A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas...A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.展开更多
The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrat...The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrate. Arc traveling speeds and arc currents have an effect on both the microstructures and the properties of the layers. Decreasing the arc traveling speed or increasing the arc current can obviously enhance the hardness and the wear resistance of the nitrided layers.展开更多
The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoele...The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and rough-meter. X- ray diffraction analysis reveals that TiN, Ti2N and Ti phase exist in the nitrided layer subsurface. GDOES analysis shows the thickness of the nitrided layer is about 3 ~tm. XPS analysis shows that there is higher N, lower A1 and lower V in the nitrided layer surface than in the Ti6A14V surface. Rough-meter analysis results show the roughness of the nitrided layer is greater than that of Ti6A14V alloy base. The bacteria adherence property of the nitrided layer on Ti6A14V substrate on the Streptococcus mutans was investigated and compared with that of Ti6A14V alloy by fluorescence microscope. It shows that the nitrided layer inhibits the bacteria adherence.展开更多
Plasma nitriding is a widely used technology to enhance the surface performance and extend the service life of alloy parts.The current research mainly focuses on the influences of time,temperature,gas type and pressur...Plasma nitriding is a widely used technology to enhance the surface performance and extend the service life of alloy parts.The current research mainly focuses on the influences of time,temperature,gas type and pressure parameters on nitriding behavior,while fewer studies have been conducted on the electric potential.This paper mainly reports the effect of the electric potential on nitriding behavior.Test conditions were set using cathodic,anodic and floating potentials in a plasma nitriding furnace.2Cr13 stainless steel was nitrided at 450°C for 5h in an NH3 atmosphere.The experimental results show that the nitriding treatment can be well performed under the different electric potentials,but differences exist in microstructures,morphologies and performance results of the modified layers.The thickness and hardness values of the nitrided layer are ranked as follows:cathodic[anodic[floating potential.The anodic nitrided surface has an obvious particle deposition layer composed of nitrides and oxides.Electrochemical and tribological experiments show that the corrosion resistance and wear resistance were significantly improved after a nitriding treatment using the three electric potentials.Moreover,the floating nitriding treatment resulted in the best tribological performance and corrosion resistance.展开更多
The mathematical models of the kinetics of the layer growth at different ion nitriding condi- tions of armco iron.steels 45,40Cr,42CrMo and 38CrMoAl have been established.Based on these models the expression of nitrog...The mathematical models of the kinetics of the layer growth at different ion nitriding condi- tions of armco iron.steels 45,40Cr,42CrMo and 38CrMoAl have been established.Based on these models the expression of nitrogen concentration profile of ion nitrided layers have been deduced with profile simulating method.They are C_=C_(min)^+(P_4)/(ξ_1-x)+(P_5)/(ξ_(10)~2)(ξ_1-x)~2 C_(γ′)=C_(min)^(γ′)+(P_1)/(ξ_(21))(ξ_2-x)+(P_2)/(ξ_(21)~2)(ξ_2-x)~2 C_α=C_(min)~α+(C_(33))/(C_(33))/(ξ_(32))(ξ_3-x)~3 Using these models,the kinetics of layer growth and the nitrogen concentration profile of ion nitrided layers were sinulated on Apple-Ⅱ computer.Results show that the simulated curves coincide quite well with the experimental data.展开更多
H13 steel was nitrided using a plasma surface alloying technique at the temperature of 570℃.The nitrided layers with different thicknesses and components were obtained by changing nitriding pressure.The microstructur...H13 steel was nitrided using a plasma surface alloying technique at the temperature of 570℃.The nitrided layers with different thicknesses and components were obtained by changing nitriding pressure.The microstructure and composition of the nitrided layers were evaluated by optical microscopy(OM)and X-ray diffraction(XRD).The wear properties of the nitrided layer against Al2O3 ball at room temperature using a ball-on-disc tribometer and against Si3N4 ball at elevated temperature using a HT-2001 abrasive wear test machine were investigated.The results show that the nitrided layers are composed of compound layer and diffusion layer at the pressure of 100 and 450 Pa.No obvious compound layer appears at pressure of 200 and 300 Pa.XRD analysis shows the nitrided layers are mainly composed ofε-Fe2-3N,γ'-Fe4N,α-Fe,Fe2O3 and Fe3O4 phases.The surface hardness of plasma nitrided H13 steel is about 1100HV0.050 doubled that of substrate.The room temperature friction coefficient of H13 steel is reduced and wear rate is decreased by nitriding at 200 and 300 Pa.Elevated temperature wear test indicates the nitrided H13 steel at the pressure of 100 Pa shows lower friction coefficient and wear rate which are reduced more than 6 times compared with that of H13 substrate.展开更多
The vacuum electromagnetic induction nitriding technology was applied to prepare a gradient nitrided layer on the surface of a Ti6Al4V alloy,which possesses TiN andα-Ti(N)phases.Moreover,transmission electron microsc...The vacuum electromagnetic induction nitriding technology was applied to prepare a gradient nitrided layer on the surface of a Ti6Al4V alloy,which possesses TiN andα-Ti(N)phases.Moreover,transmission electron microscopy was conducted to confirm the presence of numerous high-density stacking faults caused by TiN and Ti_(2)N phases distributed on the surface of the alloy,along with a large number of basal stacking faults inside.A highdensity stacking fault led to serious distortion of lattice fringes.Lattice and numerous edge dislocations caused by defects were observed in the subsurface layer.For the surface layer,the Vickers hardness reached HV_(0.25)1211.30and the residual compressive stress increased,while the nano-hardness increased to 14.07 from 5.31 GPa in the substrate.The micrometre scratch test results indicated that the plasticity and hardness of the nitrided layer changed in a gradient.The 50-μm effective hardened layer depth and surface compressive stress of the Ti6Al4V alloy were enhanced by the stacking faults.展开更多
Two materials, pure Fe and pure Al, were nitrided in a pulse plasma nitriding facility. The nitrogen profiles in surface layers and the surface phase structures of specimens nitrided at 500℃ for 8 h for Fe and for 6 ...Two materials, pure Fe and pure Al, were nitrided in a pulse plasma nitriding facility. The nitrogen profiles in surface layers and the surface phase structures of specimens nitrided at 500℃ for 8 h for Fe and for 6 h for Al were measured using the glow discharge spectrometry and an X-ray diffractometer, respectively. XRD results indicate that the compound layer with hcp crystal structure (AIN) was formed on the top of Al substrate. During nitriding of Fe, the compound layer growth conforms to parabolic law and the surface nitrogen concentration change little with increasing the nitriding time. The surface nitrogen content of nitrided Al specimens is less than theoretical value 34.17 wt pct of AIN. The mathematical models of nitrogen concentration profiles in the surface layer of nitrided Al specimen have been established based on the research of the kinetics of pulse plasma nitriding of Fe and the nitrogen concentration profiles were also simulated. Results show that the predicted curves agree basically with the experimental data.展开更多
The nitrogen concentration profiles in surface layers and surface phase structures were accurately measured respectively using the glow discharge spectrometry and X-ray Diffractometer after the specimens had been pu...The nitrogen concentration profiles in surface layers and surface phase structures were accurately measured respectively using the glow discharge spectrometry and X-ray Diffractometer after the specimens had been pulse ion nitrided at 500℃ for 0.2-8h The results show that the compound layer growth, which is different from that of conventional DC nitriding, conforms to parabolic law At the same time the surface nitrogen concentration change little with increasing the nitriding time, at least it is so when the treating time is longer than 0.2h In addition, the mathematical models of nitrogen concentration profiles in ε -Fe2~3N,γ-Fe4N and α -Fe phases have been established. Using them the nitrogen concentration profiles in nitrided layers were simulated. Results show that the simulated curves coincide quite well with the experimental data.展开更多
Wear behavior and mechanism of plasma nitrided steel oscillating against a heat-treated and an untreated aluminum bronze alloy were investigated using an Optimol SRV tribometer.The influence of heat treatment on the m...Wear behavior and mechanism of plasma nitrided steel oscillating against a heat-treated and an untreated aluminum bronze alloy were investigated using an Optimol SRV tribometer.The influence of heat treatment on the mechanical properties of the alloy was evaluated.Furthermore,the wear debris was also examined to understand the wear mechanisms.The results show that a 220-230μm nitrided layer,which was harder than the substrate,was obtained on the steel surface.The tensile strength and hardness of the alloy are found to be significantly improved by the heat treatment associated with low impact toughness.The heat treatment of the alloy did not obviously decrease the friction coefficient of the nitrided steel-bronze couple.However,the wear loss of the nitrided steel increased when it mated with the treated bronze by a severe three-body abrasion.The nitrided steel was mainly damaged by fatigue spalling.Under plane contact conditions,the wear debris was mainly generated from the bronze part and can escape from the interface before being oxidized,leading to the phase structure of all the debris being copper rather than copper oxides.展开更多
Plasma radical nitriding was performed to harden the surface of SCM440 steel for 1-10 h at temperature range of 450-550℃. This process involved the use of NH3 gas instead of N2 gas employed for the well-established p...Plasma radical nitriding was performed to harden the surface of SCM440 steel for 1-10 h at temperature range of 450-550℃. This process involved the use of NH3 gas instead of N2 gas employed for the well-established plasma nitriding method. No compound layer was formed during this process except the experiment carried out at 500℃ for 10 h. The main phase produced in the diffusion zone was identified to be γ'-Fe4(N, C). A diffusion depth increased with increasing treatment temperature and time (up to about 250 μm). The surface hardness of radical nitrided layer was about two times higher than that of the untreated surface. The tensile test was carried out to estimate the mechanical properties of surface-hardened SCM440 steel prepared at various plasma radical nitriding treatment time and temperature. The influence of radical nitriding treatment on the tensile strength of the specimen was found to be insignificant. The highest value of the ultimate tensile strength was obtained in the experiment carried out at 500℃ for 1 h. However, the elongation was greatly affected by the radical nitriding processing parameters. The maximum value of elongation, which is equal to about 18.1%, was also obtained under the condition of 500℃ for 1 h.展开更多
The tendency of spalling of the nitrided layer of the hot rolled austenitic steel 4Cr14Ni14W2Mo exhibits close relation to the nitrided surface orientation relative to the rol- led steel rod.It is found that the dislo...The tendency of spalling of the nitrided layer of the hot rolled austenitic steel 4Cr14Ni14W2Mo exhibits close relation to the nitrided surface orientation relative to the rol- led steel rod.It is found that the dislocations in the imperfectly recrystalized steel align as parallel dislocation walls in macroscopic extent,and the thickness of the“white sublayer”in the nitrided layer is much larger at the surface which is parallel to the dislocation walls.On such surface the spalling of the nitrided layer happens often.展开更多
The crystallographic texture of γ′-Fe4N in compound layer and its influences on the tribological properties of nitrided steel 38CrMoA1 are investigated in the study.The preferred orientation of(200)γ′is produced...The crystallographic texture of γ′-Fe4N in compound layer and its influences on the tribological properties of nitrided steel 38CrMoA1 are investigated in the study.The preferred orientation of(200)γ′is produced by low-temperature nitriding in atmosphere with low nitrogen-hydrogen ratio and increases with the nitriding time.The preferred orientation of(220)γ′appears after 72 h cyclic nitriding.The orientation relationships(0001)ε,/(101)α′,and[ll0]J/[111]γ′(Ill)γ′/(0001)α′ and[011]γ′//[1210]ε,(200)γ′//(l10)α′,and[011]γ′//[111]α′,as well as(1T03)J(220)γ′,and[0100]J/[110]γ′,are established by first-principles method.The misfit of interatornic distance(δ),determining the phase transition resistance,is calculated.Accordingly,two reaction pathways during nitriding,and α′→γ′and α′→ε→γ′,are assumed,which determines the preferred orientations of γ′-Fe4N.Results of wear tests demonstrate that the specimen with preferred orientation of(200)γ′ exhibits lower frictional coefficient and lower wear rate in comparison with the specimen with(220)γ′ preferred orien-tation.(111)γ′ texture usually relates to the lower frictional coefficient but higher wear rate due to the main slip system parallel to the sliding plane.Therefore,the(200)γ′ preferred orientation has a positive significance in improving the wear properties of steels.展开更多
The effects of sliding velocity on the friction and wear of 2Cr13 pin/2Cr13 nitriding disc in vacuum were studied.The result show that the friction properties of 2Cr13 nitriding under high sliding velocity(1.6 m·...The effects of sliding velocity on the friction and wear of 2Cr13 pin/2Cr13 nitriding disc in vacuum were studied.The result show that the friction properties of 2Cr13 nitriding under high sliding velocity(1.6 m·s-1) is better than that under low sliding velocity(0.8 m·s-1).The friction coefficient was 0.4~0.5 when sliding velocity was 1.6 m·s-1.The specimens under vacuum condition are easier to adhere,and the wear under 1.6 m·s-1 is higher than that under 0.8 m·s-1.展开更多
The characteristics of nitrided layers prepared on commercially pure titanium substrates by direct current nitrogen arc are presented by scanning electron microscopy (SEM) and transmission electron microscopy (TEM...The characteristics of nitrided layers prepared on commercially pure titanium substrates by direct current nitrogen arc are presented by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs as well as X-ray diffraction ( XRD ). The titanium nitride ( TiN ) dendrites were fully developed with interconnected cellular morphologies at the top surface but grew almost perpendicular to the integrace with coarser arms in the middle area. Also less TiN was found near the interface. The energy inputs had an obvious effect on the microstructures and the hardness of the nitrided layers. The maximum micro-hardness was 2 500 HV at the top surface which was over 9 times higher than that of the substrate.展开更多
In this work, plasma-nitrided AISI 316L stainless steel samples were performed by ion nitriding process under pulsed direct current (DC) discharge at different current densities (1 to 2.5 mA/ cm2). The effect of nitri...In this work, plasma-nitrided AISI 316L stainless steel samples were performed by ion nitriding process under pulsed direct current (DC) discharge at different current densities (1 to 2.5 mA/ cm2). The effect of nitriding current density on the size of crystalline coherently diffracting domains (crystallite size) and strain grade was investigated using X-ray diffraction (XRD) coupled with Williamson-Hall method. Additionally, hardness and wear resistance of the nitriding layer were characterized using a Vickers indenter and pin-on-disk technique respectively. Results showed a decrease in crystallite size from 99 nm for untreated samples to 1.4 nm for samples nitrided at 2.5 mA/cm2 promoted both: an increase in hardness from 226 HV25g to 1245 HV25g, and a considerably decrease in volume loss by wear effect.展开更多
This study aimed to investigate the long-term biocompatibility, safety, and degradation of the ultrathin nitrided iron bioresorbable scaffold (BRS) in vivo, encompassing the whole process of bioresorption in porcine c...This study aimed to investigate the long-term biocompatibility, safety, and degradation of the ultrathin nitrided iron bioresorbable scaffold (BRS) in vivo, encompassing the whole process of bioresorption in porcine coronary arteries. Fifty-two nitrided iron scaffolds (strut thickness of 70 μm) and 28 Vision Co–Cr stents were randomly implanted into coronary arteries of healthy mini-swine. The efficacy and safety of the nitrided iron scaffold were comparable with those of the Vision stentwithin 52 weeks after implantation. In addition, the long-term biocompatibility, safety, and bioresorption of the nitrided iron scaffold were evaluated by coronary angiog-raphy, optical coherence tomography, micro-computed tomography, scanning electron microscopy, energy dispersive spectrometry and histopathological evaluations at 4, 12, 26, 52 weeks and even at 7 years after im-plantation. In particular, a large number of struts were almost completely absorbed in situ at 7 years follow-up, which were first illustrated in this study. The lymphatic drainage pathway might serve as the potential clearance way of iron and its corrosion products.展开更多
High-entropy materials possess high hardness and strong wear resistance,yet the key bottleneck for their practical applications is the poor corrosion resistance in harsh environments.In this work,the high-entropy nitr...High-entropy materials possess high hardness and strong wear resistance,yet the key bottleneck for their practical applications is the poor corrosion resistance in harsh environments.In this work,the high-entropy nitride(HEN)coatings of(MoNbTaTiZr)1-x Nx(x=0-0.47)were fabricated using a hybrid di-rect current magnetron sputtering technique.The research focus was dedicated to the effect of nitrogen content on the microstructure,mechanical and electrochemical properties.The results showed that the as-deposited coatings exhibited a typical body-centered cubic(BCC)structure without nitrogen,while the amorphous matrix with face-centered cubic(FCC)nanocrystalline grain was observed at x=0.17.Further increasing x in the range of 0.35-0.47 caused the appearance of polycrystalline FCC phase in structure.Compared with the MoNbTaTiZr metallic coating,the coating containing nitrogen favored the high hard-ness around 13.7-32.4 GPa,accompanied by excellent tolerance both against elastic and plastic deforma-tion.Furthermore,such N-containing coatings yielded a low corrosion current density of about 10−8-10−7 A/cm^(2) and high electrochemical impedance of 10^(6)Ωcm^(2) in 3.5 wt.%NaCl solution,indicating the supe-rior corrosion resistance.The reason for the enhanced electrochemical behavior could be ascribed to the spontaneous formation of protective passive layers over the coating surface,which consisted of the domi-nated multi-elemental oxides in chemical stability.Particularly,noted that the(MoNbTaTiZr)_(0.83) N0.17 coat-ing displayed the highest hardness of 32.4±2.6 GPa and H/E ratio at 0.09,together with remarkable cor-rosion resistance,proposing the strongest capability for harsh-environmental applications required both good anti-wear and anti-corrosion performance.展开更多
Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporti...Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporting molybdenum complex on C_(3)N_(4)-K and characterized by FT-IR,XRD,SEM,XPS and ICP-OES.Heterogeneous CN–Mo-Bpy catalyst can be applied to the direct amination of nitroarenes and arylboronic acid,thus constructing various valuable diarylamines in high to excellent yields with a wide substrate scope and good functional group tolerance.It is worth noting that this heterogeneous catalyst has high chemical stability and can be recycled for at least five times without reducing its activity.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50534010)
文摘A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.
文摘The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrate. Arc traveling speeds and arc currents have an effect on both the microstructures and the properties of the layers. Decreasing the arc traveling speed or increasing the arc current can obviously enhance the hardness and the wear resistance of the nitrided layers.
基金Funded by the National Natural Science Foundation of China(No.51171125)the National High-Tech Research and Development Program of China(863 Program)(No.2007AAO3Z521)+3 种基金the Natural Science Foundation of of Shanxi Province(No.2012011021-4,2012021021-8)the Shanxi Province Foundation for Returned Overseas Scholars(No 2011-038)the Shanxi Province Programs for Science and Technology Development(20110321051)the Taiyuan University of Technology Graduate Innovation Fund
文摘The nitrided layer on Ti6A14V substrate was prepared by the plasma nitriding technique. The sample was characterized by X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and rough-meter. X- ray diffraction analysis reveals that TiN, Ti2N and Ti phase exist in the nitrided layer subsurface. GDOES analysis shows the thickness of the nitrided layer is about 3 ~tm. XPS analysis shows that there is higher N, lower A1 and lower V in the nitrided layer surface than in the Ti6A14V surface. Rough-meter analysis results show the roughness of the nitrided layer is greater than that of Ti6A14V alloy base. The bacteria adherence property of the nitrided layer on Ti6A14V substrate on the Streptococcus mutans was investigated and compared with that of Ti6A14V alloy by fluorescence microscope. It shows that the nitrided layer inhibits the bacteria adherence.
基金supported by the National Key Basic Research Program of China (No.2014CB046404)the Shandong Provincial Natural Science Foundation, China (No.ZR2018MEE016)+1 种基金the Shandong Provincial Key Research and Development Plan, China (No.2017GGX20140)the National Natural Science Foundation of China (No.51301149)
文摘Plasma nitriding is a widely used technology to enhance the surface performance and extend the service life of alloy parts.The current research mainly focuses on the influences of time,temperature,gas type and pressure parameters on nitriding behavior,while fewer studies have been conducted on the electric potential.This paper mainly reports the effect of the electric potential on nitriding behavior.Test conditions were set using cathodic,anodic and floating potentials in a plasma nitriding furnace.2Cr13 stainless steel was nitrided at 450°C for 5h in an NH3 atmosphere.The experimental results show that the nitriding treatment can be well performed under the different electric potentials,but differences exist in microstructures,morphologies and performance results of the modified layers.The thickness and hardness values of the nitrided layer are ranked as follows:cathodic[anodic[floating potential.The anodic nitrided surface has an obvious particle deposition layer composed of nitrides and oxides.Electrochemical and tribological experiments show that the corrosion resistance and wear resistance were significantly improved after a nitriding treatment using the three electric potentials.Moreover,the floating nitriding treatment resulted in the best tribological performance and corrosion resistance.
文摘The mathematical models of the kinetics of the layer growth at different ion nitriding condi- tions of armco iron.steels 45,40Cr,42CrMo and 38CrMoAl have been established.Based on these models the expression of nitrogen concentration profile of ion nitrided layers have been deduced with profile simulating method.They are C_=C_(min)^+(P_4)/(ξ_1-x)+(P_5)/(ξ_(10)~2)(ξ_1-x)~2 C_(γ′)=C_(min)^(γ′)+(P_1)/(ξ_(21))(ξ_2-x)+(P_2)/(ξ_(21)~2)(ξ_2-x)~2 C_α=C_(min)~α+(C_(33))/(C_(33))/(ξ_(32))(ξ_3-x)~3 Using these models,the kinetics of layer growth and the nitrogen concentration profile of ion nitrided layers were sinulated on Apple-Ⅱ computer.Results show that the simulated curves coincide quite well with the experimental data.
基金National Natural Science Foundation of China(50771070)Scientific and Technological Development Project of Shanxi Province,China(20100321078-02)High Technology and Key Development Project of Ningbo,China(2009B10010)
文摘H13 steel was nitrided using a plasma surface alloying technique at the temperature of 570℃.The nitrided layers with different thicknesses and components were obtained by changing nitriding pressure.The microstructure and composition of the nitrided layers were evaluated by optical microscopy(OM)and X-ray diffraction(XRD).The wear properties of the nitrided layer against Al2O3 ball at room temperature using a ball-on-disc tribometer and against Si3N4 ball at elevated temperature using a HT-2001 abrasive wear test machine were investigated.The results show that the nitrided layers are composed of compound layer and diffusion layer at the pressure of 100 and 450 Pa.No obvious compound layer appears at pressure of 200 and 300 Pa.XRD analysis shows the nitrided layers are mainly composed ofε-Fe2-3N,γ'-Fe4N,α-Fe,Fe2O3 and Fe3O4 phases.The surface hardness of plasma nitrided H13 steel is about 1100HV0.050 doubled that of substrate.The room temperature friction coefficient of H13 steel is reduced and wear rate is decreased by nitriding at 200 and 300 Pa.Elevated temperature wear test indicates the nitrided H13 steel at the pressure of 100 Pa shows lower friction coefficient and wear rate which are reduced more than 6 times compared with that of H13 substrate.
基金financially supported by the Science and Technology Foundation of Guizhou Province(No.[2020]1Z041)。
文摘The vacuum electromagnetic induction nitriding technology was applied to prepare a gradient nitrided layer on the surface of a Ti6Al4V alloy,which possesses TiN andα-Ti(N)phases.Moreover,transmission electron microscopy was conducted to confirm the presence of numerous high-density stacking faults caused by TiN and Ti_(2)N phases distributed on the surface of the alloy,along with a large number of basal stacking faults inside.A highdensity stacking fault led to serious distortion of lattice fringes.Lattice and numerous edge dislocations caused by defects were observed in the subsurface layer.For the surface layer,the Vickers hardness reached HV_(0.25)1211.30and the residual compressive stress increased,while the nano-hardness increased to 14.07 from 5.31 GPa in the substrate.The micrometre scratch test results indicated that the plasticity and hardness of the nitrided layer changed in a gradient.The 50-μm effective hardened layer depth and surface compressive stress of the Ti6Al4V alloy were enhanced by the stacking faults.
基金The authors acknowledge financial support from the National Natural Science Foundation of China under grant No.50071020 for this work.
文摘Two materials, pure Fe and pure Al, were nitrided in a pulse plasma nitriding facility. The nitrogen profiles in surface layers and the surface phase structures of specimens nitrided at 500℃ for 8 h for Fe and for 6 h for Al were measured using the glow discharge spectrometry and an X-ray diffractometer, respectively. XRD results indicate that the compound layer with hcp crystal structure (AIN) was formed on the top of Al substrate. During nitriding of Fe, the compound layer growth conforms to parabolic law and the surface nitrogen concentration change little with increasing the nitriding time. The surface nitrogen content of nitrided Al specimens is less than theoretical value 34.17 wt pct of AIN. The mathematical models of nitrogen concentration profiles in the surface layer of nitrided Al specimen have been established based on the research of the kinetics of pulse plasma nitriding of Fe and the nitrogen concentration profiles were also simulated. Results show that the predicted curves agree basically with the experimental data.
文摘The nitrogen concentration profiles in surface layers and surface phase structures were accurately measured respectively using the glow discharge spectrometry and X-ray Diffractometer after the specimens had been pulse ion nitrided at 500℃ for 0.2-8h The results show that the compound layer growth, which is different from that of conventional DC nitriding, conforms to parabolic law At the same time the surface nitrogen concentration change little with increasing the nitriding time, at least it is so when the treating time is longer than 0.2h In addition, the mathematical models of nitrogen concentration profiles in ε -Fe2~3N,γ-Fe4N and α -Fe phases have been established. Using them the nitrogen concentration profiles in nitrided layers were simulated. Results show that the simulated curves coincide quite well with the experimental data.
文摘Wear behavior and mechanism of plasma nitrided steel oscillating against a heat-treated and an untreated aluminum bronze alloy were investigated using an Optimol SRV tribometer.The influence of heat treatment on the mechanical properties of the alloy was evaluated.Furthermore,the wear debris was also examined to understand the wear mechanisms.The results show that a 220-230μm nitrided layer,which was harder than the substrate,was obtained on the steel surface.The tensile strength and hardness of the alloy are found to be significantly improved by the heat treatment associated with low impact toughness.The heat treatment of the alloy did not obviously decrease the friction coefficient of the nitrided steel-bronze couple.However,the wear loss of the nitrided steel increased when it mated with the treated bronze by a severe three-body abrasion.The nitrided steel was mainly damaged by fatigue spalling.Under plane contact conditions,the wear debris was mainly generated from the bronze part and can escape from the interface before being oxidized,leading to the phase structure of all the debris being copper rather than copper oxides.
文摘Plasma radical nitriding was performed to harden the surface of SCM440 steel for 1-10 h at temperature range of 450-550℃. This process involved the use of NH3 gas instead of N2 gas employed for the well-established plasma nitriding method. No compound layer was formed during this process except the experiment carried out at 500℃ for 10 h. The main phase produced in the diffusion zone was identified to be γ'-Fe4(N, C). A diffusion depth increased with increasing treatment temperature and time (up to about 250 μm). The surface hardness of radical nitrided layer was about two times higher than that of the untreated surface. The tensile test was carried out to estimate the mechanical properties of surface-hardened SCM440 steel prepared at various plasma radical nitriding treatment time and temperature. The influence of radical nitriding treatment on the tensile strength of the specimen was found to be insignificant. The highest value of the ultimate tensile strength was obtained in the experiment carried out at 500℃ for 1 h. However, the elongation was greatly affected by the radical nitriding processing parameters. The maximum value of elongation, which is equal to about 18.1%, was also obtained under the condition of 500℃ for 1 h.
文摘The tendency of spalling of the nitrided layer of the hot rolled austenitic steel 4Cr14Ni14W2Mo exhibits close relation to the nitrided surface orientation relative to the rol- led steel rod.It is found that the dislocations in the imperfectly recrystalized steel align as parallel dislocation walls in macroscopic extent,and the thickness of the“white sublayer”in the nitrided layer is much larger at the surface which is parallel to the dislocation walls.On such surface the spalling of the nitrided layer happens often.
基金supported by the National Natural Science Foundation of China(Grant Nos.51371070and 51601048)
文摘The crystallographic texture of γ′-Fe4N in compound layer and its influences on the tribological properties of nitrided steel 38CrMoA1 are investigated in the study.The preferred orientation of(200)γ′is produced by low-temperature nitriding in atmosphere with low nitrogen-hydrogen ratio and increases with the nitriding time.The preferred orientation of(220)γ′appears after 72 h cyclic nitriding.The orientation relationships(0001)ε,/(101)α′,and[ll0]J/[111]γ′(Ill)γ′/(0001)α′ and[011]γ′//[1210]ε,(200)γ′//(l10)α′,and[011]γ′//[111]α′,as well as(1T03)J(220)γ′,and[0100]J/[110]γ′,are established by first-principles method.The misfit of interatornic distance(δ),determining the phase transition resistance,is calculated.Accordingly,two reaction pathways during nitriding,and α′→γ′and α′→ε→γ′,are assumed,which determines the preferred orientations of γ′-Fe4N.Results of wear tests demonstrate that the specimen with preferred orientation of(200)γ′ exhibits lower frictional coefficient and lower wear rate in comparison with the specimen with(220)γ′ preferred orien-tation.(111)γ′ texture usually relates to the lower frictional coefficient but higher wear rate due to the main slip system parallel to the sliding plane.Therefore,the(200)γ′ preferred orientation has a positive significance in improving the wear properties of steels.
基金This work is financially supported by the National Key Basic Research Program(973) (50525516)
文摘The effects of sliding velocity on the friction and wear of 2Cr13 pin/2Cr13 nitriding disc in vacuum were studied.The result show that the friction properties of 2Cr13 nitriding under high sliding velocity(1.6 m·s-1) is better than that under low sliding velocity(0.8 m·s-1).The friction coefficient was 0.4~0.5 when sliding velocity was 1.6 m·s-1.The specimens under vacuum condition are easier to adhere,and the wear under 1.6 m·s-1 is higher than that under 0.8 m·s-1.
文摘The characteristics of nitrided layers prepared on commercially pure titanium substrates by direct current nitrogen arc are presented by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs as well as X-ray diffraction ( XRD ). The titanium nitride ( TiN ) dendrites were fully developed with interconnected cellular morphologies at the top surface but grew almost perpendicular to the integrace with coarser arms in the middle area. Also less TiN was found near the interface. The energy inputs had an obvious effect on the microstructures and the hardness of the nitrided layers. The maximum micro-hardness was 2 500 HV at the top surface which was over 9 times higher than that of the substrate.
文摘In this work, plasma-nitrided AISI 316L stainless steel samples were performed by ion nitriding process under pulsed direct current (DC) discharge at different current densities (1 to 2.5 mA/ cm2). The effect of nitriding current density on the size of crystalline coherently diffracting domains (crystallite size) and strain grade was investigated using X-ray diffraction (XRD) coupled with Williamson-Hall method. Additionally, hardness and wear resistance of the nitriding layer were characterized using a Vickers indenter and pin-on-disk technique respectively. Results showed a decrease in crystallite size from 99 nm for untreated samples to 1.4 nm for samples nitrided at 2.5 mA/cm2 promoted both: an increase in hardness from 226 HV25g to 1245 HV25g, and a considerably decrease in volume loss by wear effect.
基金This study was supported by National Key R&D Program of China(grants number 2018YFC1106600)Shenzhen Industrial and Information Technology Bureau(20180309174916657)Science,Technology and Innova-tion Commission of Shenzhen Municipality(grant number GJHZ20180418190517302).
文摘This study aimed to investigate the long-term biocompatibility, safety, and degradation of the ultrathin nitrided iron bioresorbable scaffold (BRS) in vivo, encompassing the whole process of bioresorption in porcine coronary arteries. Fifty-two nitrided iron scaffolds (strut thickness of 70 μm) and 28 Vision Co–Cr stents were randomly implanted into coronary arteries of healthy mini-swine. The efficacy and safety of the nitrided iron scaffold were comparable with those of the Vision stentwithin 52 weeks after implantation. In addition, the long-term biocompatibility, safety, and bioresorption of the nitrided iron scaffold were evaluated by coronary angiog-raphy, optical coherence tomography, micro-computed tomography, scanning electron microscopy, energy dispersive spectrometry and histopathological evaluations at 4, 12, 26, 52 weeks and even at 7 years after im-plantation. In particular, a large number of struts were almost completely absorbed in situ at 7 years follow-up, which were first illustrated in this study. The lymphatic drainage pathway might serve as the potential clearance way of iron and its corrosion products.
基金supported by the National Science Fund for Distinguished Young Scholars of China(No.52025014)Zhejiang Provincial Natural Science Foundation of China(Nos.LZJWY23E090001 and LD24E010003)the Natural Science Foundation of Ningbo(No.2022J305).
文摘High-entropy materials possess high hardness and strong wear resistance,yet the key bottleneck for their practical applications is the poor corrosion resistance in harsh environments.In this work,the high-entropy nitride(HEN)coatings of(MoNbTaTiZr)1-x Nx(x=0-0.47)were fabricated using a hybrid di-rect current magnetron sputtering technique.The research focus was dedicated to the effect of nitrogen content on the microstructure,mechanical and electrochemical properties.The results showed that the as-deposited coatings exhibited a typical body-centered cubic(BCC)structure without nitrogen,while the amorphous matrix with face-centered cubic(FCC)nanocrystalline grain was observed at x=0.17.Further increasing x in the range of 0.35-0.47 caused the appearance of polycrystalline FCC phase in structure.Compared with the MoNbTaTiZr metallic coating,the coating containing nitrogen favored the high hard-ness around 13.7-32.4 GPa,accompanied by excellent tolerance both against elastic and plastic deforma-tion.Furthermore,such N-containing coatings yielded a low corrosion current density of about 10−8-10−7 A/cm^(2) and high electrochemical impedance of 10^(6)Ωcm^(2) in 3.5 wt.%NaCl solution,indicating the supe-rior corrosion resistance.The reason for the enhanced electrochemical behavior could be ascribed to the spontaneous formation of protective passive layers over the coating surface,which consisted of the domi-nated multi-elemental oxides in chemical stability.Particularly,noted that the(MoNbTaTiZr)_(0.83) N0.17 coat-ing displayed the highest hardness of 32.4±2.6 GPa and H/E ratio at 0.09,together with remarkable cor-rosion resistance,proposing the strongest capability for harsh-environmental applications required both good anti-wear and anti-corrosion performance.
基金support for this work by Hebei Education Department(No.JZX2024004)Central Guidance on Local Science and Technology Development Fund of Hebei Province(No.236Z1404G)+3 种基金the National Natural Science Foundation of China(Nos.22301060 and 21272053)China Postdoctoral Science Foundation(No.2023M730914)the Natural Science Foundation of Hebei Province(Biopharmaceutical Joint Fund No.B2022206008)Project of Science and Technology Department of Hebei Province(No.22567622H)。
文摘Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporting molybdenum complex on C_(3)N_(4)-K and characterized by FT-IR,XRD,SEM,XPS and ICP-OES.Heterogeneous CN–Mo-Bpy catalyst can be applied to the direct amination of nitroarenes and arylboronic acid,thus constructing various valuable diarylamines in high to excellent yields with a wide substrate scope and good functional group tolerance.It is worth noting that this heterogeneous catalyst has high chemical stability and can be recycled for at least five times without reducing its activity.