In this paper,we consider the positive definiteness of fourth-order partially symmetric tensors.First,two analytically sufficient and necessary conditions of positive definiteness are provided for fourth-order two dim...In this paper,we consider the positive definiteness of fourth-order partially symmetric tensors.First,two analytically sufficient and necessary conditions of positive definiteness are provided for fourth-order two dimensional partially symmetric tensors.Then,we obtain several sufficient conditions for rank-one positive definiteness of fourth-order three dimensional partially symmetric tensors.展开更多
In this paper,a fractional-order kinematic model is utilized to capture the size-dependent static bending and free vibration responses of piezoelectric nanobeams.The general nonlocal strains in the Euler-Bernoulli pie...In this paper,a fractional-order kinematic model is utilized to capture the size-dependent static bending and free vibration responses of piezoelectric nanobeams.The general nonlocal strains in the Euler-Bernoulli piezoelectric beam are defined by a frame-invariant and dimensionally consistent Riesz-Caputo fractional-order derivatives.The strain energy,the work done by external loads,and the kinetic energy based on the fractional-order kinematic model are derived and expressed in explicit forms.The boundary conditions for the nonlocal Euler-Bernoulli beam are derived through variational principles.Furthermore,a finite element model for the fractional-order system is developed in order to obtain the numerical solutions to the integro-differential equations.The effects of the fractional order and the vibration order on the static bending and vibration responses of the Euler-Bernoulli piezoelectric beams are investigated numerically.The results from the present model are validated against the existing results in the literature,and it is demonstrated that they are theoretically consistent.Although this fractional finite element method(FEM)is presented in the context of a one-dimensional(1D)beam,it can be extended to higher dimensional fractional-order boundary value problems.展开更多
Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acti...Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.展开更多
Prestress enables the Glulam beam could make full use of the compression strength,and then increase the span,but it still could not reduce all drawbacks,such as cross-section weakening and small force arm.To avoid slo...Prestress enables the Glulam beam could make full use of the compression strength,and then increase the span,but it still could not reduce all drawbacks,such as cross-section weakening and small force arm.To avoid slotting and ensure suitable tension and compression couple,one kind of novel anchor has been proposed,which could meet the bearing capacity requirement.And then the bending test of prestressed Glulam beams with a geometric scale ratio of 1:2 was simulated,to investigate the effect of the force arm on bending capacities,failure modes,and deformation performance.Results show that increasing the force arm could improve the ultimate bending per-formance of the beam significantly,and the anchor arm length has a certain effect on the performance,but it is not obvious.Finally,based on Finite element method analysis,the practice design suggestions have been offered.展开更多
The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the...The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.展开更多
Cable-membrane structures have small rigidity and are highly sensitive to wind. Structural health monitoring is necessary to ensure the serviceability and safety of the structure. In this research, the design method o...Cable-membrane structures have small rigidity and are highly sensitive to wind. Structural health monitoring is necessary to ensure the serviceability and safety of the structure. In this research, the design method of a structural health monitoring system is using the characteristics of a cable-membrane structure. Taking the Yueyang Sanhe Airport Terminal as an example, a finite element model is established to determine the critical structural components. Next, the engineering requirements and the framework of the monitoring system are studied based on the results of numerical analysis. The specific implementation of the structural health monitoring is then carried out, which includes sensor selection, installation and wiring. The proposed framework is successfully applied to the monitoring system for the Yueyang Airport terminal building, and the synchronous acquisition of fiber Bragg grating and acceleration sensor signals is implemented in an innovative way. The successful implementation and operation of structural health monitoring will help to guarantee the safety of the cablemembrane structure during its service life.展开更多
A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to...A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation(u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled(u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fi xed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively infl uence the lateral pile displacements.展开更多
In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening c...In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening calculation based on semi infinite body model, especially near the two roll barrel edges, a new and more accurate roll flattening model is proposed. Based on boundary integral equation method, an analytical model for solving a finite length semi infinite body is established. The lateral surface displacement field of the finite length semi-infinite body is simulated by finite element method (FEM) and lateral surface displacement decay functions are established. Based on the boundary integral equation method, the numerical solution of the finite length semi-infinite body under the distribu ted force is obtained and an accurate roll flattening model is established. Different from the traditional semi-infinite body model, the matrix form of the new roll flattening model is established through the mathematical derivation. The result from the new model is more consistent with that by FEM especially near the edges.展开更多
NITE(nano-infiltration and transient eutectic)工艺作为一种制备碳化硅纤维增强碳化硅基(SiCf/SiC)复合材料的新方法,具备周期短、工艺简单、生产成本低等优点,制备出的复合材料基体致密、孔隙率低、不含残余硅,适用于1400℃及以上...NITE(nano-infiltration and transient eutectic)工艺作为一种制备碳化硅纤维增强碳化硅基(SiCf/SiC)复合材料的新方法,具备周期短、工艺简单、生产成本低等优点,制备出的复合材料基体致密、孔隙率低、不含残余硅,适用于1400℃及以上高温长时服役环境应用。目前,日本、美国等国家基于其成熟的第三代碳化硅纤维,对该技术开展了较为深入的研究,并在核能工业热交换器、航空发动机燃烧室衬套等领域进行了应用验证。本文针对NITE工艺从基本概念、工艺流程、制备的SiCf/SiC复合材料和构件考核验证及前景展望四方面进行综合阐述,以期为国内该工艺的发展及应用提供一定程度的参考。展开更多
The rectangle core plate of all-steel buckling-restrained braces(BRBs) usually exhibit obvious local buckling, due to the lack of longitudinal restraint from the encasing tube. To eliminate the undesirable effects, a ...The rectangle core plate of all-steel buckling-restrained braces(BRBs) usually exhibit obvious local buckling, due to the lack of longitudinal restraint from the encasing tube. To eliminate the undesirable effects, a novel steel BRB is proposed. In this new-type steel BRB, two T-shaped steels are adopted as the minor restraint elements to restrain the core plate instead of infilled concrete or mortar. Meanwhile, the ingot-iron material with low yielding strength and high elongation is applied to the steel core to study the mechanical properties of steel BRBs. To validate the theoretical requirements for the width-to-thickness ratio of the steel core and the thickness of angle steel, quasi-static tests of eight specimens were conducted. The tests focused on the energy dissipation capacity and failure modes of the proposed steel BRBs. Nonlinear finite element analysis was also carried out to validate the experimental results. Both the aforementioned results imply that appropriately designed steel BRBs can meet the performance requirements for BRB components.展开更多
A topology optimization formulation is developed to find the stiffest structure with desirable material distribution subjected to seismic loads. Finite element models of the structures are generated and the optimality...A topology optimization formulation is developed to find the stiffest structure with desirable material distribution subjected to seismic loads. Finite element models of the structures are generated and the optimality criteria method is modified using a simple penalty approach and introducing fictitious strain energy to simultaneously consider both material volume and displacement constraints. Different types of shear walls with/without opening are investigated. Additionally, the effects of shear wall-frame interaction for single and coupled shear walls are studied. Gravity and seismic loads are applied to the shear walls so that the definitions provide a practical approach for locating the critical parts of these structures. The results suggest new viewpoints for architectural and structural engineering for placement of openings.展开更多
Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study propos...Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study proposes a smart semi-active vibration control system using Magnetorheological (MR) dampers where feedback controllers are optimized with nature-inspired algorithms. Proportional integral derivative (PID) and Proportional integral (PI) controllers are designed to achieve the optimal desired force and current input for MR the damper. PID control parameters are optimized using an Ant colony optimization (ACO) algorithm. The eff ectiveness of the ACO algorithm is validated by comparing its performance with Ziegler-Nichols (Z-N) and particle swarm optimization (PSO). The placement of the MR damper on the tower is also investigated to ensure structural balance and optimal desired force from the MR damper. The simulation results show that the proposed semi-active PID-ACO control strategy can signifi cantly reduce vibration on the wind turbine tower under diff erent frequencies (i.e., 67%, 73%, 79% and 34.4% at 2 Hz, 3 Hz, 4.6 Hz and 6 Hz, respectively) and amplitudes (i.e. 50%, 58% and 67% for 50 N, 80 N, and 100 N, respectively). In this study, the simulation model is validated with an experimental study in terms of natural frequency, mode shape and uncontrolled response at the 1st mode. The proposed PID-ACO control strategy and optimal MR damper position is also implemented on a lab-scaled wind turbine tower model. The results show that the vibration reduction rate is 66% and 73% in the experimental and simulation study, respectively, at the 1st mode.展开更多
Fully recognize various problems in the observed magnetotelluric(MT)data is the precondition of inverse solutions.In the paper,according to the geomorphological conditions of the observational MT stations in the Guang...Fully recognize various problems in the observed magnetotelluric(MT)data is the precondition of inverse solutions.In the paper,according to the geomorphological conditions of the observational MT stations in the Guangxi area,we constructed several different kinds of models to conduct a three-dimensional forward simulation of the MT fi eld using the vector fi nite element method(FEM).First,the variation rule and differences of apparent resistivityρxy andρyx in the xy and yx modes were studied and analyzed,and then the geoelectric information refl ected by the change of apparent resistivityρxx andρyy were discussed.Final,the responses of typical geological structures that cause a static shift problem were presented.The synthetic examples showed thatρxy andρyx were relevant to the layout of the survey line,for instance,ρxy had different values along the west-east profi le compared with that of the southnorth profi le,Moreover,ρxx andρyy could subtly show the abnormal body-host rock interface,which could be used to restrict the anomalous domain in the inversion process.In addition to the scale and depth of the top surface of the anomalous body,the widespread rivers and hills,can simulate static shift.Hence,to reduce the infl uence of static shift on MT data,a reasonable distance between a station and rivers or hills should be considered in accordance with the scale of rivers or hills.展开更多
In this paper, the entropy number of diagonal operator is discussed. On the one hand, the order of entropy number of the finite dimensional diagonal operator Dm:? (1≤q<p≤∞) is est...In this paper, the entropy number of diagonal operator is discussed. On the one hand, the order of entropy number of the finite dimensional diagonal operator Dm:? (1≤q<p≤∞) is estimated. On the other hand, the order of entropy number of a class of in finite dimensional diagonal operator D: lp→lq(1≤q<p≤∞) is estimated.展开更多
文摘In this paper,we consider the positive definiteness of fourth-order partially symmetric tensors.First,two analytically sufficient and necessary conditions of positive definiteness are provided for fourth-order two dimensional partially symmetric tensors.Then,we obtain several sufficient conditions for rank-one positive definiteness of fourth-order three dimensional partially symmetric tensors.
基金Project supported by the National Natural Science Foundation of China(No.12172169)。
文摘In this paper,a fractional-order kinematic model is utilized to capture the size-dependent static bending and free vibration responses of piezoelectric nanobeams.The general nonlocal strains in the Euler-Bernoulli piezoelectric beam are defined by a frame-invariant and dimensionally consistent Riesz-Caputo fractional-order derivatives.The strain energy,the work done by external loads,and the kinetic energy based on the fractional-order kinematic model are derived and expressed in explicit forms.The boundary conditions for the nonlocal Euler-Bernoulli beam are derived through variational principles.Furthermore,a finite element model for the fractional-order system is developed in order to obtain the numerical solutions to the integro-differential equations.The effects of the fractional order and the vibration order on the static bending and vibration responses of the Euler-Bernoulli piezoelectric beams are investigated numerically.The results from the present model are validated against the existing results in the literature,and it is demonstrated that they are theoretically consistent.Although this fractional finite element method(FEM)is presented in the context of a one-dimensional(1D)beam,it can be extended to higher dimensional fractional-order boundary value problems.
基金supported in part by the Key Research Projects of Higher Education Institutions in Henan Province(Grant No.24A560021)in part by the Henan Postdoctoral Foundation(Grant No.202102015).
文摘Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.
基金supported by the Resources Industry Science and Technology Innovation Joint Funding Project of Nanping(N2021Z003)the Special Project of Service Industry Research of Wuyi University under Grant(2021XJFWCY03)+2 种基金the Research Launch Fund of Wuyi University’s Introduct Talent(YJ202309)the Fujian Training Program of Innovation and Entrepreneurship for Undergraduates(S202210397076)Research on the Stress Performance of Reinforced Bamboo Highway Guardrail with Embedded Channel Steel(LS202304).
文摘Prestress enables the Glulam beam could make full use of the compression strength,and then increase the span,but it still could not reduce all drawbacks,such as cross-section weakening and small force arm.To avoid slotting and ensure suitable tension and compression couple,one kind of novel anchor has been proposed,which could meet the bearing capacity requirement.And then the bending test of prestressed Glulam beams with a geometric scale ratio of 1:2 was simulated,to investigate the effect of the force arm on bending capacities,failure modes,and deformation performance.Results show that increasing the force arm could improve the ultimate bending per-formance of the beam significantly,and the anchor arm length has a certain effect on the performance,but it is not obvious.Finally,based on Finite element method analysis,the practice design suggestions have been offered.
文摘The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.
基金National Natural Science Foundation of China under Grant Nos.51708088 and 51625802the Foundation for High Level Talent Innovation Support Program of Dalian under Grant No.2017RD03
文摘Cable-membrane structures have small rigidity and are highly sensitive to wind. Structural health monitoring is necessary to ensure the serviceability and safety of the structure. In this research, the design method of a structural health monitoring system is using the characteristics of a cable-membrane structure. Taking the Yueyang Sanhe Airport Terminal as an example, a finite element model is established to determine the critical structural components. Next, the engineering requirements and the framework of the monitoring system are studied based on the results of numerical analysis. The specific implementation of the structural health monitoring is then carried out, which includes sensor selection, installation and wiring. The proposed framework is successfully applied to the monitoring system for the Yueyang Airport terminal building, and the synchronous acquisition of fiber Bragg grating and acceleration sensor signals is implemented in an innovative way. The successful implementation and operation of structural health monitoring will help to guarantee the safety of the cablemembrane structure during its service life.
基金Major Research Plan of National Natural Science Foundation of China under Grant No.90815009the National Natural Science Foundation of China under Grant Nos.51108134,50378031 and 50178027
文摘A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation(u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled(u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fi xed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively infl uence the lateral pile displacements.
基金Item Sponsored by National Natural Science Foundation of China(51075353)
文摘In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening calculation based on semi infinite body model, especially near the two roll barrel edges, a new and more accurate roll flattening model is proposed. Based on boundary integral equation method, an analytical model for solving a finite length semi infinite body is established. The lateral surface displacement field of the finite length semi-infinite body is simulated by finite element method (FEM) and lateral surface displacement decay functions are established. Based on the boundary integral equation method, the numerical solution of the finite length semi-infinite body under the distribu ted force is obtained and an accurate roll flattening model is established. Different from the traditional semi-infinite body model, the matrix form of the new roll flattening model is established through the mathematical derivation. The result from the new model is more consistent with that by FEM especially near the edges.
文摘NITE(nano-infiltration and transient eutectic)工艺作为一种制备碳化硅纤维增强碳化硅基(SiCf/SiC)复合材料的新方法,具备周期短、工艺简单、生产成本低等优点,制备出的复合材料基体致密、孔隙率低、不含残余硅,适用于1400℃及以上高温长时服役环境应用。目前,日本、美国等国家基于其成熟的第三代碳化硅纤维,对该技术开展了较为深入的研究,并在核能工业热交换器、航空发动机燃烧室衬套等领域进行了应用验证。本文针对NITE工艺从基本概念、工艺流程、制备的SiCf/SiC复合材料和构件考核验证及前景展望四方面进行综合阐述,以期为国内该工艺的发展及应用提供一定程度的参考。
基金Supported by:Basic Research Foundation of Institute of Engineering Mechanics,CEA under Grant No.2017A01the Earthquake Scientific Research Funds Program under Grant No.201508023
文摘The rectangle core plate of all-steel buckling-restrained braces(BRBs) usually exhibit obvious local buckling, due to the lack of longitudinal restraint from the encasing tube. To eliminate the undesirable effects, a novel steel BRB is proposed. In this new-type steel BRB, two T-shaped steels are adopted as the minor restraint elements to restrain the core plate instead of infilled concrete or mortar. Meanwhile, the ingot-iron material with low yielding strength and high elongation is applied to the steel core to study the mechanical properties of steel BRBs. To validate the theoretical requirements for the width-to-thickness ratio of the steel core and the thickness of angle steel, quasi-static tests of eight specimens were conducted. The tests focused on the energy dissipation capacity and failure modes of the proposed steel BRBs. Nonlinear finite element analysis was also carried out to validate the experimental results. Both the aforementioned results imply that appropriately designed steel BRBs can meet the performance requirements for BRB components.
文摘A topology optimization formulation is developed to find the stiffest structure with desirable material distribution subjected to seismic loads. Finite element models of the structures are generated and the optimality criteria method is modified using a simple penalty approach and introducing fictitious strain energy to simultaneously consider both material volume and displacement constraints. Different types of shear walls with/without opening are investigated. Additionally, the effects of shear wall-frame interaction for single and coupled shear walls are studied. Gravity and seismic loads are applied to the shear walls so that the definitions provide a practical approach for locating the critical parts of these structures. The results suggest new viewpoints for architectural and structural engineering for placement of openings.
基金University of Malaya Research under Grant No.RP013B-15SUS,Postgraduate Research Fund(PG098-2015A)
文摘Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study proposes a smart semi-active vibration control system using Magnetorheological (MR) dampers where feedback controllers are optimized with nature-inspired algorithms. Proportional integral derivative (PID) and Proportional integral (PI) controllers are designed to achieve the optimal desired force and current input for MR the damper. PID control parameters are optimized using an Ant colony optimization (ACO) algorithm. The eff ectiveness of the ACO algorithm is validated by comparing its performance with Ziegler-Nichols (Z-N) and particle swarm optimization (PSO). The placement of the MR damper on the tower is also investigated to ensure structural balance and optimal desired force from the MR damper. The simulation results show that the proposed semi-active PID-ACO control strategy can signifi cantly reduce vibration on the wind turbine tower under diff erent frequencies (i.e., 67%, 73%, 79% and 34.4% at 2 Hz, 3 Hz, 4.6 Hz and 6 Hz, respectively) and amplitudes (i.e. 50%, 58% and 67% for 50 N, 80 N, and 100 N, respectively). In this study, the simulation model is validated with an experimental study in terms of natural frequency, mode shape and uncontrolled response at the 1st mode. The proposed PID-ACO control strategy and optimal MR damper position is also implemented on a lab-scaled wind turbine tower model. The results show that the vibration reduction rate is 66% and 73% in the experimental and simulation study, respectively, at the 1st mode.
基金This paper was partially supported by the National Natural Science Foundation of China(No.41674075 and 41904123)the Natural Science Foundation of Guangxi Province(No.2016GXNSFGA380004)and the High Level Innovative Team and Excellent Scholar Plan of Guangxi High Education Institution.
文摘Fully recognize various problems in the observed magnetotelluric(MT)data is the precondition of inverse solutions.In the paper,according to the geomorphological conditions of the observational MT stations in the Guangxi area,we constructed several different kinds of models to conduct a three-dimensional forward simulation of the MT fi eld using the vector fi nite element method(FEM).First,the variation rule and differences of apparent resistivityρxy andρyx in the xy and yx modes were studied and analyzed,and then the geoelectric information refl ected by the change of apparent resistivityρxx andρyy were discussed.Final,the responses of typical geological structures that cause a static shift problem were presented.The synthetic examples showed thatρxy andρyx were relevant to the layout of the survey line,for instance,ρxy had different values along the west-east profi le compared with that of the southnorth profi le,Moreover,ρxx andρyy could subtly show the abnormal body-host rock interface,which could be used to restrict the anomalous domain in the inversion process.In addition to the scale and depth of the top surface of the anomalous body,the widespread rivers and hills,can simulate static shift.Hence,to reduce the infl uence of static shift on MT data,a reasonable distance between a station and rivers or hills should be considered in accordance with the scale of rivers or hills.
文摘In this paper, the entropy number of diagonal operator is discussed. On the one hand, the order of entropy number of the finite dimensional diagonal operator Dm:? (1≤q<p≤∞) is estimated. On the other hand, the order of entropy number of a class of in finite dimensional diagonal operator D: lp→lq(1≤q<p≤∞) is estimated.