Synergistic therapy using multiple modalities is a highly promising therapeutic strategy.Near-infrared-Ⅱ(NIR-Ⅱ)fluorescence imaging,with its deep penetration and high fidelity,has frequently been employed in the lit...Synergistic therapy using multiple modalities is a highly promising therapeutic strategy.Near-infrared-Ⅱ(NIR-Ⅱ)fluorescence imaging,with its deep penetration and high fidelity,has frequently been employed in the literature to guide and assist treatment.Herein,we report the development of a NIR-Ⅱfluorescence imaging guided multi-therapy platform PDI-DS NPs,which integrates a novel activatable phototheranostic agent PDI-DBU,a H_(2)S donor DPS and an amphiphilic polymer DSPE-m PEG2000.In order to maximize redshift of absorption and emission of PDI derivatives,we introduced an electron donating group DBU on PDI to obtain PDI-DBU.PDI-DBU exhibits a distinct absorption band at 700-900 nm and demonstrates excellent NIR-Ⅱfluorescence emission/imaging properties and good photothermal effects under 808 nm laser irradiation.More importantly,under 808 nm laser irradiation,PDI-DBU could be oxidized,and the photodynamic effect of the material could be subsequently activated under 530 nm laser irradiation,achieving the combination of photothermal and activatable photodynamic dual modality treatment.The H_(2)S donor DPS,when triggered by the abundant glutathione(GSH)within the tumor microenvironment(TME),is capable of generating H_(2)S.On one hand,H_(2)S can inhibit tumor growth by disrupting mitochondrial function,on the other hand,it can also repress the expression of heat shock protein 90(HSP90),thereby reversing tumor cell resistance mechanism against photothermal therapy.The utilization of PDI-DS NPs combined with DPS for efficient tumor ablation has been successfully demonstrated both in vitro and in vivo.This synergistic therapeutic platform thus offers a promising strategy in the field of NIR-Ⅱfluorescence imaging guided tumor therapy.展开更多
The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly re...The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly reflect the concentrations of chemical substances, and the measurement of meat traits by VIS/NIRS is similar to the processing of genomic selection data by summing all ‘polygenic effects' associated with spectral feature peaks. Therefore, it is meaningful to investigate the incorporation of VIS/NIRS information into GS models to establish an efficient and low-cost breeding model. In this study, we measured 6 meat quality traits in 359Duroc×Landrace×Yorkshire pigs from Guangxi Zhuang Autonomous Region, China, and genotyped them with high-density SNP chips. According to the completeness of the information for the target population, we proposed 4breeding strategies applied to different scenarios: Ⅰ, only spectral and genotypic data exist for the target population;Ⅱ, only spectral data exist for the target population;Ⅲ, only spectral and genotypic data but with different prediction processes exist for the target population;and Ⅳ, only spectral and phenotypic data exist for the target population.The 4 scenarios were used to evaluate the genomic estimated breeding value(GEBV) accuracy by increasing the VIS/NIR spectral information. In the results of the 5-fold cross-validation, the genetic algorithm showed remarkable potential for preselection of feature wavelengths. The breeding efficiency of Strategies Ⅱ, Ⅲ, and Ⅳ was superior to that of traditional GS for most traits, and the GEBV prediction accuracy was improved by 32.2, 40.8 and 15.5%, respectively on average. Among them, the prediction accuracy of Strategy Ⅱ for fat(%) even improved by 50.7% compared to traditional GS. The GEBV prediction accuracy of Strategy Ⅰ was nearly identical to that of traditional GS, and the fluctuation range was less than 7%. Moreover, the breeding cost of the 4 strategies was lower than that of traditional GS methods, with Strategy Ⅳ being the lowest as it did not require genotyping.Our findings demonstrate that GS methods based on VIS/NIRS data have significant predictive potential and are worthy of further research to provide a valuable reference for the development of effective and affordable breeding strategies.展开更多
Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for glo...Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for global food security and ecological balance.Currently,traditional detection strategies for monitoring plant health mainly rely on expensive equipment and complex operational procedures,which limit their widespread application.Fortunately,near-infrared(NIR)fluorescence and surface-enhanced Raman scattering(SERS)techniques have been recently highlighted in plants.NIR fluorescence imaging holds the advantages of being non-invasive,high-resolution and real-time,which is suitable for rapid screening in large-scale scenarios.While SERS enables highly sensitive and specific detection of trace chemical substances within plant tissues.Therefore,the complementarity of NIR fluorescence and SERS modalities can provide more comprehensive and accurate information for plant disease diagnosis and growth status monitoring.This article summarizes these two modalities in plant applications,and discusses the advantages of multimodal NIR fluorescence/SERS for a better understanding of a plant’s response to stress,thereby improving the accuracy and sensitivity of detection.展开更多
Near-infrared(NIR)theranostics have received considerable attention because of their advantages in precise diagnostic imaging and efficient simultaneous treatment and have achieved tremendous advancements in the last ...Near-infrared(NIR)theranostics have received considerable attention because of their advantages in precise diagnostic imaging and efficient simultaneous treatment and have achieved tremendous advancements in the last few years.However,their progress is severely restricted by the rarity of efficient second NIR(NIR-Ⅱ)responsive phototheranostic materials,especially in the NIR-Ⅱb region.Moreover,these materials often embarrass the quenching puzzle in the aggregative state,thus greatly reducing their theranostic performance.To overcome this limitation,we developed anti-quenching donor-acceptor-donor(D-AD)-conjugated oligomers with NIR-Ⅱb emission for high-performance NIR-Ⅱangiography and phototheranostics.Through multi-acceptor engineering,a series of multi-acceptor conjugated oligomer SU-n(n=1,2,and 5)with tunable acceptor ratios were synthesized,and their efficiency in anti-quenching NIR-Ⅱemission was demonstrated.When prepared into water-dispersed nanoparticles(NPs),SU-5 NPs exhibit bright NIR-Ⅱemission and dual phototherapy for photothermal therapy and photodynamic therapy simultaneously upon 808 nm light excitation.With these benefits,high-resolution whole-body and local angiography in vivo of SU-5 NPs were successfully realized in the NIR-Ⅱb window.Moreover,in vivo,theranostics experiments demonstrated the efficiency of SU-5 NPs in NIR-Ⅱimaging-guided complete tumor photoablation without any relapses with high biosafety.This work explores a practical multi-acceptor engineering strategy for developing anti-quenching theranostic materials,providing an efficient theranostic agent for efficient NIR-Ⅱb bioimaging and phototheranostics.展开更多
As a semiconductor material with inorganic functional properties,titanium dioxide(TiO_(2))demonstrates exceptional optical,electrical,and catalytic characteristics.The catalytic performance of TiO_(2)is notably affect...As a semiconductor material with inorganic functional properties,titanium dioxide(TiO_(2))demonstrates exceptional optical,electrical,and catalytic characteristics.The catalytic performance of TiO_(2)is notably affected by the proportion of anatase to rutile within its mixed phase,which plays a crucial role in modulating its performance.The phase transition in TiO_(2)enhances the effective separation of photogenerated charge carriers,thereby improving their utilization.In this study,we present an efficient and proportionally adjustable TiO_(2)phase transition strategy induced by near-infrared light(NIR light)utilizing TiO_(2)and titanium carbide(Ti C)composites.Notably,the transition ratio of anatase to rutile phases can be adjusted by controlling the NIR light irradiation time in 1s intervals(within 6 s),resulting in conversion rates of 5.88%,13.29%,20.42%,26.02%,32.8%and 40.12%,respectively.This capability for tunable ratios is attributed to the photothermal effect of Ti C,which converts to anatase at higher temperatures while simultaneously promoting the layer-by-layer aggregation of adjacent anatase grains,thereby facilitating the phase transition.In addition,we assessed the photocatalytic efficiency of tetracycline hydrochloride(TC-HCl,an antibiotic)and methylene blue(MB,a dye)when exposed to visible light using different ratios of obtained phase junctions.The findings revealed that after a brief 3 s exposure to laser sintering,the weight fractions of rutile and anatase TiO_(2)were approximately 0.2 and 0.8,respectively.This specific ratio of phase transition exhibits superior photocatalytic performance compared to alternative phase transition ratios.The creation of heterojunctions in anatase/rutile TiO_(2)facilitated greater oxygen adsorption and heightened the density of localized states,thus effectively boosting the production of superoxide radicals(·O_(2)^(-))and hole(h^(+))species.The phase junction of TiO_(2)shows significant potential for application in wastewater treating,resulting in improved photocatalytic degradation of pollutants and highlighting its efficacy in environmental pollution control.展开更多
Cancer is a serious global health issue,and exploring effective treatment methods is of great significance for cancer prevention and control.Carbon monoxide(CO),as an important gas signaling molecule in the life syste...Cancer is a serious global health issue,and exploring effective treatment methods is of great significance for cancer prevention and control.Carbon monoxide(CO),as an important gas signaling molecule in the life system,has been proven to have good anti-cancer effects.However,how to controllably,safely,and effectively deliver CO to the tumor site for clinical treatment remains a challenge.Herein,a new metal-free CO-releasing molecule COR-XAC was developed for controlling CO release and cancer therapy.COR-XAC is based on the hybrid of 3-hydroxyl flavone and oxanthracene fluorophores,showing visible light-controlled CO-releasing properties and near-infrared(NIR)ratiometric fluorescence changes at 690 and 760 nm.COR-XAC shows low cytotoxicity and can be successfully applied to release CO in cells and tumors,and the CO-releasing and delivery process could be monitored by its own NIR ratiometric fluorescence changes.More importantly,the anti-cancer performance of COR-XAC was evaluated in 4T1 tumor mice,and it was found that COR-XAC plus light illumination showed excellent tumor inhibition effect,which provided a promising new effective method for cancer treatment.展开更多
Rare earth luminescent materials have attracted extensive attention in the biomedical field as noncontact temperature monitoring devices with microscopic resolution due to their properties in the visible and near-infr...Rare earth luminescent materials have attracted extensive attention in the biomedical field as noncontact temperature monitoring devices with microscopic resolution due to their properties in the visible and near-infrared regions.At the application level,it is required to have a certain temperature monitoring capability in the near-infrared region II window to enhance the tissue penetration depth.Here,two kinds of YOFs:Er^(3+),Yb^(3+)were prepared by co-precipitation and hydrothermal method,and the luminescence was enhanced by ion doping.An Er^(3+)-based ratiometric nanothermometer of ^(4)F_(9∕2)→4 I_(15∕2)(672nm,upconversion luminescence)to ^(4)I _(13∕2)→^(4) I_(15∕2)(1580nm/1566nm,NIR II downshifting luminescence)were designed with the Stark energy level.When doped with 2%Zn^(2+),the relative temperature sensitivity of YOF prepared by co-precipitation method was improved from 0.30%℃^(-1)(30℃)to 0.59%℃^(-1)(30℃),expanding its use as a temperature monitoring device possibility.The temperature sensitivity of YOF prepared by hydrothermal method was 1.01%℃^(-1)(30℃).Finally,the NIR II luminescence of the prepared nanothermometer was used as a control for temperature monitoring of heating sites in mice.The results showed that it can distinguish heating site from control site and no significant cytotoxicity or damage to the tissues was revealed,indicating its broad prospects in the biomedical field and other temperature monitoring scenarios in the future.展开更多
Disulfidptosis,a novel mechanism of programmed cell death through the disruption of tumor metabolic symbiosis(TMS),has showed tremendous potential in cancer therapy.However,the efficacy of disulfidptosis is limited by...Disulfidptosis,a novel mechanism of programmed cell death through the disruption of tumor metabolic symbiosis(TMS),has showed tremendous potential in cancer therapy.However,the efficacy of disulfidptosis is limited by poor permeability of drugs in solid tumors.Herein,hydrogen sulfide(H_(2)S)and nearinfrared(NIR)light-driven nanomotors(denoted as HGPP)have been constructed to efficiently penetrate tumors and induce disulfidptosis.HGPP demonstrate glutathione(GSH)-responsive release of H_(2)S,which combined with NIR light-induced photothermal effect drive HGPP movement to facilitate deep tumor penetration.The released H_(2)S induces tumor acidosis and disrupts TMS,where disulfide accumulation following cell starvation leads to disulfidptosis.In addition,HGPP induce hepatoma specific cellular uptake and catalyze the conversion of glucose and oxygen to produce hydrogen peroxide(H_(2)O_(2)),leading to glucose starvation.Overall,this study has developed a multifunctional Janus nanomotor that provides a novel strategy for disulfidptosis-based solid tumor therapy.展开更多
Acute lung injury(ALI)was characterized by excessive reactive oxygen species(ROS)levels and inflammatory response in the lung.Scavenging ROS could inhibit the excessive inflammatory response,further treating ALI.Herei...Acute lung injury(ALI)was characterized by excessive reactive oxygen species(ROS)levels and inflammatory response in the lung.Scavenging ROS could inhibit the excessive inflammatory response,further treating ALI.Herein,we designed a novel nanozyme(P@Co)comprised of polydopamine(PDA)nanoparticles(NPs)loading with ultra-small Co,combining with near infrared(NIR)irradiation,which could efficiently scavenge intracellular ROS and suppress inflammatory responses against ALI.For lipopolysaccharide(LPS)induced macrophages,P@Co+NIR presented excellent antioxidant and anti-inflammatory capacities through lowering intracellular ROS levels,decreasing the expression levels of interleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)as well as inducing macrophage M2 directional polarization.Significantly,it displayed the outstanding activities of lowering acute lung inflammation,relieving diffuse alveolar damage,and up-regulating heat shock protein 70(HSP70)expression,resulting in synergistic enhanced ALI therapy effect.It offers a novel strategy for the clinical treatment of ROS related diseases.展开更多
The emission wavelength of current near-infrared phosphors activated by Cr^(3+)is generally smaller than 900 nm in near-infrared(NIR)Ⅰ region,and it is extremely challenging and is of great practical significance to ...The emission wavelength of current near-infrared phosphors activated by Cr^(3+)is generally smaller than 900 nm in near-infrared(NIR)Ⅰ region,and it is extremely challenging and is of great practical significance to realize emission towards NIR-Ⅱ region.In this study,a novel Cr^(3+)excited KSrScSi_(2)O_(7)silicate broad-band phosphor was prepared using the traditional solid-state method.Cr^(3+)resides in a weak crystal field in the KSrScSi_(2)O_(7)lattice and exhibits broad-band near-infrared emission at 984 nm,longer than those of most Cr^(3+)activated phosphors,under 493 nm blue light excitation.This is due to the stro ng charge polarization caused by the unique local coordination environment of the silicate matrix,which leads to a reduction in the crystal field splitting energy of the[ScO_(6)]octahedron where Cr^(3+)is located and the downward shift of the^(4)T_(2)energy level.The optimal doping concentration of Cr^(3+)is found to be 2 mol%,and the quenching mechanism is dipole-dipole interaction.Compared to the phosphors with similar emission wavelengths(λ_(em)>900 nm),KSrScSi_(2)O_(7):Cr^(3+)demonstrates outstanding advantages in various aspects of luminescent performance.The fabricated phosphor-converted light-emitting diode(pc-LED)is shown to have the potential for night vision and non-invasive imaging.Novel application of KSrScSi_(2)O_(7):xCr^(3+)as stable green ceramic pigments is also explored.The KSrScSi_(2)O_(7):xCr^(3+)powders show a bright yellowish green appearance,and the KSrScSi_(2)O_(7):0.02Cr^(3+)typical composition has chromaticity values of L^(*)=82.73,a^(*)=-8.53,b^(*)=7.97.Remarkably,the glazing samples using KSrScSi_(2)O_(7):xCr^(3+)as pigments well retain the bright color after 1200℃sintering in different atmospheres.Therefore,multifunctional applications of KSrScSi_(2)O_(7):xCr^(3+)for near-infrared spectroscopy and as ceramic pigments are achieved in this work.展开更多
基金supported by the National Natural Science Foundation of China(No.22274148)the Science and Technology Development Foundation of Jilin Province(Nos.20220204098YY,20230402045GH,20230402018GH,YDZJ202201ZYTS359,YDZJ202201ZYTS351,20240404070ZP,SKL202302030)the Jilin Province Development and Reform Commission’s Innovation Capacity Building Program(No.2023C041-8)。
文摘Synergistic therapy using multiple modalities is a highly promising therapeutic strategy.Near-infrared-Ⅱ(NIR-Ⅱ)fluorescence imaging,with its deep penetration and high fidelity,has frequently been employed in the literature to guide and assist treatment.Herein,we report the development of a NIR-Ⅱfluorescence imaging guided multi-therapy platform PDI-DS NPs,which integrates a novel activatable phototheranostic agent PDI-DBU,a H_(2)S donor DPS and an amphiphilic polymer DSPE-m PEG2000.In order to maximize redshift of absorption and emission of PDI derivatives,we introduced an electron donating group DBU on PDI to obtain PDI-DBU.PDI-DBU exhibits a distinct absorption band at 700-900 nm and demonstrates excellent NIR-Ⅱfluorescence emission/imaging properties and good photothermal effects under 808 nm laser irradiation.More importantly,under 808 nm laser irradiation,PDI-DBU could be oxidized,and the photodynamic effect of the material could be subsequently activated under 530 nm laser irradiation,achieving the combination of photothermal and activatable photodynamic dual modality treatment.The H_(2)S donor DPS,when triggered by the abundant glutathione(GSH)within the tumor microenvironment(TME),is capable of generating H_(2)S.On one hand,H_(2)S can inhibit tumor growth by disrupting mitochondrial function,on the other hand,it can also repress the expression of heat shock protein 90(HSP90),thereby reversing tumor cell resistance mechanism against photothermal therapy.The utilization of PDI-DS NPs combined with DPS for efficient tumor ablation has been successfully demonstrated both in vitro and in vivo.This synergistic therapeutic platform thus offers a promising strategy in the field of NIR-Ⅱfluorescence imaging guided tumor therapy.
基金the National Key R&D Program of China(2022YFB3206000)the National Natural Science Foundation of China(U23A20487)+1 种基金Dr.Li Dak Sum&Yip Yio Chin Development Fund for Regenerative Medicine,Zhejiang Universitythe National Natural Science Foundation of China(61975172).
文摘近红外二区(the second near-infrared window,NIR-II,900~1880 nm)荧光成像具有信号背景比高、穿透深度大的优势,在生物医学领域具有广泛的应用前景。对NIR-II成像窗口的划分有利于优化成像过程,其中,NIRIIx(1400~1500 nm)成像窗口得益于其独特的水吸收,可以有效抑制散射背景,实现高对比度成像。文章通过仿真模拟和活体实验,系统评估了NIR-IIx窗口的成像潜力。为了更好地推进NIR-IIx荧光成像的临床转化,研究采用美国食品及药物管理局(FDA)批准的有机小分子染料吲哚菁绿(Indocyanine Green,ICG)作为荧光探针,利用其延伸至NIR-II的荧光发射拖尾,实现了高对比度和清晰度的小鼠血管和肠道的NIR-IIx成像。此外,研究还结合同样通过FDA认证的亚甲基蓝(Methylene Blue,MB),成功实现了高质量的NIR-II双通道成像,精准定位小鼠的血管和淋巴结。文章进一步挖掘了NIR-IIx在生物成像上的独特优势和临床应用的潜力,并为NIR-II荧光成像的临床转化提供了重要参考。
基金supported by the National Natural Science Foundation of China(32160782 and 32060737).
文摘The principle of genomic selection(GS) entails estimating breeding values(BVs) by summing all the SNP polygenic effects. The visible/near-infrared spectroscopy(VIS/NIRS) wavelength and abundance values can directly reflect the concentrations of chemical substances, and the measurement of meat traits by VIS/NIRS is similar to the processing of genomic selection data by summing all ‘polygenic effects' associated with spectral feature peaks. Therefore, it is meaningful to investigate the incorporation of VIS/NIRS information into GS models to establish an efficient and low-cost breeding model. In this study, we measured 6 meat quality traits in 359Duroc×Landrace×Yorkshire pigs from Guangxi Zhuang Autonomous Region, China, and genotyped them with high-density SNP chips. According to the completeness of the information for the target population, we proposed 4breeding strategies applied to different scenarios: Ⅰ, only spectral and genotypic data exist for the target population;Ⅱ, only spectral data exist for the target population;Ⅲ, only spectral and genotypic data but with different prediction processes exist for the target population;and Ⅳ, only spectral and phenotypic data exist for the target population.The 4 scenarios were used to evaluate the genomic estimated breeding value(GEBV) accuracy by increasing the VIS/NIR spectral information. In the results of the 5-fold cross-validation, the genetic algorithm showed remarkable potential for preselection of feature wavelengths. The breeding efficiency of Strategies Ⅱ, Ⅲ, and Ⅳ was superior to that of traditional GS for most traits, and the GEBV prediction accuracy was improved by 32.2, 40.8 and 15.5%, respectively on average. Among them, the prediction accuracy of Strategy Ⅱ for fat(%) even improved by 50.7% compared to traditional GS. The GEBV prediction accuracy of Strategy Ⅰ was nearly identical to that of traditional GS, and the fluctuation range was less than 7%. Moreover, the breeding cost of the 4 strategies was lower than that of traditional GS methods, with Strategy Ⅳ being the lowest as it did not require genotyping.Our findings demonstrate that GS methods based on VIS/NIRS data have significant predictive potential and are worthy of further research to provide a valuable reference for the development of effective and affordable breeding strategies.
基金funded by the National Natural Science Foundation of China(Nos.22374055,22022404,22074050,82172055)the National Natural Science Foundation of Hubei Province(No.22022CFA033)the Fundamental Research Funds for the Central Universities(Nos.CCNU24JCPT001,CCNU24JCPT020)。
文摘Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for global food security and ecological balance.Currently,traditional detection strategies for monitoring plant health mainly rely on expensive equipment and complex operational procedures,which limit their widespread application.Fortunately,near-infrared(NIR)fluorescence and surface-enhanced Raman scattering(SERS)techniques have been recently highlighted in plants.NIR fluorescence imaging holds the advantages of being non-invasive,high-resolution and real-time,which is suitable for rapid screening in large-scale scenarios.While SERS enables highly sensitive and specific detection of trace chemical substances within plant tissues.Therefore,the complementarity of NIR fluorescence and SERS modalities can provide more comprehensive and accurate information for plant disease diagnosis and growth status monitoring.This article summarizes these two modalities in plant applications,and discusses the advantages of multimodal NIR fluorescence/SERS for a better understanding of a plant’s response to stress,thereby improving the accuracy and sensitivity of detection.
基金supported by the National Natural Science Foundation of China(Nos.52173135,22207024)the Natural Science Foundation of Jiangsu Province(No.BK20231523)+5 种基金Jiangsu Specially Appointed Professorship,Leading Talents of Innovation and Entrepreneurship of Gusu(No.ZXL2022496)the Suzhou Science and Technology Program(No.SKY2022039)funded by the China Postdoctoral Science Foundation(Nos.2022M712305,2023M742536)the Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2023ZB011)the project funded by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education InstitutionsSuzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases。
文摘Near-infrared(NIR)theranostics have received considerable attention because of their advantages in precise diagnostic imaging and efficient simultaneous treatment and have achieved tremendous advancements in the last few years.However,their progress is severely restricted by the rarity of efficient second NIR(NIR-Ⅱ)responsive phototheranostic materials,especially in the NIR-Ⅱb region.Moreover,these materials often embarrass the quenching puzzle in the aggregative state,thus greatly reducing their theranostic performance.To overcome this limitation,we developed anti-quenching donor-acceptor-donor(D-AD)-conjugated oligomers with NIR-Ⅱb emission for high-performance NIR-Ⅱangiography and phototheranostics.Through multi-acceptor engineering,a series of multi-acceptor conjugated oligomer SU-n(n=1,2,and 5)with tunable acceptor ratios were synthesized,and their efficiency in anti-quenching NIR-Ⅱemission was demonstrated.When prepared into water-dispersed nanoparticles(NPs),SU-5 NPs exhibit bright NIR-Ⅱemission and dual phototherapy for photothermal therapy and photodynamic therapy simultaneously upon 808 nm light excitation.With these benefits,high-resolution whole-body and local angiography in vivo of SU-5 NPs were successfully realized in the NIR-Ⅱb window.Moreover,in vivo,theranostics experiments demonstrated the efficiency of SU-5 NPs in NIR-Ⅱimaging-guided complete tumor photoablation without any relapses with high biosafety.This work explores a practical multi-acceptor engineering strategy for developing anti-quenching theranostic materials,providing an efficient theranostic agent for efficient NIR-Ⅱb bioimaging and phototheranostics.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LTGC23C160002)Zhejiang Provincial Academy Cooperation Forestry Science and Technology Project(No.2023SY14)+7 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LR20A050001)Scientific Research Project of Education Department of Hunan Province(No.22A0560)General Project of Zhejiang Provincial Department of Education(No.Y202147215)the National Natural Science Foundation of China(Nos.12275240,12075210)Zhejiang Provincial Public Welfare Technology and Application Research Project(No.GN21B020001)the Scientific Research and Developed Fund of Zhejiang A&F University(Nos.2021FR0009,2022LFR042)Scientific Research Foundation of Zhejiang A&F University(No.2023CFR136)the 2024 Open Fund for Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology(No.CJSZ2024012)。
文摘As a semiconductor material with inorganic functional properties,titanium dioxide(TiO_(2))demonstrates exceptional optical,electrical,and catalytic characteristics.The catalytic performance of TiO_(2)is notably affected by the proportion of anatase to rutile within its mixed phase,which plays a crucial role in modulating its performance.The phase transition in TiO_(2)enhances the effective separation of photogenerated charge carriers,thereby improving their utilization.In this study,we present an efficient and proportionally adjustable TiO_(2)phase transition strategy induced by near-infrared light(NIR light)utilizing TiO_(2)and titanium carbide(Ti C)composites.Notably,the transition ratio of anatase to rutile phases can be adjusted by controlling the NIR light irradiation time in 1s intervals(within 6 s),resulting in conversion rates of 5.88%,13.29%,20.42%,26.02%,32.8%and 40.12%,respectively.This capability for tunable ratios is attributed to the photothermal effect of Ti C,which converts to anatase at higher temperatures while simultaneously promoting the layer-by-layer aggregation of adjacent anatase grains,thereby facilitating the phase transition.In addition,we assessed the photocatalytic efficiency of tetracycline hydrochloride(TC-HCl,an antibiotic)and methylene blue(MB,a dye)when exposed to visible light using different ratios of obtained phase junctions.The findings revealed that after a brief 3 s exposure to laser sintering,the weight fractions of rutile and anatase TiO_(2)were approximately 0.2 and 0.8,respectively.This specific ratio of phase transition exhibits superior photocatalytic performance compared to alternative phase transition ratios.The creation of heterojunctions in anatase/rutile TiO_(2)facilitated greater oxygen adsorption and heightened the density of localized states,thus effectively boosting the production of superoxide radicals(·O_(2)^(-))and hole(h^(+))species.The phase junction of TiO_(2)shows significant potential for application in wastewater treating,resulting in improved photocatalytic degradation of pollutants and highlighting its efficacy in environmental pollution control.
基金supported by the National Natural Science Foundation of China(Nos.22077044 and 21672080)the Natural Science Foundation of Hubei Province(No.2022CFA033)the funding from Wuhan Institute of Photochemistry and Technology(No.GHY2023KF008).
文摘Cancer is a serious global health issue,and exploring effective treatment methods is of great significance for cancer prevention and control.Carbon monoxide(CO),as an important gas signaling molecule in the life system,has been proven to have good anti-cancer effects.However,how to controllably,safely,and effectively deliver CO to the tumor site for clinical treatment remains a challenge.Herein,a new metal-free CO-releasing molecule COR-XAC was developed for controlling CO release and cancer therapy.COR-XAC is based on the hybrid of 3-hydroxyl flavone and oxanthracene fluorophores,showing visible light-controlled CO-releasing properties and near-infrared(NIR)ratiometric fluorescence changes at 690 and 760 nm.COR-XAC shows low cytotoxicity and can be successfully applied to release CO in cells and tumors,and the CO-releasing and delivery process could be monitored by its own NIR ratiometric fluorescence changes.More importantly,the anti-cancer performance of COR-XAC was evaluated in 4T1 tumor mice,and it was found that COR-XAC plus light illumination showed excellent tumor inhibition effect,which provided a promising new effective method for cancer treatment.
基金supported by the Key Research and Development Program of Shaanxi(Program No.2023-YBSF-479)the National Natural Science Foundation of China(NSFC 22075249)the Fundamental Research Funds for the Central Universities.
文摘Rare earth luminescent materials have attracted extensive attention in the biomedical field as noncontact temperature monitoring devices with microscopic resolution due to their properties in the visible and near-infrared regions.At the application level,it is required to have a certain temperature monitoring capability in the near-infrared region II window to enhance the tissue penetration depth.Here,two kinds of YOFs:Er^(3+),Yb^(3+)were prepared by co-precipitation and hydrothermal method,and the luminescence was enhanced by ion doping.An Er^(3+)-based ratiometric nanothermometer of ^(4)F_(9∕2)→4 I_(15∕2)(672nm,upconversion luminescence)to ^(4)I _(13∕2)→^(4) I_(15∕2)(1580nm/1566nm,NIR II downshifting luminescence)were designed with the Stark energy level.When doped with 2%Zn^(2+),the relative temperature sensitivity of YOF prepared by co-precipitation method was improved from 0.30%℃^(-1)(30℃)to 0.59%℃^(-1)(30℃),expanding its use as a temperature monitoring device possibility.The temperature sensitivity of YOF prepared by hydrothermal method was 1.01%℃^(-1)(30℃).Finally,the NIR II luminescence of the prepared nanothermometer was used as a control for temperature monitoring of heating sites in mice.The results showed that it can distinguish heating site from control site and no significant cytotoxicity or damage to the tissues was revealed,indicating its broad prospects in the biomedical field and other temperature monitoring scenarios in the future.
基金supported by the National Natural Science Foundation of China(No.22171230)the Project of Science and Technology of Social Development in Shaanxi Province(Nos.2024SF-YBXM-294,2023-YBSF-151)。
文摘Disulfidptosis,a novel mechanism of programmed cell death through the disruption of tumor metabolic symbiosis(TMS),has showed tremendous potential in cancer therapy.However,the efficacy of disulfidptosis is limited by poor permeability of drugs in solid tumors.Herein,hydrogen sulfide(H_(2)S)and nearinfrared(NIR)light-driven nanomotors(denoted as HGPP)have been constructed to efficiently penetrate tumors and induce disulfidptosis.HGPP demonstrate glutathione(GSH)-responsive release of H_(2)S,which combined with NIR light-induced photothermal effect drive HGPP movement to facilitate deep tumor penetration.The released H_(2)S induces tumor acidosis and disrupts TMS,where disulfide accumulation following cell starvation leads to disulfidptosis.In addition,HGPP induce hepatoma specific cellular uptake and catalyze the conversion of glucose and oxygen to produce hydrogen peroxide(H_(2)O_(2)),leading to glucose starvation.Overall,this study has developed a multifunctional Janus nanomotor that provides a novel strategy for disulfidptosis-based solid tumor therapy.
基金financially supported by the Key Research&Development Program of Guangxi(No.GuiKeAB22080088)the Joint Project on Regional High-Incidence Diseases Research of Guangxi Natural Science Foundation(No.2023GXNSFDA026023)+3 种基金the Natural Science Foundation of Guangxi(No.2023JJA140322)the National Natural Science Foundation of China(No.82360372)the High-level Medical Expert Training Program of Guangxi“139 Plan Funding(No.G202003010)the Medical Appropriate Technology Development and Popularization and Application Project of Guangxi(No.S2020099)。
文摘Acute lung injury(ALI)was characterized by excessive reactive oxygen species(ROS)levels and inflammatory response in the lung.Scavenging ROS could inhibit the excessive inflammatory response,further treating ALI.Herein,we designed a novel nanozyme(P@Co)comprised of polydopamine(PDA)nanoparticles(NPs)loading with ultra-small Co,combining with near infrared(NIR)irradiation,which could efficiently scavenge intracellular ROS and suppress inflammatory responses against ALI.For lipopolysaccharide(LPS)induced macrophages,P@Co+NIR presented excellent antioxidant and anti-inflammatory capacities through lowering intracellular ROS levels,decreasing the expression levels of interleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)as well as inducing macrophage M2 directional polarization.Significantly,it displayed the outstanding activities of lowering acute lung inflammation,relieving diffuse alveolar damage,and up-regulating heat shock protein 70(HSP70)expression,resulting in synergistic enhanced ALI therapy effect.It offers a novel strategy for the clinical treatment of ROS related diseases.
基金Project supported by the Natural Science Foundation of The Educational Department of Liaoning Province(JYTMS20231627)。
文摘The emission wavelength of current near-infrared phosphors activated by Cr^(3+)is generally smaller than 900 nm in near-infrared(NIR)Ⅰ region,and it is extremely challenging and is of great practical significance to realize emission towards NIR-Ⅱ region.In this study,a novel Cr^(3+)excited KSrScSi_(2)O_(7)silicate broad-band phosphor was prepared using the traditional solid-state method.Cr^(3+)resides in a weak crystal field in the KSrScSi_(2)O_(7)lattice and exhibits broad-band near-infrared emission at 984 nm,longer than those of most Cr^(3+)activated phosphors,under 493 nm blue light excitation.This is due to the stro ng charge polarization caused by the unique local coordination environment of the silicate matrix,which leads to a reduction in the crystal field splitting energy of the[ScO_(6)]octahedron where Cr^(3+)is located and the downward shift of the^(4)T_(2)energy level.The optimal doping concentration of Cr^(3+)is found to be 2 mol%,and the quenching mechanism is dipole-dipole interaction.Compared to the phosphors with similar emission wavelengths(λ_(em)>900 nm),KSrScSi_(2)O_(7):Cr^(3+)demonstrates outstanding advantages in various aspects of luminescent performance.The fabricated phosphor-converted light-emitting diode(pc-LED)is shown to have the potential for night vision and non-invasive imaging.Novel application of KSrScSi_(2)O_(7):xCr^(3+)as stable green ceramic pigments is also explored.The KSrScSi_(2)O_(7):xCr^(3+)powders show a bright yellowish green appearance,and the KSrScSi_(2)O_(7):0.02Cr^(3+)typical composition has chromaticity values of L^(*)=82.73,a^(*)=-8.53,b^(*)=7.97.Remarkably,the glazing samples using KSrScSi_(2)O_(7):xCr^(3+)as pigments well retain the bright color after 1200℃sintering in different atmospheres.Therefore,multifunctional applications of KSrScSi_(2)O_(7):xCr^(3+)for near-infrared spectroscopy and as ceramic pigments are achieved in this work.