A variable-charge (VC) and a permanent-charge paddy soil (PC) were selected to study nitrate-N (NO3^--N) and ammonium-N (NH4^+-N) leaching with N isotopes for one consecutive year. An irrigation and intermitt...A variable-charge (VC) and a permanent-charge paddy soil (PC) were selected to study nitrate-N (NO3^--N) and ammonium-N (NH4^+-N) leaching with N isotopes for one consecutive year. An irrigation and intermittent drainage pattern was adopted to mimic natural occurrence of rainfall during the upland crop season and drainage management during the flooded rice season. Treatments to each soil type were no-N controls (CK), ^15N-labeled (NH4)2SO4 (NS), and milk vetch (NV) applied at a rate equivalent to 238 kg N ha^-1 to unplanted lysimeters, totaling six treatments in triplicates. Results indicated that the soil type dominated N leaching characteristics. In the case of PC, NO3^--N accounted for 78% of the total leached inorganic N; NS was prone to leach three times more than the NV, being 8.2% and 2.4% of added ^15N respectively; and 〉 85% of leached NO3-N came from of the total inorganic N in leachate. Moreover, NH4^+-N native N in the soil. In the case of VC, NH4^+-N made up to 92% leaching was detected throughout the whole incubation, and was particularly high during the flooded season. NO3^--N leaching in VC occurred later at a lower rate compared to that in PC. The findings of this study indicate that NO3^--N leaching during the drained season in permanent-charge paddy soils and NH4^+-N leaching in variable-charge soils deserve more attention for regional environmental control.展开更多
Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such...Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such as the traditional Haber-Bosch process,have drawbacks including high energy consumption and significant carbon dioxide emissions.In recent years,the electrocatalytic nitrate reduction reaction(NO_(3)RR)powered by intermittent renewable energy sources has gradually become a multidisciplinary research hotspot,as it allows for the efficient synthesis of NH_(3)under mild conditions.In this review,we focus on the research of electrocatalysts with atomic-level site,which have attracted attention due to their extremely high atomic utilization efficiency and unique structural characteristics in the field of NO_(3)RR.Firstly,we introduce the mechanism of nitrate reduction for ammonia synthesis and discuss the in-situ characterization techniques related to the mechanism study.Secondly,we review the progress of the electrocatalysts with atomic-level site for nitrate reduction and explore the structure-activity relationship to guide the rational design of efficient catalysts.Lastly,the conclusions of this review and the challenges and prospective of this promising field are presented.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 30390080)the Nanjing Science and Technology Bureau,China (No. 200901063)
文摘A variable-charge (VC) and a permanent-charge paddy soil (PC) were selected to study nitrate-N (NO3^--N) and ammonium-N (NH4^+-N) leaching with N isotopes for one consecutive year. An irrigation and intermittent drainage pattern was adopted to mimic natural occurrence of rainfall during the upland crop season and drainage management during the flooded rice season. Treatments to each soil type were no-N controls (CK), ^15N-labeled (NH4)2SO4 (NS), and milk vetch (NV) applied at a rate equivalent to 238 kg N ha^-1 to unplanted lysimeters, totaling six treatments in triplicates. Results indicated that the soil type dominated N leaching characteristics. In the case of PC, NO3^--N accounted for 78% of the total leached inorganic N; NS was prone to leach three times more than the NV, being 8.2% and 2.4% of added ^15N respectively; and 〉 85% of leached NO3-N came from of the total inorganic N in leachate. Moreover, NH4^+-N native N in the soil. In the case of VC, NH4^+-N made up to 92% leaching was detected throughout the whole incubation, and was particularly high during the flooded season. NO3^--N leaching in VC occurred later at a lower rate compared to that in PC. The findings of this study indicate that NO3^--N leaching during the drained season in permanent-charge paddy soils and NH4^+-N leaching in variable-charge soils deserve more attention for regional environmental control.
基金financial support from the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX24_0690)financial support from the National Natural Science Foundation of China (Project No. 22275088, 52101260)+4 种基金the Project of Shuangchuang Scholar of Jiangsu Province (Project No. JSSCBS20210212)the Fundamental Research Funds for the Central Universities (Project No. 30921011203)the Start-Up Grant (Project No. AE89991/340) from Nanjing University of Science and Technologyfinancial support from the Foundation of Jiangsu Educational Committee (22KJB310008)the Senior Talent Program of Jiangsu University (20JDG073)
文摘Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such as the traditional Haber-Bosch process,have drawbacks including high energy consumption and significant carbon dioxide emissions.In recent years,the electrocatalytic nitrate reduction reaction(NO_(3)RR)powered by intermittent renewable energy sources has gradually become a multidisciplinary research hotspot,as it allows for the efficient synthesis of NH_(3)under mild conditions.In this review,we focus on the research of electrocatalysts with atomic-level site,which have attracted attention due to their extremely high atomic utilization efficiency and unique structural characteristics in the field of NO_(3)RR.Firstly,we introduce the mechanism of nitrate reduction for ammonia synthesis and discuss the in-situ characterization techniques related to the mechanism study.Secondly,we review the progress of the electrocatalysts with atomic-level site for nitrate reduction and explore the structure-activity relationship to guide the rational design of efficient catalysts.Lastly,the conclusions of this review and the challenges and prospective of this promising field are presented.