Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
This paper addresses the computational problem of fixed-interval smoothing state estimation in linear time-varying Gaussian stochastic systems.A new fixed-interval Kalman smoothing algorithm is proposed,and the corres...This paper addresses the computational problem of fixed-interval smoothing state estimation in linear time-varying Gaussian stochastic systems.A new fixed-interval Kalman smoothing algorithm is proposed,and the corresponding form of the smoother is derived.The method is able to accommodate situations where process and measurement noises are correlated,a limitation often encountered in conventional approaches.The Kalman smoothing problem discussed in this paper can be reformulated as an equivalent constrained optimization problem,where the solution corresponds to a set of linear equations defined by a specific co-efficient matrix.Through multiple permutations,the co-efficient matrix of linear equations is transformed into a block tridiagonal form,and then both sides of the linear system are multiplied by the inverse of the co-efficient matrix.This approach is based on the transformation of linear systems described in the SPIKE algorithm and is particularly well-suited for large-scale sparse block tridiagonal matrix structures.It enables efficient,parallel,and flexible solutions while maintaining a certain degree of block diagonal dominance.Compared to directly solving block tridiagonal co-efficient matrices,this method demonstrates appreciable advantages in terms of numerical stability and computational efficiency.Consequently,the new smoothing algorithm yields a new smoother that features fewer constraints and broader applicability than traditional methods.The estimates,such as smoothed state,covariance,and cross-covariance,are essential for fields,such as system identification,navigation,guidance,and control.Finally,the effectiveness of the proposed smoothing algorithm and smoother is validated through numerical simulations.展开更多
For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FC...For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FCM and particle swarm optimization(PSO)clustering algorithm,and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined with particle swarm optimization(AF-APSO).The experiment shows that the AF-APSO can avoid local optima,and get the best fitness and clustering performance significantly.展开更多
In this paper, Noblesse's New Slender-Ship Wave-Making Theory was investigated numerically. Detailed expressions of zeroth and lst order wave resistance have been derived and calculation programs have also been co...In this paper, Noblesse's New Slender-Ship Wave-Making Theory was investigated numerically. Detailed expressions of zeroth and lst order wave resistance have been derived and calculation programs have also been compiled. In the single and double integral terms of Green function, the kernel function of wave resistance expression, special function expansion method and Chebyshev polynomials approach have been adopted respectively, which greatly simplify the calculation and increase the convergence speed.展开更多
In order to improve the attack efficiency of the New FORK-256 function, an algorithm based on Grover's quantum search algorithm and birthday attack is proposed. In this algorithm, finding a collision for arbitrary...In order to improve the attack efficiency of the New FORK-256 function, an algorithm based on Grover's quantum search algorithm and birthday attack is proposed. In this algorithm, finding a collision for arbitrary hash function only needs O(2m/3) expected evaluations, where m is the size of hash space value. It is proved that the algorithm can obviously improve the attack efficiency for only needing O(2 74.7) expected evaluations, and this is more efficient than any known classical algorithm, and the consumed space of the algorithm equals the evaluation.展开更多
At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for ident...At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for identifying high-risk scenarios of interlocking faults in new energy power grids based on a deep embedding clustering(DEC)algorithm and apply it in a risk assessment of cascading failures in different operating scenarios for new energy power grids.First,considering the real-time operation status and system structure of new energy power grids,the scenario cascading failure risk indicator is established.Based on this indicator,the risk of cascading failure is calculated for the scenario set,the scenarios are clustered based on the DEC algorithm,and the scenarios with the highest indicators are selected as the significant risk scenario set.The results of simulations with an example power grid show that our method can effectively identify scenarios with a high risk of cascading failures from a large number of scenarios.展开更多
针对雾霾天气下视频监控图像出现的细节缺失、色彩暗淡和亮度降低等问题,目前现有的图像去雾算法在视频监控场景中往往难以同时满足去雾效果和实时处理的要求。为了恢复出质量更高的无雾图像,文章在传统AOD-Net算法中引入Squeeze and Ex...针对雾霾天气下视频监控图像出现的细节缺失、色彩暗淡和亮度降低等问题,目前现有的图像去雾算法在视频监控场景中往往难以同时满足去雾效果和实时处理的要求。为了恢复出质量更高的无雾图像,文章在传统AOD-Net算法中引入Squeeze and Excitation机制,以自适应的方式分配通道权重,同时引入金字塔池化模块,扩大网络感受野,最终采用复合损失函数,以均衡考虑图像的边缘特征及纹理细节。同时,此系统以Zynq作为实现平台,使用Vivado HLS进行接口为AXI4-Stream的新型AOD-Net算法IP核的开发,使用PL端作为算法的实现单元,PS端作为控制核心,充分发挥异构SoC的架构优势。实验结果表明:基于Zynq平台下的新型AOD-Net算法,图像去雾效果显著,信噪比极值优化了2.45 dB,结构匹配度提升至91.2%,降低了雾霾天气对视频监控图像的影响。展开更多
Clastic rock reservoir is the main reservoir type in the oil and gas field.Archie formula or various conductive models developed on the basis of Archie’s formula are usually used to interpret this kind of reservoir,a...Clastic rock reservoir is the main reservoir type in the oil and gas field.Archie formula or various conductive models developed on the basis of Archie’s formula are usually used to interpret this kind of reservoir,and the three-water model is widely used as well.However,there are many parameters in the threewater model,and some of them are difficult to determine.Most of the determination methods are based on the statistics of large amount of experimental data.In this study,the authors determine the value of the parameters of the new three-water model based on the nuclear magnetic data and the genetic optimization algorithm.The relative error between the resistivity calculated based on these parameters and the resistivity measured experimentally at 100%water content is 0.9024.The method studied in this paper can be easily applied without much experimental data.It can provide reference for other regions to determine the parameters of the new three-water model.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
针对新能源电力系统中源荷不确定性导致的系统调度灵活性严重不足问题,文中提出了一种考虑源荷不确定性的电力系统两阶段鲁棒优化模型。根据源荷不确定性特征,结合K-means法和鲁棒优化理论,在多时间尺度对电力系统灵活性需求进行量化。...针对新能源电力系统中源荷不确定性导致的系统调度灵活性严重不足问题,文中提出了一种考虑源荷不确定性的电力系统两阶段鲁棒优化模型。根据源荷不确定性特征,结合K-means法和鲁棒优化理论,在多时间尺度对电力系统灵活性需求进行量化。首先,建立日前鲁棒调度模型,充分挖掘火电机组、抽水蓄能等资源的灵活调节潜力,将火电灵活改造及抽水蓄能抽发状态作为模型的第一阶段决策变量,各灵活资源的出力作为第二阶段决策变量,并以灵活改造成本、碳排放成本及运行成本最小为优化目标。其次,在模型求解中,将所建立的两阶段鲁棒模型转化为相对独立的主问题和子问题,并采用列与约束生成(column and constraint generation,C&CG)算法和强对偶理论反复迭代,以逼近最优解。最后,通过算例验证,所提出的优化调度策略在满足灵活性需求的基础上,统筹各类资源,实现了系统中经济性、环保性、灵活性的均衡,并增强了对源荷不确定性风险的抵御能力。展开更多
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
文摘This paper addresses the computational problem of fixed-interval smoothing state estimation in linear time-varying Gaussian stochastic systems.A new fixed-interval Kalman smoothing algorithm is proposed,and the corresponding form of the smoother is derived.The method is able to accommodate situations where process and measurement noises are correlated,a limitation often encountered in conventional approaches.The Kalman smoothing problem discussed in this paper can be reformulated as an equivalent constrained optimization problem,where the solution corresponds to a set of linear equations defined by a specific co-efficient matrix.Through multiple permutations,the co-efficient matrix of linear equations is transformed into a block tridiagonal form,and then both sides of the linear system are multiplied by the inverse of the co-efficient matrix.This approach is based on the transformation of linear systems described in the SPIKE algorithm and is particularly well-suited for large-scale sparse block tridiagonal matrix structures.It enables efficient,parallel,and flexible solutions while maintaining a certain degree of block diagonal dominance.Compared to directly solving block tridiagonal co-efficient matrices,this method demonstrates appreciable advantages in terms of numerical stability and computational efficiency.Consequently,the new smoothing algorithm yields a new smoother that features fewer constraints and broader applicability than traditional methods.The estimates,such as smoothed state,covariance,and cross-covariance,are essential for fields,such as system identification,navigation,guidance,and control.Finally,the effectiveness of the proposed smoothing algorithm and smoother is validated through numerical simulations.
基金the China Agriculture Research System(No.CARS-49)Jiangsu College of Humanities and Social Sciences Outside Campus Research Base & Chinese Development of Strategic Research Base for Internet of Things
文摘For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FCM and particle swarm optimization(PSO)clustering algorithm,and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined with particle swarm optimization(AF-APSO).The experiment shows that the AF-APSO can avoid local optima,and get the best fitness and clustering performance significantly.
文摘In this paper, Noblesse's New Slender-Ship Wave-Making Theory was investigated numerically. Detailed expressions of zeroth and lst order wave resistance have been derived and calculation programs have also been compiled. In the single and double integral terms of Green function, the kernel function of wave resistance expression, special function expansion method and Chebyshev polynomials approach have been adopted respectively, which greatly simplify the calculation and increase the convergence speed.
基金Supported by the National High Technology Research and Development Program(No.2011AA010803)the National Natural Science Foundation of China(No.U1204602)
文摘In order to improve the attack efficiency of the New FORK-256 function, an algorithm based on Grover's quantum search algorithm and birthday attack is proposed. In this algorithm, finding a collision for arbitrary hash function only needs O(2m/3) expected evaluations, where m is the size of hash space value. It is proved that the algorithm can obviously improve the attack efficiency for only needing O(2 74.7) expected evaluations, and this is more efficient than any known classical algorithm, and the consumed space of the algorithm equals the evaluation.
基金funded by the State Grid Limited Science and Technology Project of China,Grant Number SGSXDK00DJJS2200144.
文摘At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for identifying high-risk scenarios of interlocking faults in new energy power grids based on a deep embedding clustering(DEC)algorithm and apply it in a risk assessment of cascading failures in different operating scenarios for new energy power grids.First,considering the real-time operation status and system structure of new energy power grids,the scenario cascading failure risk indicator is established.Based on this indicator,the risk of cascading failure is calculated for the scenario set,the scenarios are clustered based on the DEC algorithm,and the scenarios with the highest indicators are selected as the significant risk scenario set.The results of simulations with an example power grid show that our method can effectively identify scenarios with a high risk of cascading failures from a large number of scenarios.
文摘针对雾霾天气下视频监控图像出现的细节缺失、色彩暗淡和亮度降低等问题,目前现有的图像去雾算法在视频监控场景中往往难以同时满足去雾效果和实时处理的要求。为了恢复出质量更高的无雾图像,文章在传统AOD-Net算法中引入Squeeze and Excitation机制,以自适应的方式分配通道权重,同时引入金字塔池化模块,扩大网络感受野,最终采用复合损失函数,以均衡考虑图像的边缘特征及纹理细节。同时,此系统以Zynq作为实现平台,使用Vivado HLS进行接口为AXI4-Stream的新型AOD-Net算法IP核的开发,使用PL端作为算法的实现单元,PS端作为控制核心,充分发挥异构SoC的架构优势。实验结果表明:基于Zynq平台下的新型AOD-Net算法,图像去雾效果显著,信噪比极值优化了2.45 dB,结构匹配度提升至91.2%,降低了雾霾天气对视频监控图像的影响。
文摘Clastic rock reservoir is the main reservoir type in the oil and gas field.Archie formula or various conductive models developed on the basis of Archie’s formula are usually used to interpret this kind of reservoir,and the three-water model is widely used as well.However,there are many parameters in the threewater model,and some of them are difficult to determine.Most of the determination methods are based on the statistics of large amount of experimental data.In this study,the authors determine the value of the parameters of the new three-water model based on the nuclear magnetic data and the genetic optimization algorithm.The relative error between the resistivity calculated based on these parameters and the resistivity measured experimentally at 100%water content is 0.9024.The method studied in this paper can be easily applied without much experimental data.It can provide reference for other regions to determine the parameters of the new three-water model.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
文摘针对新能源电力系统中源荷不确定性导致的系统调度灵活性严重不足问题,文中提出了一种考虑源荷不确定性的电力系统两阶段鲁棒优化模型。根据源荷不确定性特征,结合K-means法和鲁棒优化理论,在多时间尺度对电力系统灵活性需求进行量化。首先,建立日前鲁棒调度模型,充分挖掘火电机组、抽水蓄能等资源的灵活调节潜力,将火电灵活改造及抽水蓄能抽发状态作为模型的第一阶段决策变量,各灵活资源的出力作为第二阶段决策变量,并以灵活改造成本、碳排放成本及运行成本最小为优化目标。其次,在模型求解中,将所建立的两阶段鲁棒模型转化为相对独立的主问题和子问题,并采用列与约束生成(column and constraint generation,C&CG)算法和强对偶理论反复迭代,以逼近最优解。最后,通过算例验证,所提出的优化调度策略在满足灵活性需求的基础上,统筹各类资源,实现了系统中经济性、环保性、灵活性的均衡,并增强了对源荷不确定性风险的抵御能力。