In rice fields,rice plants usually grow alongside wild weeds and are attacked by various invertebrate species.Viruses are abundant in plants and invertebrates,playing crucial ecological roles in controlling microbial ...In rice fields,rice plants usually grow alongside wild weeds and are attacked by various invertebrate species.Viruses are abundant in plants and invertebrates,playing crucial ecological roles in controlling microbial abundance and maintaining community structures.To date,only 16 rice viruses have been documented in rice-growing regions.These viruses pose serious threats to rice production and have traditionally been identified only from rice plants and insect vectors by isolation techniques.Advances in next-generation sequencing(NGS)have made it feasible to discover viruses on a global scale.Recently,numerous viruses have been identified in plants and invertebrates using NGS technologies.In this review,we discuss viral studies in rice plants,invertebrate species,and weeds in rice fields.Many novel viruses have been discovered in rice ecosystems through NGS technologies,with some also detected using metatranscriptomic and small RNA sequencing.These analyses greatly expand our understanding of viruses in rice fields and provide valuable insights for developing efficient strategies to manage insect pests and virus-mediated rice diseases.展开更多
This study investigates the diversity of gut microbiota in Metaphire peguana,an earthworm species commonly found in agricultural areas of Thailand.Earthworms play a critical role in soil ecosystems by supporting nutri...This study investigates the diversity of gut microbiota in Metaphire peguana,an earthworm species commonly found in agricultural areas of Thailand.Earthworms play a critical role in soil ecosystems by supporting nutrient cycling and breaking down organic matter.Understanding the microbial diversity in their gut is essential for exploring their ecological contributions.Using Next Generation Sequencing(NGS),we analyzed the mycobiome in the gut of M.peguana.Our findings revealed a high diversity of fungal species,primarily belonging to two major phyla:Ascomycota and Basidiomycota.Ascomycota was the most abundant phylum,comprising 40.1% of the total fungal species identified.A total of 33 distinct fungal species were identified,which underscores the richness of microbial life within the earthworm gut.This study successfully created the first genetic database of the microbial community in M.peguana,providing a foundation for future research in agricultural applications.The microbial species identified,particularly siderophoreproducing fungi,could have significant implications for improving soil fertility and promoting sustainable agricultural practices.The use of NGS technology has enabled comprehensive profiling of microbial communities,allowing for precise identification of fungi that may play essential roles in soil health.Furthermore,the study paves the way for future studies on the potential applications of earthworm gut microbiomes in biotechnology,especially in enhancing soil nutrient availability and plant growth.The findings of this research contribute to the broader understanding of the ecological roles of earthworms and their microbiomes in soil ecosystems.展开更多
Objective and Background Early and accurate diagnosis of spinal infections,including spinal tuberculosis,is pivotal for effective treatment but remains challenging.This study aims to assess the diagnostic yield of met...Objective and Background Early and accurate diagnosis of spinal infections,including spinal tuberculosis,is pivotal for effective treatment but remains challenging.This study aims to assess the diagnostic yield of metagenomic next-generation sequencing(mNGS)compared with that of conventional microbiological tests(CMTs)in identifying pathogens associated with spinal pathologies,with a special focus on infections leading to surgical interventions.Methods We enrolled 85 patients who underwent spinal surgery,comprising 63 patients with clinically diagnosed spinal infections,including patients with spinal tuberculosis,and 22 patients with noninfectious spinal conditions.The procedures involved irrigation and debridement for persistent wound drainage,with subsequent DNA extraction from plasma and joint fluid for mNGS and CMT analysis.Results Significantly increased C-reactive protein(CRP)levels were observed in patients with infections.The mNGS approach showed greater diagnostic sensitivity(92.06%)for detecting pathogens,including Mycobacterium tuberculosis,than did CMTs(36.51%).Despite its low specificity,mNGS had considerable negative predictive value(70.59%),underscoring its utility in ruling out infections.Conclusions The mNGS offers superior sensitivity over CMTs in the diagnosis of a variety of spinal infections,notably spinal tuberculosis.This study highlights the potential of mNGS in enhancing the diagnosis of complex spinal infections,thereby informing targeted treatment strategies.展开更多
BACKGROUND Leuconostoc garlicum is commonly found in fermented foods and very few infected patients have been reported,who typically present symptoms such as fever and fatigue.Conventional clinical examinations often ...BACKGROUND Leuconostoc garlicum is commonly found in fermented foods and very few infected patients have been reported,who typically present symptoms such as fever and fatigue.Conventional clinical examinations often struggle to identify this bacterium,and routine anti-infective treatments are generally ineffective.Both diagnostic challenges and therapeutic limitations pose significant difficulties for clinicians.CASE SUMMARY We report a patient ultimately diagnosed with Leuconostoc garlicum infection.The primary manifestations included persistent fever,cough and fatigue.These symptoms lasted for 2 months.He received anti-infective treatment at a community hospital,but this was ineffective.After inquiring about the patient's medical history and conducting a physical examination,the patient underwent laboratory tests.Complete blood count tests revealed that the patient had a high proportion of neutrophils,C-reactive protein level was 235.9 mg/L,erythrocyte sedimentation rate was 67 mm/h,respiratory pathogen testing was negative,and he was then thought to have an infectious disease.However,conventional anti-infective treatments were ineffective.After excluding infectious neurological diseases,urologic diseases and digestive problems,we ultimately focused our attention on the lungs.A lung computed tomography scan indicated pulmonary inflammation.Bronchoalveolar lavage fluid for next-generation sequencing suggested lung infection with Leuconostoc garlicum.The patient's symptoms gradually improved following treatment with piperacillin tazobactam and linezolid.During the follow-up period,the patient's temperature remained normal.CONCLUSION For patients with suspected bacterial infection and experiencing fever,conventional anti-infective treatment can be ineffective in controlling their symptoms,and an infection due to rare bacteria or drug-resistant bacteria should be considered.Next-generation sequencing enables rapid and precise identification of infection-related pathogens in febrile patients.展开更多
The improvement of soybean seed carotenoid contents is very important due to the beneficial role of carotenoids in human health and nutrition. However, the genetic architecture underlying soybean carotenoid biosynthes...The improvement of soybean seed carotenoid contents is very important due to the beneficial role of carotenoids in human health and nutrition. However, the genetic architecture underlying soybean carotenoid biosynthesis remains largely unknown. In the present study, we employed next generation sequencing-based bulked-segregant analysis to identify new genomic regions governing seed carotenoids in 1,551 natural soybean accessions. The genomic DNA samples of individual plants with extreme phenotypes were pooled to form two bulks with high(50 accessions) and low(50 accessions) carotenoid contents for Illumina sequencing. A total of 125.09 Gb of clean bases and 89.82% of Q30 were obtained, and the average alignment efficiency was 99.45% with an average coverage depth of 62.20× and 99.75% genome coverage. Based on the G prime statistic algorithm(G') method analysis, 16 candidate genomic loci with a total length 20.41 Mb were found to be related to the trait. Of these loci, the most significant regions displaying the highest elevated G' values were found in chromosome 06 at a position of 18.53–22.67 Mb, and chromosome 19 at genomic region intervals of 8.36–10.94, 12.06–13.79 and 18.45–20.26 Mb. These regions were then used to identify the key candidate genes. In these regions, 250 predicted genes were found and analyzed to obtain 90 significantly enriched(P<0.05) Gene Ontology(GO) terms. Based on ANNOVAR analysis, 50 genes with non-synonymous and stopgained mutations were preferentially selected as potential candidate genes. Of those 50 genes, following their gene annotation functions and high significant haplotype variations in various environments,five genes were identified as the most promising candidate genes regulating soybean seed carotenoid accumulation, and they should be investigated in further functional validation studies. Collectively, understanding the genetic basis of carotenoid pigments and identifying genes underpinning carotenoid accumulation via a bulked-segregant analysis-based sequencing(BSA-seq) approach provide new insights for exploring future molecular breeding efforts to produce soybean cultivars with high carotenoid content.展开更多
Infectious diseases are a great threat to human health.Rapid and accurate detection of pathogens is important in the diagnosis and treatment of infectious diseases.Metagenomics next-generation sequencing(mNGS)is an un...Infectious diseases are a great threat to human health.Rapid and accurate detection of pathogens is important in the diagnosis and treatment of infectious diseases.Metagenomics next-generation sequencing(mNGS)is an unbiased and comprehensive approach for detecting all RNA and DNA in a sample.With the development of sequencing and bioinformatics technologies,mNGS is moving from research to clinical application,which opens a new avenue for pathogen detection.Numerous studies have revealed good potential for the clinical application of mNGS in infectious diseases,especially in difficult-to-detect,rare,and novel pathogens.However,there are several hurdles in the clinical application of mNGS,such as:(1)lack of universal workflow validation and quality assurance;(2)insensitivity to high-host background and low-biomass samples;and(3)lack of standardized instructions for mass data analysis and report interpretation.Therefore,a complete understanding of this new technology will help promote the clinical application of mNGS to infectious diseases.This review briefly introduces the history of next-generation sequencing,mainstream sequencing platforms,and mNGS workflow,and discusses the clinical applications of mNGS to infectious diseases and its advantages and disadvantages.展开更多
Objective This study aimed to explore the diagnostic value of novel technique-targeted next-generation sequencing(tNGS)of bronchoalveolar lavage fluid(BALF)in pulmonary mycobacterial infections.Methods This retrospect...Objective This study aimed to explore the diagnostic value of novel technique-targeted next-generation sequencing(tNGS)of bronchoalveolar lavage fluid(BALF)in pulmonary mycobacterial infections.Methods This retrospective study was conducted on patients who underwent bronchoscopy and tNGS,smear microscopy,and mycobacterial culture of BALF.Patients with positive Mycobacterium tuberculosis(MTB)culture or GeneXpert results were classified into the tuberculosis case group.Those diagnosed with nontuberculous mycobacteria(NTM)-pulmonary disease(NTM-PD)composed the case group of NTM-PD patients.The control group comprised patients without tuberculosis or NTM-PD.Sensitivity,specificity,and receiver operating characteristic(ROC)curves were used to evaluate the diagnostic performance.Results For tuberculosis patients with positive mycobacterial culture results,the areas under the ROC curves(AUCs)for tNGS,GeneXpert,and smear microscopy were 0.975(95%CI:0.935,1.000),0.925(95%CI:0.859,0.991),and 0.675(95%CI:0.563,0.787),respectively.For tuberculosis patients with positive GeneXpert results,the AUCs of tNGS,culture,and smear microscopy were 0.970(95%CI:0.931,1.000),0.850(95%CI:0.770,0.930),and 0.680(95%CI:0.579,0.781),respectively.For NTM-PD,the AUCs of tNGS,culture,and smear-positive but GeneXpert-negative results were 0.987(95%CI:0.967,1.000),0.750(95%CI:0.622,0.878),and 0.615(95%CI:0.479,0.752),respectively.The sensitivity and specificity of tNGS in NTM-PD patients were 100%and 97.5%,respectively.Conclusion tNGS demonstrated superior diagnostic efficacy in mycobacterial infection,indicating its potential for clinical application.展开更多
BACKGROUND:Prompt pathogen identification can have a substantial impact on the optimization of antimicrobial treatment.The objective of the study was to assess the diagnostic value of next-generation sequencing(NGS)fo...BACKGROUND:Prompt pathogen identification can have a substantial impact on the optimization of antimicrobial treatment.The objective of the study was to assess the diagnostic value of next-generation sequencing(NGS)for identifying pathogen and its clinical impact on antimicrobial intervention in immunocompromised patients with suspected infections.METHODS:This was a retrospective study.Between January and August 2020,47 adult immunocompromised patients underwent NGS testing under the following clinical conditions:1)prolonged fever and negative conventional cultures;2)new-onset fever despite empiric antimicrobial treatment;and 3)afebrile with suspected infections on imaging.Clinical data,including conventional microbial test results and antimicrobial treatment before and after NGS,were collected.Data were analyzed according to documented changes in antimicrobial treatment(escalated,no change,or deescalated)after the NGS results.RESULTS:The median time from hospitalization to NGS sampling was 19 d.Clinically relevant pathogens were detected via NGS in 61.7% of patients(29/47),more than half of whom suffered from fungemia(n=17),resulting in an antimicrobial escalation in 53.2% of patients(25/47)and antimicrobial de-escalation in 0.2% of patients(1/47).Antimicrobial changes were mostly due to the identification of fastidious organisms such as Legionella,Pneumocystis jirovecii,and Candida.In the remaining three cases,NGS detected clinically relevant pathogens also detected by conventional cultures a few days later.The antimicrobial treatment was subsequently adjusted according to the susceptibility test results.Overall,NGS changed antimicrobial management in 55.3%(26/47)of patients,and conventional culture detected clinically relevant pathogens in 14.9% of the patients(7/47).CONCLUSION:With its rapid identification and high sensitivity,NGS could be a promising tool for identifying relevant pathogens and enabling rapid appropriate treatment in immunocompromised patients with suspected infections.展开更多
BACKGROUND Brain abscess is a serious and potentially fatal disease caused primarily by microbial infection.Although progress has been made in the diagnosis and treatment of brain abscesses,the diagnostic timeliness o...BACKGROUND Brain abscess is a serious and potentially fatal disease caused primarily by microbial infection.Although progress has been made in the diagnosis and treatment of brain abscesses,the diagnostic timeliness of pathogens needs to be improved.CASE SUMMARY We report the case of a 54-year-old male with a brain abscess caused by oral bacteria.The patient recovered well after receiving a combination of metagenomic next-generation sequencing(mNGS)-assisted guided medication and surgery.CONCLUSION Therefore,mNGS may be widely applied to identify the pathogenic microor-ganisms of brain abscesses and guide precision medicine.展开更多
Background:For patients with lung cancer,timely identification of new lung lesions as infectious or non-infectious,and accurate identification of pathogens is very important in improving OS of patients.As a new auxiliar...Background:For patients with lung cancer,timely identification of new lung lesions as infectious or non-infectious,and accurate identification of pathogens is very important in improving OS of patients.As a new auxiliary examination,metagenomic next-generation sequencing(mNGS)is believed to be more accurate in diagnosing infectious diseases in patients without underlying diseases,compared with conventional microbial tests(CMTs).We designed this study tofind out whether mNGS has better performance in distinguishing infectious and non-infectious diseases in lung cancer patients using bronchoalveolar lavagefluid(BALF).Materials and Methods:This study was a real-world retrospective review based on electronic medical records of lung cancer patients with bronchoalveolar lavage(BAL)and BALF commercial mNGS testing as part of clinical care from 1 April 2019 through 30 April 2022 at The First Affiliated Hospital of Sun Yat-sen University.164 patients were included in this study.Patients were categorized into the pulmonary non-infectious disease(PNID)group(n=64)and the pulmonary infectious disease(PID)group(n=100)groups based onfinal diagnoses.Results:BALF mNGS increased the sensitivity rate by 60%compared to CMTs(81%vs.21%,p<0.05),whereas there was no significant difference in specificity(75%vs.98.4%,p>0.1).Among the patients with PID,bacteria were the most common cause of infection.Fungal infections occurred in 32%of patients,and Pneumocystis Yersini was most common.Patients with Tyrosine kinase inhibitors(TKIs)therapy possess longer overall survival(OS)than other anti-cancer agents,the difference between TKIs and immuno-checkpoint inhibitors(ICIs)was insignificant(median OS TKIs vs.ICIs vs.Anti-angiogenic vs.Chemo vs.Radiotherapy=76 vs.84 vs.61 vs.58 vs.60).Conclusions:our study indicates that BALF mNGS can add value by improving overall sensitivity in lung cancer patients with potential pulmonary infection,and was outstanding in identifying Pneumocystis infection.It could be able to help physicians adjust the follow-up treatment to avoid the abuse of antibiotics.展开更多
BACKGROUND Mycobacterium houstonense(M.houstonense)belongs to the nontuberculous mycobacterium group.Infection caused by M.houstonense is prone to recurrence.CASE SUMMARY We present a patient who was diagnosed with os...BACKGROUND Mycobacterium houstonense(M.houstonense)belongs to the nontuberculous mycobacterium group.Infection caused by M.houstonense is prone to recurrence.CASE SUMMARY We present a patient who was diagnosed with osteomyelitis caused by M.houstonense and treated with a combination of cefoxitin,and amikacin combined with linezolid.CONCLUSION The emergence of metagenomic next-generation sequencing(NGS)has brought new hope for the diagnosis and treatment of listeria meningitis.NGS can analyze a large number of nucleic acid sequences in a short time and quickly determine the pathogen species in the sample.Compared with traditional cerebrospinal fluid culture,NGS can greatly shorten the diagnosis time and provide strong support for the timely treatment of patients.Regarding treatment,NGS can also play an important role.Rapid and accurate diagnosis can enable patients to start targeted treatment as soon as possible and improve the treatment effect.At the same time,by monitoring the changes in pathogen resistance,the treatment plan can be adjusted in time to avoid treatment failure.展开更多
Query fever(Q fever)is a globally spread zoonotic disease caused by Coxiella burnetii,commonly found in natural foci but rarely seen in Hebei Province.The clinical manifestations of Q fever are diverse and nonspecific...Query fever(Q fever)is a globally spread zoonotic disease caused by Coxiella burnetii,commonly found in natural foci but rarely seen in Hebei Province.The clinical manifestations of Q fever are diverse and nonspecific,which often leads to missed or incorrect diagnoses in clinical practice.This article reports a case of acute Q fever diagnosed in an elderly patient using metagenomic next-generation sequencing.展开更多
This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future ...This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future platforms and bioinformatics. NGS technologies have demon- strated the capacity to sequence DNA at unprecedented speed, thereby enabling previously unimaginable scientific achievements and novel biological applications. But, the massive data produced by NGS also presents a significant challenge for data storage, analyses, and management solutions. Advanced bioinformatic tools are essential for the successful application of NGS technology. As evidenced throughout this review, NGS technologies will have a striking impact on genomic research and the entire biological field. With its ability to tackle the unsolved challenges unconquered by previous genomic technologies, NGS is likely to unravel the complexity of the human genome in terms of genetic variations, some of which may be confined to susceptible loci for some common human conditions. The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come.展开更多
BACKGROUND: The study aims to investigate the performance of a metagenomic next-generationsequencing (NGS)-based diagnostic technique for the identifi cation of potential bacterial and viral infectionsand eff ects of ...BACKGROUND: The study aims to investigate the performance of a metagenomic next-generationsequencing (NGS)-based diagnostic technique for the identifi cation of potential bacterial and viral infectionsand eff ects of concomitant viral infection on the survival rate of intensive care unit (ICU) sepsis patients.METHODS: A total of 74 ICU patients with sepsis who were admitted to our institution from February1, 2018 to June 30, 2019 were enrolled. Separate blood samples were collected from patients for bloodcultures and metagenomic NGS when the patients’ body temperature was higher than 38 °C. Patients’demographic data, including gender, age, ICU duration, ICU scores, and laboratory results, were recorded.The correlations between pathogen types and sepsis severity and survival rate were evaluated.RESULTS: NGS produced higher positive results (105 of 118;88.98%) than blood cultures(18 of 118;15.25%) over the whole study period. Concomitant viral infection correlated closelywith sepsis severity and had the negative effect on the survival of patients with sepsis. However,correlation analysis indicated that the bacterial variety did not correlate with the severity of sepsis.CONCLUSIONS: Concurrent viral load correlates closely with the severity of sepsis and thesurvival rate of the ICU sepsis patients. This suggests that prophylactic administration of antiviraldrugs combined with antibiotics may be benefi cial to ICU sepsis patients.展开更多
Reliable and accurate pre-implantation genetic diagnosis (PGD) of patient's embryos by next-generation sequencing (NGS) is dependent on efficient whole genome amplification (WGA) of a representative biopsy samp...Reliable and accurate pre-implantation genetic diagnosis (PGD) of patient's embryos by next-generation sequencing (NGS) is dependent on efficient whole genome amplification (WGA) of a representative biopsy sample. However, the performance of the current state of the art WGA methods has not been evaluated for sequencing. Using low template DNA (15 pg) and single cells, we showed that the two PCR-based WGA systems SurePlex and MALBAC are superior to the REPLI-g WGA multiple displacement amplification (MDA) system in terms of consistent and reproducible genome coverage and sequence bias across the 24 chromosomes, allowing better normalization of test to reference sequencing data. When copy number variation sequencing (CNV-Seq) was applied to single cell WGA products derived by either SurePlex or MALBAC amplification, we showed that known disease CNVs in the range of 3-15 Mb could be reliably and accurately detected at the correct genomic positions. These findings indicate that our CNV-Seq pipeline incorporating either SurePlex or MALBAC as the key initial WGA step is a powerful methodology for clinical PGD to identify euploid embryos in a patient's cohort for uterine transplantation,展开更多
Gastric cancer(GC)is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide.There is an increasing understanding of the roles that genetic and epigenetic alterations...Gastric cancer(GC)is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide.There is an increasing understanding of the roles that genetic and epigenetic alterations play in GCs.Recent studies using nextgeneration sequencing(NGS)have revealed a number of potential cancer-driving genes in GC.Whole-exome sequencing of GC has identified recurrent somatic mutations in the chromatin remodeling gene ARID1A and alterations in the cell adhesion gene FAT4,a member of the cadherin gene family.Mutations in chromatin remodeling genes(ARID1A,MLL3 and MLL)have been found in 47%of GCs.Whole-genome sequencing and whole-transcriptome sequencing analyses have also discovered novel alterations in GC.Recent studies of cancer epigenetics have revealed widespread alterations in genes involved in the epigenetic machinery,such as DNA methylation,histone modifications,nucleosome positioning,noncoding RNAs and microRNAs.Recent advances in molecular research on GC have resulted in the introduction of new diagnostic and therapeutic strategies into clinical settings.The antihuman epidermal growth receptor 2(HER2)antibody trastuzumab has led to an era of personalized therapy in GC.In addition,ramucirumab,a monoclonal antibody targeting vascular endothelial growth factor receptor(VEGFR)-2,is the first biological treatment that showed survival benefits as a single-agent therapy in patients with advanced GC who progressed after firstline chemotherapy.Using NGS to systematically identify gene alterations in GC is a promising approach with remarkable potential for investigating the pathogenesis of GC and identifying novel therapeutic targets,as well as useful biomarkers.In this review,we will summarize the recent advances in the understanding of the molecular pathogenesis of GC,focusing on the potential use of these genetic and epigenetic alterations as diagnostic biomarkers and novel therapeutic targets.展开更多
Over the past decade, there has been a growing realization that studying the small RNA transcriptome is essential for understanding the complexity of transcriptional regulation. With an increased throughput and a redu...Over the past decade, there has been a growing realization that studying the small RNA transcriptome is essential for understanding the complexity of transcriptional regulation. With an increased throughput and a reduced cost, next-generation sequencing technology has provided an unprecedented opportunity to measure the extent and complexity of small RNA transcriptome. Meanwhile, the large amount of obtained data and varied technology platforms have also posed multiple challenges for effective data analysis and mining. To provide some insight into the small RNA transcriptome investigation, this review describes the major small RNA classes, experimental methods to identify small RNAs, and available bioinformatics tools and databases.展开更多
A large proportion of patients with idiopathic spermatogenic failure(SPGF;oligozoospermia or nonobstructive azoospermia[NOA])do not receive a diagnosis despite an extensive diagnostic workup.Recent evidence has shown ...A large proportion of patients with idiopathic spermatogenic failure(SPGF;oligozoospermia or nonobstructive azoospermia[NOA])do not receive a diagnosis despite an extensive diagnostic workup.Recent evidence has shown that the etiology remains undefined in up to 75%of these patients.A number of genes involved in germ-cell proliferation,spermatocyte meiotic divisions,and spermatid development have been called into play in the pathogenesis of idiopathic oligozoospermia or NOA.However,this evidence mainly comes from case reports.Therefore,this study was undertaken to identify the molecular causes of SPGF.To accomplish this,15 genes(USP9Y,NR5A1,KLHL10,ZMYND15,PLK4,TEX15,TEX11,MEIOB,SOHLH1,HSF2,SYCP3,TAF4B,NANOS1,SYCE1,and RHOXF2)involved in idiopathic SPGF were simultaneously analyzed in a cohort of 25 patients with idiopathic oligozoospermia or NOA,accurately selected after a thorough diagnostic workup.After next-generation sequencing(NGS)analysis,we identified the presence of rare variants in the NR5A1 and TEX11 genes with a pathogenic role in 3/25(12.0%)patients.Seventeen other different variants were identified,and among them,13 have never been reported before.Eleven out of 17 variants were likely pathogenic and deserve functional or segregation studies.The genes most frequently mutated were MEIOB,followed by USP9Y,KLHL10,NR5A1,and SOHLH1.No alterations were found in the SYCP3,TAF4B,NANOS1,SYCE1,or RH0XF2 genes.In conclusion,NGS technology,by screening a specific custom-made panel of genes,could help increase the diagnostic rate in patients with idiopathic oligozoospermia or NOA.展开更多
BACKGROUND Visceral leishmaniasis(VL)is a parasitic disease caused by Leishmania and transmitted by infected sand flies.VL has a low incidence in China,and its clinical presentation is complex and atypical.This diseas...BACKGROUND Visceral leishmaniasis(VL)is a parasitic disease caused by Leishmania and transmitted by infected sand flies.VL has a low incidence in China,and its clinical presentation is complex and atypical.This disease is easily misdiagnosed and can become life-threatening within a short period of time.Therefore,early,rapid and accurate diagnosis and treatment of the disease are essential.CASE SUMMARY A 25-year-old male patient presented with the clinical manifestations of irregular fever,hepatosplenomegaly,increased polyclonal globulin,and pancytopenia.The first bone marrow puncture biopsy did not provide a clear diagnosis.In order to relieve the pressure and discomfort of the organs caused by the enlarged spleen and to confirm the diagnosis,splenectomy was performed,and hemophagocytic syndrome was diagnosed by pathological examination of the spleen biopsy.Following bone marrow and spleen pathological re-diagnosis and metagenomic next-generation sequencing(mNGS)technology detection,the patient was finally diagnosed with VL.After treatment with liposomal amphotericin B,the body temperature quickly returned to normal and the hemocytes recovered gradually.Post-treatment re-examination of the bone marrow puncture and mNGS data showed that Leishmania was not detected.CONCLUSION As a fast and accurate detection method,mNGS can diagnose and evaluate the efficacy of treatment in suspicious cases of leishmaniasis.展开更多
The application of next-generation sequencing (NGS) technology in cancer is influenced by the quality and purity of tissue samples. This issue is especially critical for patient-derived xenograft (PDX) models, whi...The application of next-generation sequencing (NGS) technology in cancer is influenced by the quality and purity of tissue samples. This issue is especially critical for patient-derived xenograft (PDX) models, which have proven to be by far the best preclinical tool for investigating human tumor biology, because the sensitivity and specificity of NGS analysis in xenograft samples would be compromised by the contamination of mouse DNA and RNA. This definitely affects downstream analyses by causing inaccurate mutation calling and gene expression estimates. The reliability of NGS data analysis for cancer xenograft samples is therefore highly dependent on whether the sequencing reads derived from the xenograft could be distinguished from those originated from the host. That is, each sequence read needs to be accurately assigned to its original species. Here, we review currently available methodologies in this field, including Xenome, Disambiguate, bamcmp and pdxBlacklist, and provide guidelines for users.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.31972983 and 32072487)the Key Technology R&D Program of Zhejiang Province,China(Grant No.2021C02006)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY23C140001).
文摘In rice fields,rice plants usually grow alongside wild weeds and are attacked by various invertebrate species.Viruses are abundant in plants and invertebrates,playing crucial ecological roles in controlling microbial abundance and maintaining community structures.To date,only 16 rice viruses have been documented in rice-growing regions.These viruses pose serious threats to rice production and have traditionally been identified only from rice plants and insect vectors by isolation techniques.Advances in next-generation sequencing(NGS)have made it feasible to discover viruses on a global scale.Recently,numerous viruses have been identified in plants and invertebrates using NGS technologies.In this review,we discuss viral studies in rice plants,invertebrate species,and weeds in rice fields.Many novel viruses have been discovered in rice ecosystems through NGS technologies,with some also detected using metatranscriptomic and small RNA sequencing.These analyses greatly expand our understanding of viruses in rice fields and provide valuable insights for developing efficient strategies to manage insect pests and virus-mediated rice diseases.
文摘This study investigates the diversity of gut microbiota in Metaphire peguana,an earthworm species commonly found in agricultural areas of Thailand.Earthworms play a critical role in soil ecosystems by supporting nutrient cycling and breaking down organic matter.Understanding the microbial diversity in their gut is essential for exploring their ecological contributions.Using Next Generation Sequencing(NGS),we analyzed the mycobiome in the gut of M.peguana.Our findings revealed a high diversity of fungal species,primarily belonging to two major phyla:Ascomycota and Basidiomycota.Ascomycota was the most abundant phylum,comprising 40.1% of the total fungal species identified.A total of 33 distinct fungal species were identified,which underscores the richness of microbial life within the earthworm gut.This study successfully created the first genetic database of the microbial community in M.peguana,providing a foundation for future research in agricultural applications.The microbial species identified,particularly siderophoreproducing fungi,could have significant implications for improving soil fertility and promoting sustainable agricultural practices.The use of NGS technology has enabled comprehensive profiling of microbial communities,allowing for precise identification of fungi that may play essential roles in soil health.Furthermore,the study paves the way for future studies on the potential applications of earthworm gut microbiomes in biotechnology,especially in enhancing soil nutrient availability and plant growth.The findings of this research contribute to the broader understanding of the ecological roles of earthworms and their microbiomes in soil ecosystems.
基金supported by the Hubei Provincial Natural Science Foundation of China(No.2023AFB646)Knowledge Innovation Program of Wuhan(No.2023020201010155)Educational Research Program of Huazhong University of Science and Technology(No.2022135).
文摘Objective and Background Early and accurate diagnosis of spinal infections,including spinal tuberculosis,is pivotal for effective treatment but remains challenging.This study aims to assess the diagnostic yield of metagenomic next-generation sequencing(mNGS)compared with that of conventional microbiological tests(CMTs)in identifying pathogens associated with spinal pathologies,with a special focus on infections leading to surgical interventions.Methods We enrolled 85 patients who underwent spinal surgery,comprising 63 patients with clinically diagnosed spinal infections,including patients with spinal tuberculosis,and 22 patients with noninfectious spinal conditions.The procedures involved irrigation and debridement for persistent wound drainage,with subsequent DNA extraction from plasma and joint fluid for mNGS and CMT analysis.Results Significantly increased C-reactive protein(CRP)levels were observed in patients with infections.The mNGS approach showed greater diagnostic sensitivity(92.06%)for detecting pathogens,including Mycobacterium tuberculosis,than did CMTs(36.51%).Despite its low specificity,mNGS had considerable negative predictive value(70.59%),underscoring its utility in ruling out infections.Conclusions The mNGS offers superior sensitivity over CMTs in the diagnosis of a variety of spinal infections,notably spinal tuberculosis.This study highlights the potential of mNGS in enhancing the diagnosis of complex spinal infections,thereby informing targeted treatment strategies.
文摘BACKGROUND Leuconostoc garlicum is commonly found in fermented foods and very few infected patients have been reported,who typically present symptoms such as fever and fatigue.Conventional clinical examinations often struggle to identify this bacterium,and routine anti-infective treatments are generally ineffective.Both diagnostic challenges and therapeutic limitations pose significant difficulties for clinicians.CASE SUMMARY We report a patient ultimately diagnosed with Leuconostoc garlicum infection.The primary manifestations included persistent fever,cough and fatigue.These symptoms lasted for 2 months.He received anti-infective treatment at a community hospital,but this was ineffective.After inquiring about the patient's medical history and conducting a physical examination,the patient underwent laboratory tests.Complete blood count tests revealed that the patient had a high proportion of neutrophils,C-reactive protein level was 235.9 mg/L,erythrocyte sedimentation rate was 67 mm/h,respiratory pathogen testing was negative,and he was then thought to have an infectious disease.However,conventional anti-infective treatments were ineffective.After excluding infectious neurological diseases,urologic diseases and digestive problems,we ultimately focused our attention on the lungs.A lung computed tomography scan indicated pulmonary inflammation.Bronchoalveolar lavage fluid for next-generation sequencing suggested lung infection with Leuconostoc garlicum.The patient's symptoms gradually improved following treatment with piperacillin tazobactam and linezolid.During the follow-up period,the patient's temperature remained normal.CONCLUSION For patients with suspected bacterial infection and experiencing fever,conventional anti-infective treatment can be ineffective in controlling their symptoms,and an infection due to rare bacteria or drug-resistant bacteria should be considered.Next-generation sequencing enables rapid and precise identification of infection-related pathogens in febrile patients.
基金financially supported by the National Natural Science Foundation of China (32161143033, 32272178, and 32001574)National Key Research and Development Program of China (2021YFD1201605)the Agricultural Science and Technology Innovation Project of CAAS。
文摘The improvement of soybean seed carotenoid contents is very important due to the beneficial role of carotenoids in human health and nutrition. However, the genetic architecture underlying soybean carotenoid biosynthesis remains largely unknown. In the present study, we employed next generation sequencing-based bulked-segregant analysis to identify new genomic regions governing seed carotenoids in 1,551 natural soybean accessions. The genomic DNA samples of individual plants with extreme phenotypes were pooled to form two bulks with high(50 accessions) and low(50 accessions) carotenoid contents for Illumina sequencing. A total of 125.09 Gb of clean bases and 89.82% of Q30 were obtained, and the average alignment efficiency was 99.45% with an average coverage depth of 62.20× and 99.75% genome coverage. Based on the G prime statistic algorithm(G') method analysis, 16 candidate genomic loci with a total length 20.41 Mb were found to be related to the trait. Of these loci, the most significant regions displaying the highest elevated G' values were found in chromosome 06 at a position of 18.53–22.67 Mb, and chromosome 19 at genomic region intervals of 8.36–10.94, 12.06–13.79 and 18.45–20.26 Mb. These regions were then used to identify the key candidate genes. In these regions, 250 predicted genes were found and analyzed to obtain 90 significantly enriched(P<0.05) Gene Ontology(GO) terms. Based on ANNOVAR analysis, 50 genes with non-synonymous and stopgained mutations were preferentially selected as potential candidate genes. Of those 50 genes, following their gene annotation functions and high significant haplotype variations in various environments,five genes were identified as the most promising candidate genes regulating soybean seed carotenoid accumulation, and they should be investigated in further functional validation studies. Collectively, understanding the genetic basis of carotenoid pigments and identifying genes underpinning carotenoid accumulation via a bulked-segregant analysis-based sequencing(BSA-seq) approach provide new insights for exploring future molecular breeding efforts to produce soybean cultivars with high carotenoid content.
基金supported by the Medicine and Health,Science and Technology Plan Project of Zhejiang(Nos.2020KY1009 and 2021KY387)the Jinhua Science and Technology Planning Project Social Development Key Project(No.2021-3-072),China.
文摘Infectious diseases are a great threat to human health.Rapid and accurate detection of pathogens is important in the diagnosis and treatment of infectious diseases.Metagenomics next-generation sequencing(mNGS)is an unbiased and comprehensive approach for detecting all RNA and DNA in a sample.With the development of sequencing and bioinformatics technologies,mNGS is moving from research to clinical application,which opens a new avenue for pathogen detection.Numerous studies have revealed good potential for the clinical application of mNGS in infectious diseases,especially in difficult-to-detect,rare,and novel pathogens.However,there are several hurdles in the clinical application of mNGS,such as:(1)lack of universal workflow validation and quality assurance;(2)insensitivity to high-host background and low-biomass samples;and(3)lack of standardized instructions for mass data analysis and report interpretation.Therefore,a complete understanding of this new technology will help promote the clinical application of mNGS to infectious diseases.This review briefly introduces the history of next-generation sequencing,mainstream sequencing platforms,and mNGS workflow,and discusses the clinical applications of mNGS to infectious diseases and its advantages and disadvantages.
文摘Objective This study aimed to explore the diagnostic value of novel technique-targeted next-generation sequencing(tNGS)of bronchoalveolar lavage fluid(BALF)in pulmonary mycobacterial infections.Methods This retrospective study was conducted on patients who underwent bronchoscopy and tNGS,smear microscopy,and mycobacterial culture of BALF.Patients with positive Mycobacterium tuberculosis(MTB)culture or GeneXpert results were classified into the tuberculosis case group.Those diagnosed with nontuberculous mycobacteria(NTM)-pulmonary disease(NTM-PD)composed the case group of NTM-PD patients.The control group comprised patients without tuberculosis or NTM-PD.Sensitivity,specificity,and receiver operating characteristic(ROC)curves were used to evaluate the diagnostic performance.Results For tuberculosis patients with positive mycobacterial culture results,the areas under the ROC curves(AUCs)for tNGS,GeneXpert,and smear microscopy were 0.975(95%CI:0.935,1.000),0.925(95%CI:0.859,0.991),and 0.675(95%CI:0.563,0.787),respectively.For tuberculosis patients with positive GeneXpert results,the AUCs of tNGS,culture,and smear microscopy were 0.970(95%CI:0.931,1.000),0.850(95%CI:0.770,0.930),and 0.680(95%CI:0.579,0.781),respectively.For NTM-PD,the AUCs of tNGS,culture,and smear-positive but GeneXpert-negative results were 0.987(95%CI:0.967,1.000),0.750(95%CI:0.622,0.878),and 0.615(95%CI:0.479,0.752),respectively.The sensitivity and specificity of tNGS in NTM-PD patients were 100%and 97.5%,respectively.Conclusion tNGS demonstrated superior diagnostic efficacy in mycobacterial infection,indicating its potential for clinical application.
基金supported by National Natural Science Foundation of China(72274067)。
文摘BACKGROUND:Prompt pathogen identification can have a substantial impact on the optimization of antimicrobial treatment.The objective of the study was to assess the diagnostic value of next-generation sequencing(NGS)for identifying pathogen and its clinical impact on antimicrobial intervention in immunocompromised patients with suspected infections.METHODS:This was a retrospective study.Between January and August 2020,47 adult immunocompromised patients underwent NGS testing under the following clinical conditions:1)prolonged fever and negative conventional cultures;2)new-onset fever despite empiric antimicrobial treatment;and 3)afebrile with suspected infections on imaging.Clinical data,including conventional microbial test results and antimicrobial treatment before and after NGS,were collected.Data were analyzed according to documented changes in antimicrobial treatment(escalated,no change,or deescalated)after the NGS results.RESULTS:The median time from hospitalization to NGS sampling was 19 d.Clinically relevant pathogens were detected via NGS in 61.7% of patients(29/47),more than half of whom suffered from fungemia(n=17),resulting in an antimicrobial escalation in 53.2% of patients(25/47)and antimicrobial de-escalation in 0.2% of patients(1/47).Antimicrobial changes were mostly due to the identification of fastidious organisms such as Legionella,Pneumocystis jirovecii,and Candida.In the remaining three cases,NGS detected clinically relevant pathogens also detected by conventional cultures a few days later.The antimicrobial treatment was subsequently adjusted according to the susceptibility test results.Overall,NGS changed antimicrobial management in 55.3%(26/47)of patients,and conventional culture detected clinically relevant pathogens in 14.9% of the patients(7/47).CONCLUSION:With its rapid identification and high sensitivity,NGS could be a promising tool for identifying relevant pathogens and enabling rapid appropriate treatment in immunocompromised patients with suspected infections.
文摘BACKGROUND Brain abscess is a serious and potentially fatal disease caused primarily by microbial infection.Although progress has been made in the diagnosis and treatment of brain abscesses,the diagnostic timeliness of pathogens needs to be improved.CASE SUMMARY We report the case of a 54-year-old male with a brain abscess caused by oral bacteria.The patient recovered well after receiving a combination of metagenomic next-generation sequencing(mNGS)-assisted guided medication and surgery.CONCLUSION Therefore,mNGS may be widely applied to identify the pathogenic microor-ganisms of brain abscesses and guide precision medicine.
基金This study was funded by Science and Technology Projects in Guangzhou(No.202002030023).
文摘Background:For patients with lung cancer,timely identification of new lung lesions as infectious or non-infectious,and accurate identification of pathogens is very important in improving OS of patients.As a new auxiliary examination,metagenomic next-generation sequencing(mNGS)is believed to be more accurate in diagnosing infectious diseases in patients without underlying diseases,compared with conventional microbial tests(CMTs).We designed this study tofind out whether mNGS has better performance in distinguishing infectious and non-infectious diseases in lung cancer patients using bronchoalveolar lavagefluid(BALF).Materials and Methods:This study was a real-world retrospective review based on electronic medical records of lung cancer patients with bronchoalveolar lavage(BAL)and BALF commercial mNGS testing as part of clinical care from 1 April 2019 through 30 April 2022 at The First Affiliated Hospital of Sun Yat-sen University.164 patients were included in this study.Patients were categorized into the pulmonary non-infectious disease(PNID)group(n=64)and the pulmonary infectious disease(PID)group(n=100)groups based onfinal diagnoses.Results:BALF mNGS increased the sensitivity rate by 60%compared to CMTs(81%vs.21%,p<0.05),whereas there was no significant difference in specificity(75%vs.98.4%,p>0.1).Among the patients with PID,bacteria were the most common cause of infection.Fungal infections occurred in 32%of patients,and Pneumocystis Yersini was most common.Patients with Tyrosine kinase inhibitors(TKIs)therapy possess longer overall survival(OS)than other anti-cancer agents,the difference between TKIs and immuno-checkpoint inhibitors(ICIs)was insignificant(median OS TKIs vs.ICIs vs.Anti-angiogenic vs.Chemo vs.Radiotherapy=76 vs.84 vs.61 vs.58 vs.60).Conclusions:our study indicates that BALF mNGS can add value by improving overall sensitivity in lung cancer patients with potential pulmonary infection,and was outstanding in identifying Pneumocystis infection.It could be able to help physicians adjust the follow-up treatment to avoid the abuse of antibiotics.
基金Supported by The National Natural Science Foundation of China,No.82100631.
文摘BACKGROUND Mycobacterium houstonense(M.houstonense)belongs to the nontuberculous mycobacterium group.Infection caused by M.houstonense is prone to recurrence.CASE SUMMARY We present a patient who was diagnosed with osteomyelitis caused by M.houstonense and treated with a combination of cefoxitin,and amikacin combined with linezolid.CONCLUSION The emergence of metagenomic next-generation sequencing(NGS)has brought new hope for the diagnosis and treatment of listeria meningitis.NGS can analyze a large number of nucleic acid sequences in a short time and quickly determine the pathogen species in the sample.Compared with traditional cerebrospinal fluid culture,NGS can greatly shorten the diagnosis time and provide strong support for the timely treatment of patients.Regarding treatment,NGS can also play an important role.Rapid and accurate diagnosis can enable patients to start targeted treatment as soon as possible and improve the treatment effect.At the same time,by monitoring the changes in pathogen resistance,the treatment plan can be adjusted in time to avoid treatment failure.
基金Baoding Science and Technology Program Project:“Clinical Study Analysis on the Effect of Vitamin D Supplementation in Improving Prognosis of Elderly Patients with H-type Hypertension”(Project No.2341ZF140)。
文摘Query fever(Q fever)is a globally spread zoonotic disease caused by Coxiella burnetii,commonly found in natural foci but rarely seen in Hebei Province.The clinical manifestations of Q fever are diverse and nonspecific,which often leads to missed or incorrect diagnoses in clinical practice.This article reports a case of acute Q fever diagnosed in an elderly patient using metagenomic next-generation sequencing.
基金supported by NINDS/NIH(JZ),Coldwell Foundation(JZ) and TTUHSC(JZ)
文摘This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future platforms and bioinformatics. NGS technologies have demon- strated the capacity to sequence DNA at unprecedented speed, thereby enabling previously unimaginable scientific achievements and novel biological applications. But, the massive data produced by NGS also presents a significant challenge for data storage, analyses, and management solutions. Advanced bioinformatic tools are essential for the successful application of NGS technology. As evidenced throughout this review, NGS technologies will have a striking impact on genomic research and the entire biological field. With its ability to tackle the unsolved challenges unconquered by previous genomic technologies, NGS is likely to unravel the complexity of the human genome in terms of genetic variations, some of which may be confined to susceptible loci for some common human conditions. The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come.
基金supported by grants from Scienceand Technology Committee of Shanghai (18411951400)KeyClinical Medical Specialties Project in Shanghai Pudong NewArea (PWZzk2017-22)+1 种基金Science and Technology Action Plan(19495810200)Leading Talent Project in Shanghai Pudong NewArea Health System (PWRl2018-08).
文摘BACKGROUND: The study aims to investigate the performance of a metagenomic next-generationsequencing (NGS)-based diagnostic technique for the identifi cation of potential bacterial and viral infectionsand eff ects of concomitant viral infection on the survival rate of intensive care unit (ICU) sepsis patients.METHODS: A total of 74 ICU patients with sepsis who were admitted to our institution from February1, 2018 to June 30, 2019 were enrolled. Separate blood samples were collected from patients for bloodcultures and metagenomic NGS when the patients’ body temperature was higher than 38 °C. Patients’demographic data, including gender, age, ICU duration, ICU scores, and laboratory results, were recorded.The correlations between pathogen types and sepsis severity and survival rate were evaluated.RESULTS: NGS produced higher positive results (105 of 118;88.98%) than blood cultures(18 of 118;15.25%) over the whole study period. Concomitant viral infection correlated closelywith sepsis severity and had the negative effect on the survival of patients with sepsis. However,correlation analysis indicated that the bacterial variety did not correlate with the severity of sepsis.CONCLUSIONS: Concurrent viral load correlates closely with the severity of sepsis and thesurvival rate of the ICU sepsis patients. This suggests that prophylactic administration of antiviraldrugs combined with antibiotics may be benefi cial to ICU sepsis patients.
基金supported by grants awarded to Yuanqing Yao by the Key Program of the "Twelfth Five-year plan" of People’s liberation Army(No.BWS11J058)the National High Technology Research and Development Program(SS2015AA020402)
文摘Reliable and accurate pre-implantation genetic diagnosis (PGD) of patient's embryos by next-generation sequencing (NGS) is dependent on efficient whole genome amplification (WGA) of a representative biopsy sample. However, the performance of the current state of the art WGA methods has not been evaluated for sequencing. Using low template DNA (15 pg) and single cells, we showed that the two PCR-based WGA systems SurePlex and MALBAC are superior to the REPLI-g WGA multiple displacement amplification (MDA) system in terms of consistent and reproducible genome coverage and sequence bias across the 24 chromosomes, allowing better normalization of test to reference sequencing data. When copy number variation sequencing (CNV-Seq) was applied to single cell WGA products derived by either SurePlex or MALBAC amplification, we showed that known disease CNVs in the range of 3-15 Mb could be reliably and accurately detected at the correct genomic positions. These findings indicate that our CNV-Seq pipeline incorporating either SurePlex or MALBAC as the key initial WGA step is a powerful methodology for clinical PGD to identify euploid embryos in a patient's cohort for uterine transplantation,
基金Supported by Grants-in-Aid for Scientific Research from the Ministry of Education,Culture,Sports,Science and Technology of Japan
文摘Gastric cancer(GC)is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide.There is an increasing understanding of the roles that genetic and epigenetic alterations play in GCs.Recent studies using nextgeneration sequencing(NGS)have revealed a number of potential cancer-driving genes in GC.Whole-exome sequencing of GC has identified recurrent somatic mutations in the chromatin remodeling gene ARID1A and alterations in the cell adhesion gene FAT4,a member of the cadherin gene family.Mutations in chromatin remodeling genes(ARID1A,MLL3 and MLL)have been found in 47%of GCs.Whole-genome sequencing and whole-transcriptome sequencing analyses have also discovered novel alterations in GC.Recent studies of cancer epigenetics have revealed widespread alterations in genes involved in the epigenetic machinery,such as DNA methylation,histone modifications,nucleosome positioning,noncoding RNAs and microRNAs.Recent advances in molecular research on GC have resulted in the introduction of new diagnostic and therapeutic strategies into clinical settings.The antihuman epidermal growth receptor 2(HER2)antibody trastuzumab has led to an era of personalized therapy in GC.In addition,ramucirumab,a monoclonal antibody targeting vascular endothelial growth factor receptor(VEGFR)-2,is the first biological treatment that showed survival benefits as a single-agent therapy in patients with advanced GC who progressed after firstline chemotherapy.Using NGS to systematically identify gene alterations in GC is a promising approach with remarkable potential for investigating the pathogenesis of GC and identifying novel therapeutic targets,as well as useful biomarkers.In this review,we will summarize the recent advances in the understanding of the molecular pathogenesis of GC,focusing on the potential use of these genetic and epigenetic alterations as diagnostic biomarkers and novel therapeutic targets.
基金supported by the National High Technology Research and Development Program of China(No. 2006AA02A304)Major State Basic Research Development Program of China(No.2007CB512302)
文摘Over the past decade, there has been a growing realization that studying the small RNA transcriptome is essential for understanding the complexity of transcriptional regulation. With an increased throughput and a reduced cost, next-generation sequencing technology has provided an unprecedented opportunity to measure the extent and complexity of small RNA transcriptome. Meanwhile, the large amount of obtained data and varied technology platforms have also posed multiple challenges for effective data analysis and mining. To provide some insight into the small RNA transcriptome investigation, this review describes the major small RNA classes, experimental methods to identify small RNAs, and available bioinformatics tools and databases.
文摘A large proportion of patients with idiopathic spermatogenic failure(SPGF;oligozoospermia or nonobstructive azoospermia[NOA])do not receive a diagnosis despite an extensive diagnostic workup.Recent evidence has shown that the etiology remains undefined in up to 75%of these patients.A number of genes involved in germ-cell proliferation,spermatocyte meiotic divisions,and spermatid development have been called into play in the pathogenesis of idiopathic oligozoospermia or NOA.However,this evidence mainly comes from case reports.Therefore,this study was undertaken to identify the molecular causes of SPGF.To accomplish this,15 genes(USP9Y,NR5A1,KLHL10,ZMYND15,PLK4,TEX15,TEX11,MEIOB,SOHLH1,HSF2,SYCP3,TAF4B,NANOS1,SYCE1,and RHOXF2)involved in idiopathic SPGF were simultaneously analyzed in a cohort of 25 patients with idiopathic oligozoospermia or NOA,accurately selected after a thorough diagnostic workup.After next-generation sequencing(NGS)analysis,we identified the presence of rare variants in the NR5A1 and TEX11 genes with a pathogenic role in 3/25(12.0%)patients.Seventeen other different variants were identified,and among them,13 have never been reported before.Eleven out of 17 variants were likely pathogenic and deserve functional or segregation studies.The genes most frequently mutated were MEIOB,followed by USP9Y,KLHL10,NR5A1,and SOHLH1.No alterations were found in the SYCP3,TAF4B,NANOS1,SYCE1,or RH0XF2 genes.In conclusion,NGS technology,by screening a specific custom-made panel of genes,could help increase the diagnostic rate in patients with idiopathic oligozoospermia or NOA.
基金by National Nature Science Foundation of China,No.81401321Basic Public Welfare Research Project of Zhejiang Province,No.LGF19H080002+1 种基金Science Research Project of Medicine and Hygiene of Zhejiang Province,No.2018PY052Public Welfare Science and Technology Project of Ningbo,No.2019C50068。
文摘BACKGROUND Visceral leishmaniasis(VL)is a parasitic disease caused by Leishmania and transmitted by infected sand flies.VL has a low incidence in China,and its clinical presentation is complex and atypical.This disease is easily misdiagnosed and can become life-threatening within a short period of time.Therefore,early,rapid and accurate diagnosis and treatment of the disease are essential.CASE SUMMARY A 25-year-old male patient presented with the clinical manifestations of irregular fever,hepatosplenomegaly,increased polyclonal globulin,and pancytopenia.The first bone marrow puncture biopsy did not provide a clear diagnosis.In order to relieve the pressure and discomfort of the organs caused by the enlarged spleen and to confirm the diagnosis,splenectomy was performed,and hemophagocytic syndrome was diagnosed by pathological examination of the spleen biopsy.Following bone marrow and spleen pathological re-diagnosis and metagenomic next-generation sequencing(mNGS)technology detection,the patient was finally diagnosed with VL.After treatment with liposomal amphotericin B,the body temperature quickly returned to normal and the hemocytes recovered gradually.Post-treatment re-examination of the bone marrow puncture and mNGS data showed that Leishmania was not detected.CONCLUSION As a fast and accurate detection method,mNGS can diagnose and evaluate the efficacy of treatment in suspicious cases of leishmaniasis.
基金supported by the grants from the National Natural Science Foundation of China(Nos.,81672736 and 91529302)the Shanghai Industrial Technology Institute(17CXXF008)+3 种基金the Shanghai Sailing Program(16YF1408600)the Shanghai Municipal Commission of Science and Technology(14DZ2252000)the administrative committee of Shanghai Zhangjiang Hi-Teck Park(2016e08)the Medical engineering cross fund of Shanghai Jiao Tong University(YG2015QN27)
文摘The application of next-generation sequencing (NGS) technology in cancer is influenced by the quality and purity of tissue samples. This issue is especially critical for patient-derived xenograft (PDX) models, which have proven to be by far the best preclinical tool for investigating human tumor biology, because the sensitivity and specificity of NGS analysis in xenograft samples would be compromised by the contamination of mouse DNA and RNA. This definitely affects downstream analyses by causing inaccurate mutation calling and gene expression estimates. The reliability of NGS data analysis for cancer xenograft samples is therefore highly dependent on whether the sequencing reads derived from the xenograft could be distinguished from those originated from the host. That is, each sequence read needs to be accurately assigned to its original species. Here, we review currently available methodologies in this field, including Xenome, Disambiguate, bamcmp and pdxBlacklist, and provide guidelines for users.