期刊文献+
共找到19,257篇文章
< 1 2 250 >
每页显示 20 50 100
NO Adsorption on Ag/Pt(110)-(1×2) Bimetallic Surfaces: Unexpected Formation of Nitrite/nitrate Surface Species
1
作者 李金兵 姜志全 黄伟新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第6期735-740,I0004,共7页
NO adsorption on Ag/Pt(110)-(1×2) bimetallic surfaces at room temperature was investigated by means of Auger electron spectroscopy, X-ray photoelectron spectroscopy and thermal desorption spectroscopy. An une... NO adsorption on Ag/Pt(110)-(1×2) bimetallic surfaces at room temperature was investigated by means of Auger electron spectroscopy, X-ray photoelectron spectroscopy and thermal desorption spectroscopy. An unexpected formation of nitrite/nitrate surface species on Ag/Pt(110)-(1 ×2) bimetallic surfaces is observed, then decompose at elevated temperatures to form N2. However, such nitrite/nitrate surface species do not form on clean Pt(110) and Ag-Pt alloy surfaces upon NO exposure at room temperature. The formation of nitrite/nitrate surface species on Ag/Pt(110)-(1×2) bimetallic surfaces is attributed to high reactivity of highly coordination-unsaturated Ag clusters and the synergetic effect between Ag clusters and Pt substrate. 展开更多
关键词 Nitric oxide Ag-Pt bimetallic surface nitrite/nitrate surface species Synergetic effect
在线阅读 下载PDF
Comprehensive understanding of the thriving electrocatalytic nitrate/nitrite reduction to ammonia under ambient conditions
2
作者 Xinying Zhao Yuzhuo Jiang +5 位作者 Mengfan Wang Yunfei Huan Qiyang Cheng Yanzheng He Tao Qian Chenglin Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期459-483,共25页
Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the... Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future. 展开更多
关键词 Electrocatalytic nitrate reduction Electrocatalytic nitrite reduction Ammonia synthesis Pollutant removal ELECTROSYNTHESIS
在线阅读 下载PDF
Assessment of Nitrates and Nitrites in Borehole Water from the Southern and the Northern Region of Côte d’Ivoire (West Africa)
3
作者 Jean Stéphane Claon Kouassi Kouakou Serge +5 位作者 Sérikipré Laurent Seka M’Bassidjé Arsène N’Guettia Kossonou Roland Traoré Aïcha Djamanallico Joseph Kouadio Kouakou Luc 《Open Journal of Modern Hydrology》 CAS 2024年第2期87-105,共19页
This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the South... This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the Southern (Basse Côte) and the Northern (Korhogo) region of Cte d’Ivoire (west Africa) were sampled. Physicochemical parameters such as temperature, pH, conductivity at 25˚C, and turbidity were determined in situ, while nitrite and nitrate were analyzed according to ISO 10304-1 (2007) standard and total organic carbon (TOC) by NF EN 1484 (1997) standard. The results showed that the borehole waters of the Basse Côte and Korhogo analyzed are acidic, with an average temperature of 27.51˚C ± 0.16˚C and 29.95˚C ± 0.51˚C respectively for the Basse Côte and Korhogo regions. The borehole waters of the Basse Côtedo not contain nitrites, while those of Korhogo have average nitrite contents of 0.32 mg/l. The average nitrate rate in the waters of the Basse Côte and Korhogo are 12.08 ± 2.11 mg/l and 11.03 ± 3.18 mg/l respectively. The average TOC concentration of the waters of the Basse Côte is 1.28 ± 0.32 mg/l and that of Korhogo is 0.56 ± 0.09 mg/L. The study showed that the borehole waters of the Basse Côte and Korhogo have average temperatures between 27.4˚C and 29.95˚C with a slightly acidic pH value and acceptable salinity. The TOC concentrations obtained at the different sampling points were all below the French standard (2 mg/L) except for certains pumps of the Basse Côte. The water samples from the Basse Côte were devoid of nitrite. On the other hand, those from Korhogo revealed the presence of nitrite. Also, the borehole waters of the regions of the Basse Côte and Korhogo contain relatively high nitrate contents, presumably due to anthropometric activity. Overall, our study on the quality of drinking water showed that the waters analyzed are in compliance with international standards and safe for consumption. 展开更多
关键词 Drinking Water pH TURBIDITY TOC nitrateS nitriteS Health Effect
在线阅读 下载PDF
Assessment of Health Risks Associated with Nitrate in Drinking Well Water: Case Study, M’Bahiakro (Central-Eastern Côte d’Ivoire) 被引量:1
4
作者 Hervé Achié N’cho Ruth Baï +3 位作者 Euclide Kouadio N’Goran Kouadio Koffı Lazare Kouakou Kouassı Innocent Kouassi Kouamé 《Journal of Water Resource and Protection》 2025年第1期35-46,共12页
Nitrate contamination of groundwater is a worldwide problem, particularly in agricultural countries. Exposure to high levels of nitrates in groundwater can have adverse effects on the health of residents who use groun... Nitrate contamination of groundwater is a worldwide problem, particularly in agricultural countries. Exposure to high levels of nitrates in groundwater can have adverse effects on the health of residents who use groundwater for drinking. This study aims to assess the health risk associated with the ingestion of nitrates in well water in the town of M’bahiakro. Health risk maps were created on the basis of hazard quotients (HQ) using the US Environmental Protection Agency (USEPA) health risk assessment model. The results indicate that residents of the Koko, Dougouba and Baoulekro neighbourhoods, whatever their age, are potentially exposed to the toxic effects of NO3−during their daily intake of nitrate-contaminated well water, with reference to hazard quotients (HQ) greater than 1. Nitrate concentrations in the groundwater should therefore be controlled in order to prevent their harmful effects on the health of the population and guarantee its use in rice-growing activities in M’Bahiakro. 展开更多
关键词 nitrate WELL Health Risks M’Bahiakro
在线阅读 下载PDF
Nitrogen-cycling processes under long-term compound heavy metal(loids)pressure around a gold mine:Stimulation of nitrite reduction 被引量:1
5
作者 Xuesong Hu Xiaoxia Liu +1 位作者 Shuo Zhang Caihong Yu 《Journal of Environmental Sciences》 2025年第1期571-581,共11页
Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This ... Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids)exposure.The results showed that the diversity and abundance of nitrogen-cyclingmicroorganisms showed negative feedback to heavy metal(loids)concentrations.Denitrifying microorganisms were shown to be the dominant microorganisms with over 60%of relative abundance and a complex community structure including 27 phyla.Further,the key bacterial species in the denitrification process were calculated using a random forest model,where the top three key species(Pseudomonas stutzei,Sphingobium japonicum and Leifsonia rubra)were found to play a prominent role in nitrite reduction.Functional gene analysis and qPCR revealed that nirK,which is involved in nitrite reduction,significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%.The experimental results confirmed that the activity of nitrite reductase(Nir)encoded by nirK in the soil was increased at high concentrations of heavy metal(loids).Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids),the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species.The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids). 展开更多
关键词 N cycle nitrite reduction nitrite reductase METAGENOME Key species
原文传递
Synergistic effect of nitrocellulose coating on structural and reactivity stabilization of ammonium nitrate oxidizer 被引量:1
6
作者 Amir Abdelaziz Djalal Trache +5 位作者 Ahmed Fouzi Tarchoun Hani Boukeciat Yash Pal Sourbh Thakur Weiqiang Pang Thomas M.Klapötke 《Defence Technology(防务技术)》 2025年第1期35-43,共9页
The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has... The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations. 展开更多
关键词 Ammonium nitrate NITROCELLULOSE STABILIZATION COATING Thermolysis kinetics
在线阅读 下载PDF
In situ construction of Cu(Ⅰ)-Cu(Ⅱ) pairs for efficient electrocatalytic nitrate reduction reaction to ammonia 被引量:1
7
作者 Muyun Zheng Yuchi Wan +7 位作者 Leping Yang Shen Ao Wangyang Fu Zhengjun Zhang Zheng-Hong Huang Tao Ling Feiyu Kang Ruitao Lv 《Journal of Energy Chemistry》 2025年第1期106-113,共8页
Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles in... Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states. 展开更多
关键词 Ammonia synthesis Cu oxidation state ELECTROCHEMISTRY nitrate reduction In situ XPS
在线阅读 下载PDF
Corrigendum to“Efficient and selective photocatalytic nitrite reduction to N_(2) through CO_(2) anion radical by eco-friendly tartaric acid activation”[Chinese Chemical Letters 35(2024)109639]
8
作者 Jingtao Bi Yupeng Cheng +3 位作者 Mengmeng Sun Xiaofu Guo Shizhao Wang Yingying Zhao 《Chinese Chemical Letters》 2025年第7期659-659,共1页
The authors regret<an error occurred regarding the spelling of the author’s name in the final published manuscript.The correct spelling is Jingtao Bi,but it was mistakenly published as Jingtai Bi.We hereby request... The authors regret<an error occurred regarding the spelling of the author’s name in the final published manuscript.The correct spelling is Jingtao Bi,but it was mistakenly published as Jingtai Bi.We hereby request to correct the name to Jingtao Bi as originally intended.>.The authors would like to apologize for any inconvenience caused. 展开更多
关键词 author name correction spelling error nitrite N jingtao bi tartaric acid activation CORRECTION photocatalytic nitrite reduction CO anion radical
原文传递
Remarkable fluorescence enhancement of acridine orange and rhodamine B through immobilization on zirconia nanotube array film and its application on nitrite sensing
9
作者 Dong Liu Xixin Wang +1 位作者 Dongxin Liu Jianling Zhao 《Journal of Materials Science & Technology》 2025年第5期26-37,共12页
Zirconia nanotube array films(ZNAF)prepared by anodic oxidation method were used as immobilization materials for acridine orange(AO),rhodamine B(RB)and AO-RB systems.A comparative study on their fluorescence emission ... Zirconia nanotube array films(ZNAF)prepared by anodic oxidation method were used as immobilization materials for acridine orange(AO),rhodamine B(RB)and AO-RB systems.A comparative study on their fluorescence emission intensity,fluorescence resonance energy transfer(FRET)and fluorescence detection of nitrite in aqueous solutions and on immobilization films with ZNAF as carriers was carried out.Results demonstrate that the solution pH values and immobilization on ZNAF have a great influence on the per-formance of these fluorescent molecules.Compared with aqueous solutions,the fluorescence emission in-tensity of AO and RB is considerably increased by immobilization,which is 8.0 and 4.2 times higher than the original,respectively.The energy transfer efficiency(E)of the AO-RB system increases from 40.9%to 84.8%by loading it on ZNAF.Moreover,after immobilization onto ZNAF,the fluorescence detection performance of nitrite is also significantly improved.The limit of detection decreases from 0.95 ng/mL to 0.22 ng/mL and the sensitivity increases from 939.18 to 15,031.68 mL/μg through loading AO onto ZNAF. 展开更多
关键词 ZrO2 nanotube arrays Acridine orange Rhodamine B nitrite Detection
原文传递
Modulation of the electronic structure of CoP active sites by Er-doping for nitrite reduction for ammonia electrosynthesis
10
作者 Donglin Zhao Keyu Zhou +3 位作者 Li Zhan Guangyin Fan Yan Long Shuyan Song 《Chinese Journal of Catalysis》 2025年第3期299-310,共12页
The electrochemical conversion of toxic nitrite(NO_(2)-)is a promising approach for the simultaneous removal of nitrogen contaminants and synthesis of ammonia(NH_(3)).In this study,we present the Er-doping-induced ele... The electrochemical conversion of toxic nitrite(NO_(2)-)is a promising approach for the simultaneous removal of nitrogen contaminants and synthesis of ammonia(NH_(3)).In this study,we present the Er-doping-induced electronic modulation of CoP integrated with nitrogen-doped carbon(CN)nanosheets supported on a titanium mesh(Er-CoP@NC/TM)for the electrocatalytic NO_(2)-reduction reaction(eNO_(2)-RR)for NH_(3)synthesis.The catalyst demonstrates a high Faraday efficiency of 97.08±2.22%and a high yield of 2087.60±17.10μmol h^(-1)cm^(-2)for NH_(3)production.Characterization and theoretical calculations revealed that Er-doping facilitated the electronic modulation of CoP in Er-CoP@NC/TM,which regulated the adsorption behaviors of intermediates and was the rate-limiting step for the eNO_(2)-RR,thereby enhancing the electrocatalytic performance.Quenching experiments and electron paramagnetic resonance tests suggest that both direct electrocatalytic reduction by active hydrogen and electron transfer are critical for the eNO_(2)-RR for NH_(3)synthesis.Furthermore,Er-CoP@NC/TM exhibited high performance across a wide range of NO_(2)-concentrations(0.05-0.1 mol L^(-1))and pH values(4-13).In addition,the catalyst demonstrated strong resistance to anions and a long cycle life in simulated wastewater environments.This study offers a powerful approach for the remediation of NO_(2)-wastewater and recovery of valuable inorganic compounds. 展开更多
关键词 ELECTROCATALYSIS nitrite reduction Ammonia production Cobalt phosphide Er-doping
在线阅读 下载PDF
Application of catalyst Cu-t-ZrO_(2)based on the electronic metal-support interaction in electrocatalytic nitrate reduction
11
作者 Doudou Liu Weiwei Guo +5 位作者 Guoliang Mei Youpeng Dan Rong Yang Chao Huang Yanling Zhai Xiaoquan Lu 《Chinese Chemical Letters》 2025年第8期669-673,共5页
A novel Cu-t-ZrO_(2)catalyst with enhanced electronic metal-support interaction(EMSI)is designed for efficient electrocatalytic conversion of nitrate(NO_(3^(-)))to ammonia(NH_(3)),achieving a remarkable Faradaic effic... A novel Cu-t-ZrO_(2)catalyst with enhanced electronic metal-support interaction(EMSI)is designed for efficient electrocatalytic conversion of nitrate(NO_(3^(-)))to ammonia(NH_(3)),achieving a remarkable Faradaic efficiency and yield rate of 97.54%and 33.64 mg h^(-1)mg_(cat)^(-1),respectively.Electrons are more likely to be transferred from Cu to t-ZrO_(2)at the electron-rich interface due to the lower work function,which promotes the formation of highly active Cu species and facilitates NO_(3^(-))adsorption,ensuring selective conversion into NH_(3). 展开更多
关键词 Electronic metal-support interaction(EMSI) Oxygen vacancies nitrate reduction reaction NH_(3)production nitrate removal
原文传递
Modulating the coordination environment of cobalt porphyrins for enhanced electrochemical nitrite reduction to ammonia
12
作者 Jingwei Han Hai Sun +5 位作者 Fengkun Tian Wenwen Zhang Zonghang Zhang Ping She Jun-Sheng Qin Heng Rao 《Carbon Energy》 2025年第1期25-35,共11页
Electrocatalytic reduction of nitrate pollutants to produce ammonia offers an effective approach to realizing the artificial nitrogen cycle and replacing the energyintensive Haber-Bosch process.Nitrite is an important... Electrocatalytic reduction of nitrate pollutants to produce ammonia offers an effective approach to realizing the artificial nitrogen cycle and replacing the energyintensive Haber-Bosch process.Nitrite is an important intermediate product in the reduction of nitrate to ammonia.Therefore,the mechanism of converting nitrite into ammonia warrants further investigation.Molecular cobalt catalysts are regarded as promising for nitrite reduction reactions(NO_(2)^(−)RR).However,designing and controlling the coordination environment of molecular catalysts is crucial for studying the mechanism of NO_(2)^(−)RR and catalyst design.Herein,we develop a molecular platform of cobalt porphyrin with three coordination microenvironments(Co-N_(3)X_(1),X=N,O,S).Electrochemical experiments demonstrate that cobalt porphyrin with O coordination(CoOTPP)exhibits the lowest onset potential and the highest activity for NO_(2)^(−)RR in ammonia production.Under neutral,nonbuffered conditions over a wide potential range(−1.0 to−1.5 V versus AgCl/Ag),the Faradaic efficiency of nearly 90%for ammonia was achieved and reached 94.5%at−1.4 V versus AgCl/Ag,with an ammonia yield of 6,498μgh^(−1)and a turnover number of 22,869 at−1.5V versus AgCl/Ag.In situ characterization and density functional theory calculations reveal that modulating the coordination environment alters the electron transfer mode of the cobalt active center and the charge redistribution caused by the break of the ligand field.Therefore,this results in enhanced electrochemical activity for NO_(2)^(−)RR in ammonia production.This study provides valuable guidance for designing adjustments to the coordination environment of molecular catalysts to enhance catalytic activity. 展开更多
关键词 coordination environment electrocatalytic nitrite reduction heterogeneous catalysis molecular catalyst
在线阅读 下载PDF
Effects of nitrate(NO_(3)^(−))stress-induced exacerbated cadmium(Cd^(2+))toxicity on the inflammatory response,oxidative defense,and apoptosis in juvenile Japanese flounder(Paralichthys olivaceus)
13
作者 Jiachen Yu Jie Lian +6 位作者 Yingying Wan Xiangyuan Li Pengfei Liu Qing Ji Suyue Zhou Nianhao Zheng Xingqiang Wang 《Journal of Environmental Sciences》 2025年第6期535-548,共14页
Due to the discharge of industrialwastewater,urban domestic sewage,and intensive marine aquaculture tailwater,nitrate(NO_(3)^(−))pollution has emerged as a significant issue in offshore waters.Nitrate pollution affect... Due to the discharge of industrialwastewater,urban domestic sewage,and intensive marine aquaculture tailwater,nitrate(NO_(3)^(−))pollution has emerged as a significant issue in offshore waters.Nitrate pollution affects aquatic life and may interact with other pollutants,leading to comprehensive toxicity.Cadmium(Cd^(2+))is the most widespread metal contaminant,adversely affecting aquatic life in the coastal waters of China.Despite this,few studies have focused on the synergistic toxicity of NO_(3)^(−)and Cd^(2+)in marine organisms.This study conducted a 30-day exposure experiment on marine Japanese flounder(Paralichthys olivaceus)to explore the synergistic toxicity of NO_(3)^(−)and Cd^(2+).Our results demonstrated that the exposure to Cd^(2+)alone induced slight histopathological changes in the liver.However,malformations such as hepatic vacuolar degeneration and sinusoid dilatationwere exacerbated under co-exposure.Moreover,co-exposure induced the downregulation of antioxidants and the upregulation of the product malonaldehyde(MDA)from lipid peroxidation,indicating potent oxidative stress in the liver.The increased mRNA expression of IL-8,TNF-α,and IL-1β,along with the decreased expression level of TGF-β,indicated a synergistic inflammatory response in the organisms.Furthermore,the co-exposure led to an abnormal expression of P53,caspase-3,caspase-9,Bcl-2,and Bax,and disturbed the apoptosis in the liver through TUNEL staining analysis.Overall,our results imply that co-exposure synergistically affects inflammation,redox status,and apoptosis in flounders.Therefore,the findings from this study provide valuable perspectives on the ecological risk assessment of marine teleosts co-exposure to NO_(3)^(−)and Cd^(2+). 展开更多
关键词 nitrate pollution Cadmium Japanese flounder Oxidative defense APOPTOSIS
原文传递
High-performance red mud as an electrocatalyst for nitrate reduction toward ammonia synthesis
14
作者 Qiannan Wang Aaron S.Pittman Yan Cao 《Chinese Journal of Chemical Engineering》 2025年第1期195-202,共8页
Red mud(RM)is a solid waste generated in the aluminum industry after the extraction of alumina oxide;its multiple elements and higher pH value likely pose a severe threat to the environment after treatment.However,RM&... Red mud(RM)is a solid waste generated in the aluminum industry after the extraction of alumina oxide;its multiple elements and higher pH value likely pose a severe threat to the environment after treatment.However,RM's higher concentrations of metal components,particularly Fe_(2)O_(3)and rare earth elements(REEs),render RM promising for catalytic application.Hence,this work showed an efficient high-speed RM to catalyze electrocatalytic nitrate-to-ammonia reduction reaction(NARR).RM calcined at 500℃(RM-500)exhibited excellent catalytic performance.Faradaic efficiency of ammonia(FENH_(3))in an electrolyte solution containing 1 mol·L^(-1)NO_(3)-achieved a maximum value of 92.3%at-0.8 V(vs.RHE).Additionally,24-h cycle testing and post-reaction PXRD and SEM indicated that the RM-500 electrocatalyst is stable during NARR.The RM-500 demonstrated a high FE of NH_(3)-to-NO_(3)-of 89.7%at 1.85 V(vs.RHE),showing great potential in the ammonia fuel cells technology and achieving the nitrogen cycle. 展开更多
关键词 Ammonia synthesis nitrate reduction Red mud ELECTROCATALYST STABILITY
在线阅读 下载PDF
Schottky junction coupling with metal size effect for the enhancement of photocatalytic nitrate reduction
15
作者 Xuemeng Sun Jianan Liu +2 位作者 Qi Li Cheng Wang Baojiang Jiang 《Chinese Journal of Catalysis》 2025年第6期358-367,共10页
Nitrate pollution poses a significant environmental challenge,and photocatalytic nitrate reduction has garnered considerable attention due to its efficiency and environmental advantages.Among these,the development of ... Nitrate pollution poses a significant environmental challenge,and photocatalytic nitrate reduction has garnered considerable attention due to its efficiency and environmental advantages.Among these,the development of Schottky junctions shows considerable potential for practical applications.However,the impact of metal nanoparticle size within Schottky junctions on photocatalytic nitrate reduction remains largely unexplored.In this study,we propose a novel method to modulate metal nanoparticle size within Schottky junctions by controlling light intensity during the photodeposition process.Smaller Au nanoparticles were found to enhance electron accumulation at active sites by promoting charge transfer from COF to Au,thereby improving internal electron transport.Additionally,the Schottky barrier effectively suppressed reverse electron transfer while enhancing NO_(3)^(–)adsorption and activation.The Au_(2-)COF exhibited remarkable nitrate reduction performance,achieving an ammonia yield of 382.48μmol g^(–1)h^(–1),5.7 times higher than that of pure COF.This work provides novel theoretical and practical insights into using controlled light intensity to regulate metal nanoparticle size within Schottky junctions,thereby enhancing photocatalytic nitrate reduction. 展开更多
关键词 Schottky junction nitrate reduction PHOTOCATALYSIS Covalent organic frameworks
在线阅读 下载PDF
Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction
16
作者 Hong-Rui Li Xia Kang +4 位作者 Rui Gao Miao-Miao Shi Bo Bi Ze-Yu Chen Jun-Min Yan 《Chinese Chemical Letters》 2025年第2期423-427,共5页
In this work,an effective catalyst of Cu/MnOOH has been successfully constructed for electrochemical nitrate reduction reaction(e NO_(3)RR)for synthesis of ammonia(NH_(3))under ambient conditions.The substrate of MnOO... In this work,an effective catalyst of Cu/MnOOH has been successfully constructed for electrochemical nitrate reduction reaction(e NO_(3)RR)for synthesis of ammonia(NH_(3))under ambient conditions.The substrate of MnOOH plays an important role on the size and electronic structure of Cu nanoparticles,where Cu has the ultrafine size of 2.2 nm and positive shift of its valence states,which in turn causes the increased number of Cu active sites and enhanced intrinsic activity of every active site.As a result,this catalyst realizes an excellent catalytic performance on eNO_(3)RR with the maximal NH_(3)Faraday efficiency(FE)(96.8%)and the highest yield rate(55.51 mg h^(-1)cm^(-2))at a large NH_(3)partial current density of700 m A/cm^(2),which could help to promote the industrialization of NH_(3)production under ambient conditions. 展开更多
关键词 AMMONIA nitrate reduction reaction ADSORPTION ELECTROCATALYSIS Interfacial interactions
原文传递
Electrochemical removal of nitrate in high-salt wastewater with low-cost iron electrode modified by phosphate
17
作者 Fengjiao Quan Guangming Zhan +5 位作者 Pengfei Xu Xiaolan Chen Wenjuan Shen Falong Jia Yun He Jianfen Li 《Journal of Environmental Sciences》 2025年第2期38-45,共8页
Nitrate(NO3-)is a widespread pollutant in high-salt wastewater and causes serious harm to human health.Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method,the developme... Nitrate(NO3-)is a widespread pollutant in high-salt wastewater and causes serious harm to human health.Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method,the development of low-cost electro-catalysts is still challenging.In this work,a phosphate modified iron(P-Fe)cathode was prepared for electrochemical removal of nitrate in high-salt wastewater.The phosphate modification greatly improved the activity of iron,and the removal rate of nitrate on P-Fe was three times higher than that on Fe electrode.Further experiments and density functional theory(DFT)calculations demonstrated that the modification of phosphoric acid improved the stability and the activity of the zero-valent iron electrode effectively for NO_(3)^(-) removal.The nitrate was firstly electrochemically reduced to ammonium,and then reacted with the anodic generated hypochlorite to N_(2).In this study,a strategy was developed to improve the activity and stability of metal electrode for NO_(3)^(-)removal,which opened up a new field for the efficient reduction of NO3-removal by metal electrode materials. 展开更多
关键词 nitrate removal High-salt wastewater ELECTROCATALYSIS Phosphate modified Iron
原文传递
In-situ reconstructed Cu/NiO nanosheets synergistically boosting nitrate electroreduction to ammonia
18
作者 Zunjie Zhang Mengran Liu +4 位作者 Bingcheng Ge Tianfang Yang Shuaitong Wang Yang Liu Shuyan Gao 《Chinese Chemical Letters》 2025年第8期641-646,共6页
Electrochemical reduction of nitrate(NO_(3^(-)))serves as an eco-friendly friendly alternative to the conventional Haber-Bosch ammonia(NH_(3))synthesis process.The Cu electrocatalyst is widely recognized for its stron... Electrochemical reduction of nitrate(NO_(3^(-)))serves as an eco-friendly friendly alternative to the conventional Haber-Bosch ammonia(NH_(3))synthesis process.The Cu electrocatalyst is widely recognized for its strong adsorption capacity towards nitrate,but its limited H adsorption and slow hydrogenation of oxynitride intermediates hinder the efficiency of converting NO_(3^(-))into NH_(3).Herein,a series of nanocomposite catalysts composed of CuO nanostructure with low NiO content that grow in-situ on carbon paper(Cu O/Ni O_(x)-CP)were synthesized via hydrothermal method and calcination for enhanced nitrate electroreduction utilizing the strong nitrate adsorption capacity of copper and excellent water dissociation ability of NiO to supply hydrogen free radicals(·H).In-situ Raman spectroscopy reveals dynamic reconstruction of Cu/NiO_(x)during the electrochemical nitrate reduction process from Cu O/NiO_(x).Due to the synergistic effect of Cu and NiO,a high Faradaic efficiency(FE,~97.9%)and yield rate(YR,391.5μmol h^(-1)cm^(-2))of ammonia are achieved on CuO/NiO_(2.3%)-CP.Electron paramagnetic resonance(EPR)proves that the presence of Ni O enhances the generation of·H,which can be rapidly consumed during nitrate reduction process.Density functional theory(DFT)calculations indicate that the activation energy of Ni O(0.57 eV)is much lower than Cu(0.84 e V)for water splitting to generate·H,thus facilitating*NO hydrogenations.This drives us to create more effective catalysts for nitrate reduction under neutral conditions by promoting H2O dissociation. 展开更多
关键词 nitrate reduction Ammonia synthesis Synergistic effect HYDROGENATION Water dissociation
原文传递
Polyethyleneimine modified Au core Rh shell nanodendrites for light-promoted nitrite reduction reaction at low concentration
19
作者 Zhe Wang Xiaohui Wang +6 位作者 Mengzhu Yun Xinyao Shi Xue Xiao Yan Liu Fan Yang Yucheng Jiang Yu Chen 《Journal of Energy Chemistry》 2025年第4期400-407,共8页
Ammonia(NH_(3))is a fundamental chemical in agriculture and an ideal hydrogen carrier.Consequently,NH_(3)synthesis strategies with high efficiency,energy conservation,environmental friendliness,and sustainability are ... Ammonia(NH_(3))is a fundamental chemical in agriculture and an ideal hydrogen carrier.Consequently,NH_(3)synthesis strategies with high efficiency,energy conservation,environmental friendliness,and sustainability are desired eminently.The nitrite(NO_(2)^(-))reduction reaction(NO_(2-)RR)to NH_(3)offers a feasibly low-energy consumption and continuable approach to replace industrial NH_(3)synthesis.Herein,polyethyleneimine(PEI)modified Au core Rh shell nanodendrites(Au@Rh-NDs)nanohybrid(Au@Rh-NDs/PEI)with branched structure is synthesized,which achieves the high NH_(3)yield(1.68 mg h^(-1)mg_(cat)^(-1))and Faradaic efficiency(FE)of 95.86%for NO_(2)^(-)-RR at-0.39 V potential in neutral electrolyte.Particularly,the introduction of PEI significantly enhances the electroactivity of Au@Rh-NDs at low concentration of 1 mM NaNO_(2),which originates from the enrichment function of PEI for NO_(2)^(-)-ion.In addition,the Au basement permits the sustainable solar power to expedite the NO_(2)^(-)-RR at Au@Rh-NDs/PEI owing to the localized surface plasmon resonance(LSPR)of the Au core substrate.This work may provide an admissible tactic to build excellent catalysts on account of organic molecule-mediated interfacial engineering in a variety of fields of catalysis and electrocatalysis. 展开更多
关键词 AMMONIA Shell-core structure Interfacial engineering nitrite reduction reaction Photothermal and photoelectric effect
在线阅读 下载PDF
Sustainable ammonia synthesis:Opportunities for electrocatalytic nitrate reduction
20
作者 Haoxuan Jiang Tianyu Li +11 位作者 Yuting Gao Jieping Fan Dingwei Gan Shuai Yuan Longfei Hong Yue Feng Jing Sun Qiang Song Tianqi Zhang Ali Rouhzollah Jalili Patrick J.Cullen Renwu Zhou 《Journal of Energy Chemistry》 2025年第6期630-668,I0014,共40页
Ammonia is the cornerstone of modern agriculture,providing a critical nitrogen source for global food production and serving as a key raw material for numerous industrial chemicals.Electrocatalytic nitrate reduction,a... Ammonia is the cornerstone of modern agriculture,providing a critical nitrogen source for global food production and serving as a key raw material for numerous industrial chemicals.Electrocatalytic nitrate reduction,as an environmentally friendly method for synthesizing ammonia,not only mitigates the reliance on current ammonia synthesis processes fed by traditional fossil fuels but also effectively reduces nitrate pollution resulting from agricultural and industrial activities.This review explores the fundamental principles of electrocata lytic nitrate reduction,focusing on the key steps of electron transfer and ammonia formation.Additionally,it summarizes the critical factors influencing the performance and selectivity of the reaction,including the properties of the electrolyte,operating voltage,electrode materials,and design of the electrolytic cell.Further discussion of recent advances in electrocatalysts,including pure metal catalysts,metal oxide catalysts,non-metallic catalysts,and composite catalysts,highlights their significant roles in enhancing both the efficiency and selectivity of electrocata lytic nitrate to ammonia(NRA)reactions.Critical challenges for the industrial NRA trials and further outlooks are outlined to propel this strategy toward real-world applications.Overall,the review provides an in-depth overview and comprehensive understanding of electrocata lytic NRA technology,thereby promoting further advancements and innovations in this domain. 展开更多
关键词 nitrate reduction reaction Ammonia synthesis ELECTROCATALYSTS MECHANISMS Influencing factors
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部