improved the yield strength at room temperature and 1023 K without significantly reducing plasticity.N doping significantly promoted the growth,aggregation and wider spatial distribution of He bubbles by enhancing the mobility of He atoms/He-vacancy complexes,with the average size of He bubbles increasing from 10.4 nm in N-free HEA to 31.0 nm in N-doped HEA.In addition,N-doped HEA showed a much higher irradiation hardness increment and hardening fraction than N-free HEA.Contrary to conventional materials doped with N,the introduction of N into Ti_(2)ZrNbV_(0.5)Mo_(0.2)HEA had adverse effects on its resistance to He bubble growth and irradiation hardening.The results of this study indicated that N doping may not improve the irradiation resistance of HEAs. 展开更多
关键词 High-entropy alloys nitrogen doping Mechanical properties Helium bubbles Irradiation resistance
原文传递
A high-performance biochar produced from bamboo pyrolysis with in-situ nitrogen doping and activation for adsorption of phenol and methylene blue 被引量:17
2
作者 Zhenhao Li Bo Xing +2 位作者 Yan Ding Yunchao Li Shurong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第11期2872-2880,共9页
Nitrogen doping is a promising method for the preparation of functional carbon materials.In this study,a nitrogen-doped porous coral biochar was prepared by using bamboo as raw material,urea as nitrogen source,and KHC... Nitrogen doping is a promising method for the preparation of functional carbon materials.In this study,a nitrogen-doped porous coral biochar was prepared by using bamboo as raw material,urea as nitrogen source,and KHCO3 as green activator through in-situ pyrolysis.The structure of the obtained biochar was characterized by various techniques including nitrogen adsorption and desorption,Raman spectroscopy,X-ray photoelectron spectrometer,and etc.The adsorption properties of nitrogen-doped biochar were evaluated with phenol and methylene blue probes.The results showed that the nitrogen source ratio had a significant effect on the evolution of pore structure of biochar.Low urea addition ratio was beneficial to the development of pore structures.The optimum specific surface area of nitrogen-doped biochar could be up to 1693 m^2·g^-1.Nitrogen doping can effectively improve the adsorption capacity of biochar to phenol and methylene blue.Biochar prepared at 973.15 K with low urea addition ratio exhibited the highest adsorption capacity for phenol and methylene blue,and the equilibrium adsorption capacity was 169.0 mg·g^-1 and 499.3 mg·g^-1,respectively.By comparing the adsorption capacity of various adsorbents in related fields,it is proved that the nitrogen-doped biochar prepared in this study has a good adsorption effect. 展开更多
关键词 In-situ pyrolysis nitrogen doping Green activator BIOCHAR Adsorption
在线阅读 下载PDF
Nitrogen doping and graphitization tuning coupled hard carbon for superior potassium-ion storage 被引量:9
3
作者 Junxian Hu Yangyang Xie +1 位作者 Meng Yin Zhian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期327-334,共8页
Hard carbon material is one of the most promising anode materials for potassium ion batteries(PIBs)due to its distinct disordered and non-expandable framework.However,the intrinsically disordered microarchitecture of ... Hard carbon material is one of the most promising anode materials for potassium ion batteries(PIBs)due to its distinct disordered and non-expandable framework.However,the intrinsically disordered microarchitecture of hard carbon results in low electric conductivity and poor rate capability.Herein,nitrogendoped and partially graphitized hard carbons(NGHCs)derived from commercial coordination compound precursor-ethylenediaminetetraacetic acid(EDTA)disodium cobalt salt hydrate are designed and prepared as high-performance PIBs anode materials.By means of a facile annealing method,nitrogen elements and graphitic domains can be controllably introduced to NGHCs.The resulting NGHCs show structural merits of mesoporous construction,nitrogen doping and homogeneous graphitic domains,which ensures fast kinetics and electron transportation.Applying in anode for PIBs,NGHCs exhibit robust rate capability with high reversible capacity of 298.8 m Ah g^-1 at 50 m A g^-1,and stable cycle stability of 137.6 mAh g^-1 at 500 m A g^-1 after 1000 cycles.Moreover,the ex situ Raman spectra reveal a mixture"adsorption-intercalation mechanism"for potassium storage of NGHCs.More importantly,full PIBs by pairing with perylenetetracarboxylic dianhydride(PTCDA)cathode demonstrate the promising potential of practical application.In terms of commercial precursor,facile synthesis and long cycle lifespan,NGHCs represent a brilliant prospect for practical large-scale applications. 展开更多
关键词 Hard carbon nitrogen doping Graphitic domains Potassium ion batteries Adsorption-intercalation mechanism
在线阅读 下载PDF
Enhanced pitting corrosion resistance of CoCrFeMnNi high entropy alloy in the presence of Desulfovibrio vulgaris via nitrogen doping 被引量:3
4
作者 Chuntian Yang Hao Feng +4 位作者 Xiaobo Chen Yu Han Huabing Li Dake Xu Fuhui Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第8期92-102,共11页
Corrosion-resistant high nitrogen high entropy alloys(HEAs)were manufactured by pressurized metal-lurgy.This work revealed the inhibitory effect of nitrogen on pitting corrosion of HEAs caused by sul-fate reducing bac... Corrosion-resistant high nitrogen high entropy alloys(HEAs)were manufactured by pressurized metal-lurgy.This work revealed the inhibitory effect of nitrogen on pitting corrosion of HEAs caused by sul-fate reducing bacterium Desulfovibrio vulgaris.Results indicated that HEA-0 N was susceptible to pitting corrosion and sulfidation under attack of D.vulgaris,whereas the addition of nitrogen significantly de-creased the pitting sensitivity.Pitting potentials of HEA-0.52 N and HEA-1.23 N increased by 133%and 171%,respectively compared to HEA-0 N in the presence of SRB.X-ray photoelectron spectroscopy results unveiled that nitrogen enriched in passive film and strengthened it by increasing fraction of Cr_(2)O_(3)and Fe^(3+)_(ox).Surface of the nitrogen-alloyed HEAs exhibited less defective passive films as revealed by Mott-Schottky results.Nitrogen doping provides a novel insight into the design of microbial corrosion resistant HEA. 展开更多
关键词 High entropy alloy Microbiologically influenced corrosion Sulfate reducing bacteria nitrogen doping Pitting corrosion
原文传递
Engineered nitrogen doping on VO_(2)(B)enables fast and reversible zinc-ion storage capability for aqueous zinc-ion batteries 被引量:2
5
作者 Xin Gu Juntao Wang +7 位作者 Xiaobin Zhao Xin Jin Yuzhe Jiang Pengcheng Dai Nana Wang Zhongchao Bai Mengdi Zhang Mingbo Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期30-38,I0003,共10页
Vanadium-based compounds with high theoretical capacities and relatively stable crystal structures are potential cathodes for aqueous zinc-ion batteries(AZIBs).Nevertheless,their low electronic conductivity and sluggi... Vanadium-based compounds with high theoretical capacities and relatively stable crystal structures are potential cathodes for aqueous zinc-ion batteries(AZIBs).Nevertheless,their low electronic conductivity and sluggish zinc-ion diffusion kinetics in the crystal lattice are greatly obstructing their practical application.Herein,a general and simple nitrogen doping strategy is proposed to construct nitrogen-doped VO_(2)(B)nanobelts(denoted as VO_(2)-N)by the ammonia heat treatment.Compared with pure VO_(2)(B),VO_(2)-N shows an expanded lattice,reduced grain size,and disordered structure,which facilitates ion transport,provides additional ion storage sites,and improves structural durability,thus presenting much-enhanced zinc-ion storage performance.Density functional theory calculations demonstrate that nitrogen doping in VO_(2)(B)improves its electronic properties and reduces the zinc-ion diffusion barrier.The optimal VO_(2)-N400 electrode exhibits a high specific capacity of 373.7 mA h g^(-1)after 100 cycles at 0.1 A g^(-1)and stable cycling performance after 2000 cycles at 5 A g^(-1).The zinc-ion storage mechanism of VO_(2)-N is identified as a typical intercalation/de-intercalation process. 展开更多
关键词 Vanadium dioxide nitrogen doping Cathode materials Aqueous zinc-ion batteries
在线阅读 下载PDF
Successful Nitrogen Doping of 1.3 GHz Single Cell Superconducting Radio-Frequency Cavities 被引量:2
6
作者 陈术 郝建奎 +8 位作者 林林 朱凤 冯立文 王芳 谢华木 郭鑫 陈蒙 全胜文 刘克新 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第3期75-78,共4页
A high intrinsic quality factor (Q0) of a superconducting radio-frequency cavity is beneficial to reducing the oper- ation costs of superconducting accelerators. Nitrogen doping (N-doping) has been demonstrated as... A high intrinsic quality factor (Q0) of a superconducting radio-frequency cavity is beneficial to reducing the oper- ation costs of superconducting accelerators. Nitrogen doping (N-doping) has been demonstrated as a aseful way to improve Q0 of the superconducting cavity in recent years. N-doping researches with 1.3 GHz single cell cavities are carried out at Peking University and the preliminary results are promising. Our recipe is slightly different from other laboratories. After 250μm polishing, high pressure rinsing and 3 h high temperature annealing, the cavities are nitrogen doped at 2.7-4.0Pa for 20rain and then followed by 15μm electropolishing. Vertical test results show that Q0 of a 1.3 GHz single cell cavity made of large grain niobium has increased to 4 ×10 10 at 2.0K and medium gradient. 展开更多
关键词 Successful nitrogen doping of 1.3 GHz Single Cell Superconducting Radio-Frequency Cavities BCP BCS Figure
原文传递
Effects of Nitrogen Doping on Microstructure and Photocatalytic Activity of Nanocrystalline TiO_2 Powders 被引量:1
7
作者 杨志远 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期457-461,共5页
Nitrogen-doped TiO2 nanocrystalline powders were prepared by hydrolysis of tetrachloride titanium (TiCl4) in a mixed solution of ethanol and ammonium nitrate (NH4NO3) at ambient temperature and atmosphere followed... Nitrogen-doped TiO2 nanocrystalline powders were prepared by hydrolysis of tetrachloride titanium (TiCl4) in a mixed solution of ethanol and ammonium nitrate (NH4NO3) at ambient temperature and atmosphere followed by calcination at 400 ℃ for 2 h in air. FTIR spectra demonstrate that amine group in original gel is eliminated by calcination, and the TiO2 powder is liable to absorb water onto its surface and into its capillary pore. XRD and SEM results show that the average size of nanocrystalline TiO2 particles is no more than 60 nm and with increasing the calcination temperature, the size of particles increases. XPS studies indicate the nitrogen atom enters into the TiO2 lattice and occupies the position of oxygen atom. The nitrogen doping not only depresses the grain growth of TiO2 particles, but also reduces the phase transformation temperature of anatase to futile. The photocatalytic activity of the nitrogen-doped TiO2 powders has been evaluated by experiments of photocatalytic degradation aqueous methylene blue. 展开更多
关键词 titanium oxide nitrogen doping photocatalytic activity NANOCRYSTALLINE methylene blue
在线阅读 下载PDF
Selective nitrogen doping on carbon cloth to enhance the performance of zinc anode 被引量:1
8
作者 Lei Wang Guilan Fan +4 位作者 Jiuding Liu Le Zhang Meng Yu Zhenhua Yan Fangyi Cheng 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第3期1095-1100,共6页
Metallic zinc is attractive anode material of rechargeable aqueous Zn-based batteries due to its ambient stability,high volumetric capacity,and abundant reserves.Nonetheless,Zn anodes suffer from issues such as low co... Metallic zinc is attractive anode material of rechargeable aqueous Zn-based batteries due to its ambient stability,high volumetric capacity,and abundant reserves.Nonetheless,Zn anodes suffer from issues such as low coulombic efficiency(CE),large polarization and dendrite formation.Herein,uniform Zn electrodeposition is reported on carbon substrates by selective nitrogen doping.Combined experimental and theoretical investigations demonstrate that pyrrolic and pyridinic nitrogen doped in carbon play beneficial effect as zinc-philic sites to direct nucleation and growth of metallic Zn,while negligible effect is observed for graphite nitrogen in Zn plating.The carbon cloth with modified amount of doped pyrrolic and pyridinic nitrogen stabilizes Zn plating/stripping with 99.3%CE after 300 cycles and significantly increases the deliverable capacity at high depth of charge and discharge compared to undoped carbon substrate and Zn foil.This work provides a better understanding of heteroatom doping effect in design and preparation of stable 3 D carbon-supported zinc anode. 展开更多
关键词 ZINC BATTERIES nitrogen doping Carbon substrate ELECTRODEPOSITION
原文传递
Enhancing water splitting via weakening H_(2) and O_(2) adsorption on NiCo-LDH@CdS due to interstitial nitrogen doping: A close look at the mechanism of electron transfer
9
作者 Azam Pirkarami Sousan Rasouli Ebrahim Ghasemi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期118-130,I0004,共14页
This paper is a report on the development of a convenient approach to fabricating a very efficient hybrid photoelectrocatalyst for water splitting.This photoelectrocatalyst consists of nickel-cobalt layered double hyd... This paper is a report on the development of a convenient approach to fabricating a very efficient hybrid photoelectrocatalyst for water splitting.This photoelectrocatalyst consists of nickel-cobalt layered double hydroxide as the core,cadmium sulfide as the shell,and nitrogen,hence NiCo-LDH@CdS-N.For the electrocatalytic activity to be improved,the H_(2) and O_(2) binding energy needs to be weakened.The interstitial nitrogen doping on NiCo-LDH@CdS can increase electrocatalytic activity to a great extent.NiCoLDH@CdS nanoparticles are obtained by subjecting to nitriding the NiCo-LDH@CdS electrode coated with polyvinylpyrrolidone nanosheets.This electrode has a large specific surface area,allows fast transfer of electrons,and exhibits long-term stability.The experimental results presented in this paper reveal that interstitial nitrogen doping largely reduces H_(2) and O_(2) binding energy and lowers the activation barrier for the formation and splitting of water. 展开更多
关键词 Water splitting Interstitial nitrogen doping NITRIDING Two-redox/semiconductor liquid junction Hydrogen evolution reaction Oxygen evolution reaction
在线阅读 下载PDF
Nitrogen doping/infusion of 650 MHz cavities for CEPC
10
作者 Peng Sha Jian-Kui Hao +12 位作者 Wei-Min Pan Lin Lin Hong-Juan Zheng Xin-Ying Zhang Fang Wang Ji-Yuan Zhai Zheng-Hui Mi Fei-Si He Shu Chen Bai-Qi Liu Zhi-Tao Yang Chao Dong Zhong-Quan Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第5期17-23,共7页
The nitrogen doping/infusion of 650 MHz cavities for the circular electron positron collider(CEPC)is investigated in this study.Two 650 MHz 1-cell cavities are first treated via buffered chemical polishing(BCP),follow... The nitrogen doping/infusion of 650 MHz cavities for the circular electron positron collider(CEPC)is investigated in this study.Two 650 MHz 1-cell cavities are first treated via buffered chemical polishing(BCP),followed by nitrogen doping.A"2/6"condition is adopted,similar to that for 1.3 GHz cavities of Linear Coherent Light Source II.The quality factor of both cavities improved to 7×10^(10)in low fields,i.e.,higher than that obtained from the baseline test.One 650 MHz two-cell cavity is nitrogen infused at 165℃for 48 h with a BCP surface base.The intrinsic quality factor(Q0)reached6×10^(10)at 22 MV/m in the vertical test,and the maximum gradient is 25 MV/m,which exceeds the specification of the CEPC(4×10^(10)at 22 MV/m). 展开更多
关键词 Superconducting radio frequency cavity nitrogen doping nitrogen infusion Quality factor Accelerating gradient
在线阅读 下载PDF
Impact of nitrogen doping on growth and hydrogen impurity incorporation of thick nanocrystalline diamond films
11
作者 顾利萍 唐春玖 +1 位作者 江学范 J.L.Pinto 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第5期433-438,共6页
A much larger amount of bonded hydrogen was found in thick nanocrystalline diamond (NCD) films produced by only adding 0.24% N2 into 4% CH4/H2 plasma, as compared to the high quality transparent microcrystalline dia... A much larger amount of bonded hydrogen was found in thick nanocrystalline diamond (NCD) films produced by only adding 0.24% N2 into 4% CH4/H2 plasma, as compared to the high quality transparent microcrystalline diamond (MCD) films, grown using the same growth parameters except for nitrogen. These experimental results clearly evidence that defect formation and impurity incorporation (for example, N and H) impeding diamond grain growth is the main formation mechanism of NCD upon nitrogen doping and strongly support the model proposed in the literature that nitrogen competes with CHx (x = 1, 2, 3) growth species for adsorption sites. 展开更多
关键词 thick nanocrystalline diamond films nitrogen doping crystalline quality
原文传递
Electronic Transport Properties of Diblock Co-Oligomer Molecule Devices Sandwiched between Nitrogen Doping Armchair Graphene Nanoribbon Electrodes
12
作者 叶萌 夏蔡娟 +4 位作者 杨爱云 张博群 苏耀恒 涂喆研 马越 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期71-74,共4页
We investigate the electronic transport properties of dipyrimidinyl-diphenyl sandwiched between two armchair graphene nanoribbon electrodes using the nonequilibrium Green function formalism combined with a first-princ... We investigate the electronic transport properties of dipyrimidinyl-diphenyl sandwiched between two armchair graphene nanoribbon electrodes using the nonequilibrium Green function formalism combined with a first-principles method based on density functional theory. Among the three models M1–M3, M1 is not doped with a heteroatom. In the left parts of M2 and M3, nitrogen atoms are doped at two edges of the nanoribbon. In the right parts, nitrogen atoms are doped at one center and at the edges of M2 and M3, respectively. Comparisons of M1, M2 and M3 show obvious rectifying characteristics, and the maximum rectification ratios are up to 42.9 in M2. The results show that the rectifying behavior is strongly dependent on the doping position of electrodes. A higher rectification ratio can be found in the dipyrimidinyl-diphenyl molecular device with asymmetric doping of left and right electrodes, which suggests that this system has a broader application in future logic and memory devices. 展开更多
关键词 Electronic Transport Properties of Diblock Co-Oligomer Molecule Devices Sandwiched between nitrogen doping Armchair Graphene Nanoribbon Electrodes NDR
原文传递
Preparation and Electrochemical Performance of Si@void@NC Composite with a Tunable Nitrogen Doping Content in the Carbon Layer
13
作者 Yuan QIN Renzhong HUANG +3 位作者 Yan DONG Liufen XIA Haoran YU Guodong JIANG 《Research and Application of Materials Science》 2021年第2期34-40,I0005,共8页
A strategy for the preparation nitrogen-doped carbon encapsulated Si nanocomposite with a void layer(Si@void@NC)is proposed,in which the nitrogen doping content in the carbon layer is tunable.Aniline and ortho-phenyle... A strategy for the preparation nitrogen-doped carbon encapsulated Si nanocomposite with a void layer(Si@void@NC)is proposed,in which the nitrogen doping content in the carbon layer is tunable.Aniline and ortho-phenylenediamine are both selected as the nitrogen,carbon sources and co-polymerized on Si@SiO_(2),in which SiO_(2)is functionalized as a void template.SEM and TEM observation show that Si nanoparticles are encapsulated in a hollow and interconnected carbon cages with a thickness of less than 10 nm,which is inclined to agglomerate together to form larger particles in micrometer scale.The variation of mole ratio of aniline and ortho-phenylenediamine will enable the change of nitrogen doping level in the carbon layer and ranges from 3.2%to 8.4%.The nitrogen is doped into the carbon framework in the form of pyridinic,pyrrolic and graphitic nitrogen.Electrochemical tests indicate that the nitrogen content influences the SEI formation and the lithiation of Si nanoparticles.The potential for the decomposition of electrolyte to form SEI film and the alloying of Si-Li negatively shift when the nitrogen doping content is increased.Furthermore,the cycling performance of Si@void@NC is improved when raising the nitrogen content in the carbon.And the optimal nitrogen content is 7.5%,which is corresponding to the mole ratio of aniline to ortho-phenylenediamine is 5:5. 展开更多
关键词 Silicon anode nitrogen doping Lithium-ion batteries
在线阅读 下载PDF
MnO_(2) cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries 被引量:16
14
作者 Yanan Zhang Yanpeng Liu +7 位作者 Zhenhua Liu Xiaogang Wu Yuxiang Wen Hangda Chen Xia Ni Guohan Liu Juanjuan Huang Shanglong Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期23-32,I0002,共11页
The research and exploration of manganese-based aqueous zinc-ion batteries have been controversial of cycle stability and mechanism investigation,thus improving the stability and exploring storage mechanism are still ... The research and exploration of manganese-based aqueous zinc-ion batteries have been controversial of cycle stability and mechanism investigation,thus improving the stability and exploring storage mechanism are still the most main issue.Defect engineering has become an effective method to improve cycle stability.Herein,a nitrogen-doped ε-MnO_(2)(MnO_(2)@N)has been prepared using electrochemical deposition and heat treatment under nitrogen atmosphere.As the cathode for zinc-ion batteries,the capacity retention rate of MnO_(2)@N cathode is close to 100%after 500 cycles at 0.5 A g^(-1),while the capacity retention rate for the initial MnO_(2) cathode is 62%.At 5 A g^(-1),the capacity retention rate of MnO_(2)@N cathode is 83%after 1000 cycles,which is much higher than the 27%capacity retention rate for the original MnO_(2) cathode.And it can be found that the oxygen vacancies increase after nitrogen doping,which can improve the conductivity of the MnO_(2)@N cathode.Also,there is Mn-N bond in MnO_(2)@N,which can enhance the electrochemical stability of MnO_(2)@N cathode.In addition,the electrochemical mechanism of MnO_(2)@N cathode has been explored by the CV,GCD and GITT tests.It is found that nitrogen doping promotes the intercalation of H^(+) and the corresponding capacity contribution.Compared with the original MnO_(2) cathode,the diffusion coefficient of H^(+) and Zn^(2+) in MnO_(2)@N cathode increases.Also,the reactions during the charging and discharging process are explored through the ex-situ XRD test.And this work may provide some new ideas for improving the stability of manganese-based zinc-ion batteries. 展开更多
关键词 Manganese oxide nitrogen doped Oxygen vacancy Reaction mechanism
在线阅读 下载PDF
The effect of nitrogen doping on the ablation resistance of zirconium carbide ceramics
15
作者 Zheng Peng Yingjie Cui +3 位作者 Jianbo Song Sian Chen Zengsheng Ma Fuhua Cao 《Journal of Advanced Ceramics》 2025年第5期101-111,共11页
Ultrahigh-temperature ceramics(UHTCs)are prominent candidates for use in thermal protection systems in the aerospace and nuclear industries.This study introduces a nitrogen-doped zirconium carbide that demonstrates re... Ultrahigh-temperature ceramics(UHTCs)are prominent candidates for use in thermal protection systems in the aerospace and nuclear industries.This study introduces a nitrogen-doped zirconium carbide that demonstrates remarkable ablation resistance,outperforming conventional carbide ceramics.The oxidation mechanisms of this material are elucidated through experimental and ab initio molecular dynamics simulations,representing the first analysis of such ultrahigh melting point ceramics from the perspective of structural development during the oxidation process.Transmission electron microscopy(TEM)analysis revealed the precipitation of nanocarbon and Zr–C–N–O phases at the interface between the oxidized and unoxidized regions following nitrogen doping.Nitrogen atoms preferentially combine with zirconium atoms at temperatures below the melting point of the oxide,forming robust Zr-C-N-O oxide network structures.These structures minimize oxide loss and maintain integrity during ablation,enhancing the material's performance in extreme environments.This study underscores nitrogen doping as a promising strategy to improve the ablation resistance of UHTCs,offering valuable insights for their application under demanding conditions. 展开更多
关键词 nitrogen doping ultrahigh-temperature ceramics(UHTCs) ablation resistance oxidation mechanisms molecular dynamics simulations
原文传递
Surface Modification of Activated Carbon by Nitrogen Doping and KOH Activation for Enhanced Carbon Dioxide Adsorption Performance
16
作者 Thanattha Chobsilp Alongkot Treetong +5 位作者 Visittapong Yordsri Mattana Santasnachok Pollawat Charoeythornkhajhornchai Jaruvit Sukkasem Winadda Wongwiriyapan Worawut Muangrat 《Journal of Renewable Materials》 2025年第11期2155-2168,共14页
Nitrogen-doped activated carbon(N-AC)was successfully prepared by KOH-activation and nitrogen doping using ammonia(NH3)heat treatment.Coconut shell-derived activated carbon(AC)was heat-treated under NH3 gas in the tem... Nitrogen-doped activated carbon(N-AC)was successfully prepared by KOH-activation and nitrogen doping using ammonia(NH3)heat treatment.Coconut shell-derived activated carbon(AC)was heat-treated under NH3 gas in the temperature range of 700℃-900℃.Likewise,the mixture of potassium hydroxide(KOH)and AC was heated at 800℃,followed by heat treatment underNH3 gas at 800℃(hereafter referred to asKOH-N-AC800).Scanning electron microscopy(SEM),Raman spectroscopy,X-ray photoelectron spectroscopy(XPS)and Brunauer-Emmett-Teller(BET)method were utilized to analyze morphology,crystallinity,chemical bonding,chemical composition and surface area.The surface area and porosity of N-AC increased with increasing NH3 heat treatment.Similarly,the nitrogen content in the N-AC increased from 3.23%to 4.84 at%when the NH3 heat treatment was raised from 700℃ to 800℃.However,the nitrogen content of N-AC decreased to 3.40 at% after using NH3 heat treatment at 900℃.The nitrogen content of KOH-N-AC800 is 5.43 at%.KOH-N-AC800 and N-AC800 exhibited improvements of 33.66% and 26.24%,respectively,in CO_(2) adsorption compared with AC.The enhancement of CO_(2) adsorption of KOH-N-AC800 is attributed to the synergic effect of the nitrogen doping,high surface area,and porosity.The results exhibited that nitrogen sites on the surface play a more significant role in CO_(2) adsorption than surface area and porosity.This work proposes the potential synergistic effect of KOH-activation and nitrogen doping for enhancing the CO_(2) adsorption capacity of activated carbon. 展开更多
关键词 nitrogen-doped activated carbon nitrogen doping ammonia heat treatment carbon dioxide adsorption carbon capture sustainable development goals
在线阅读 下载PDF
Optimization of nitrogen-doped sludge char preparation and mechanism study for catalytic oxidation of NO at room temperature
17
作者 Wenyi Deng Yongkang Zhang +2 位作者 Mingtao Hu Ruoting Wang Yaxin Su 《Journal of Environmental Sciences》 2025年第4期503-514,共12页
Catalytic oxidation of NO at room temperature was carried out over nitrogen(N)-doped sludge char(SC)prepared from pyrolysis ofmunicipal sewage sludge,and urea was adopted as nitrogen source.The effects of different N-... Catalytic oxidation of NO at room temperature was carried out over nitrogen(N)-doped sludge char(SC)prepared from pyrolysis ofmunicipal sewage sludge,and urea was adopted as nitrogen source.The effects of different N-doping methods(one-step and two-step method),dried sludge(DS)/urea mass ratios(5:1,4:1,3:1,2:1,and 1:1),SC preparation procedures(pyrolysis only,pyrolysis with acid washing,and pyrolysis with KOH activation and acid washing),and different pyrolysis temperatures(500,600,700,and 800°C)on the catalytic oxidation of NO were compared to optimize the procedure for SC preparation.The results indicated that N-doping could obviously promote the catalytic performance of SC.The one-step method with simultaneous sludge pyrolysis(at 700°C),KOH activation,and N-doping(DS/urea of 3:1)was the optimal procedure for preparing the N-doped SC with the NO conversion rate of 54.7%,whereas the optimal NO conversion rate of SC without N-doping was only 47.3%.Urea worked both as carbon and nitrogen source,which could increase about 2.9%-16.5%of carbon and 24.8%-42.7%of nitrogen content in SC pyrolyzed at 700°C.N-doping significantly promoted microporosity of SC.The optimal N-doped SC showed specific surface areas of 571.38 m^(2)/g,much higher than 374.34 m^(2)/g of the optimal SC without N-doping.In addition,N-doping also increased amorphousness and surface basicity of SC through the formation of N-containing groups.Finally,three reaction paths,i.e.microporous reactor,active sites,and basic site control path,were proposed to explain the mechanism of N-doping on promoting the catalytic performance of NO. 展开更多
关键词 Sewage sludge NO oxidation Pyrolysis UREA CHAR nitrogen doping
原文传递
The function of doping nitrogen on removing fluoride with decomposing La-MOF-NH_2:Density functional theory calculation and experiments
18
作者 Hongguo Zhang KuilinWan +5 位作者 Jia Yan Qian Li Yufang Guo Lei Huang Samuel Raj Babu Arulmani Jian Luo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期118-129,共12页
Fluoride is an important pollutant in wastewater,and adsorption is an effective way to remove fluoride.Because nitrogen plays an important role in adsorbent materials,computational models were developed to understand ... Fluoride is an important pollutant in wastewater,and adsorption is an effective way to remove fluoride.Because nitrogen plays an important role in adsorbent materials,computational models were developed to understand the changes in work function resulting from nitrogen doping.La-N-C-800℃,was prepared by pyrolyzing La-MOF-NH_(2)to verify the influence on the performance of removing fluoride by electrosorption.Material and electrochemical performance tests were performed to characterize La-N-C-800℃.Adsorption kinetics,adsorption thermodynamics,initial concentrations,pH,and ions competition were investigated using La-N-C-800℃for fluoride removal.In addition,density functional theory was applied to evaluate the function of nitrogen.When nitrogen atoms were added,the density of states,partial density of states,populations,and different orbits of charge were calculated to discover deep changes.Nitrogen strengthened the carbon structure and La_(2)O_(3)structure to remove fluoride.In addition,nitrogen can also act as an adsorption site in the carbon structure.These results provide design ideas for improving the performance of adsorbent materials by doping elements. 展开更多
关键词 Capacitive deionization FLUORIDE La-MOFs doping nitrogen
原文传递
Cobalt-modified nitrogen-doped carbon nanotubes as bifunctional catalysts for one-pot synthesis of 2,5-diformylfuran from glucose
19
作者 Trinh Hao Nguyen Dao Anh Le Nguyen +4 位作者 Duy Quoc Mai Mai Ngoc Thi Le Diep Dinh Le Ha Bich Phan Phuong Hoang Tran 《Journal of Energy Chemistry》 2025年第4期440-447,共8页
In the past century,industrial and economic growth relied heavily on fossil fuels such as coal,oil,and natural gas.As the society energy demands continue to grow,these fossil fuel reserves are depleted,leading to sign... In the past century,industrial and economic growth relied heavily on fossil fuels such as coal,oil,and natural gas.As the society energy demands continue to grow,these fossil fuel reserves are depleted,leading to significant environmental issues[1].Currently,sustainable biomass resources have attracted much attention as potential substitutes to fossil fuels for producing biofuels and commodity chemicals[2]. 展开更多
关键词 commodity chemicals fossil fuels diformylfuran fossil fuel one pot synthesis natural gasas bifunctional catalysts cobalt modified nitrogen doped carbon nanotubes
在线阅读 下载PDF
Probing the active sites of site-specific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions 被引量:7
20
作者 Xingzhu Chen Wee-Jun Ong +2 位作者 Zhouzhou Kong Xiujian Zhao Neng Li 《Science Bulletin》 SCIE EI CSCD 2020年第1期45-54,M0004,共11页
The development of highly active and low-cost catalysts for electrochemical reactions is one of the most attractive topics in the renewable energy technology.Herein,the site-specific nitrogen doping of graphdiyne(GDY)... The development of highly active and low-cost catalysts for electrochemical reactions is one of the most attractive topics in the renewable energy technology.Herein,the site-specific nitrogen doping of graphdiyne(GDY)including grap-N,sp-N(Ⅰ)and sp-N(Ⅱ)GDY is systematically investigated as metal-free oxygen reduction electrocatalysts via density functional theory(DFT).Our results indicate that the doped nitrogen atom can significantly improve the oxygen(O2)adsorption activity of GDY through activating its neighboring carbon atoms.The free-energy landscape is employed to describe the electrochemical oxygen reduction reaction(ORR)in both O2 dissociation and association mechanisms.It is revealed that the association mechanism can provide higher ORR onset potential than dissociation mechanism on most of the substrates.Especially,sp-N(Ⅱ)GDY exhibits the highest ORR electrocatalytic activity through increasing the theoretical onset potential to 0.76 V.This work provides an atomic-level insight for the electrochemical ORR mechanism on metal-free N-doped GDY. 展开更多
关键词 Graphdiyne(GDY) Site-specific nitrogen doping Metal-free catalysts Oxygen reduction reaction(ORR)
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部