期刊文献+
共找到199篇文章
< 1 2 10 >
每页显示 20 50 100
A Universal Activation Function for Deep Learning
1
作者 Seung-Yeon Hwang Jeong-Joon Kim 《Computers, Materials & Continua》 SCIE EI 2023年第5期3553-3569,共17页
Recently,deep learning has achieved remarkable results in fields that require human cognitive ability,learning ability,and reasoning ability.Activation functions are very important because they provide the ability of ... Recently,deep learning has achieved remarkable results in fields that require human cognitive ability,learning ability,and reasoning ability.Activation functions are very important because they provide the ability of artificial neural networks to learn complex patterns through nonlinearity.Various activation functions are being studied to solve problems such as vanishing gradients and dying nodes that may occur in the deep learning process.However,it takes a lot of time and effort for researchers to use the existing activation function in their research.Therefore,in this paper,we propose a universal activation function(UA)so that researchers can easily create and apply various activation functions and improve the performance of neural networks.UA can generate new types of activation functions as well as functions like traditional activation functions by properly adjusting three hyperparameters.The famous Convolutional Neural Network(CNN)and benchmark datasetwere used to evaluate the experimental performance of the UA proposed in this study.We compared the performance of the artificial neural network to which the traditional activation function is applied and the artificial neural network to which theUA is applied.In addition,we evaluated the performance of the new activation function generated by adjusting the hyperparameters of theUA.The experimental performance evaluation results showed that the classification performance of CNNs improved by up to 5%through the UA,although most of them showed similar performance to the traditional activation function. 展开更多
关键词 Deep learning activation function convolutional neural network benchmark datasets universal activation function
在线阅读 下载PDF
Multimodal Emotion Recognition with Transfer Learning of Deep Neural Network 被引量:2
2
作者 HUANG Jian LI Ya +1 位作者 TAO Jianhua YI Jiangyan 《ZTE Communications》 2017年第B12期23-29,共7页
Due to the lack of large-scale emotion databases,it is hard to obtain comparable improvement in multimodal emotion recognition of the deep neural network by deep learning,which has made great progress in other areas.W... Due to the lack of large-scale emotion databases,it is hard to obtain comparable improvement in multimodal emotion recognition of the deep neural network by deep learning,which has made great progress in other areas.We use transfer learning to improve its performance with pretrained models on largescale data.Audio is encoded using deep speech recognition networks with 500 hours’speech and video is encoded using convolutional neural networks with over 110,000 images.The extracted audio and visual features are fed into Long Short-Term Memory to train models respectively.Logistic regression and ensemble method are performed in decision level fusion.The experiment results indicate that 1)audio features extracted from deep speech recognition networks achieve better performance than handcrafted audio features;2)the visual emotion recognition obtains better performance than audio emotion recognition;3)the ensemble method gets better performance than logistic regression and prior knowledge from micro-F1 value further improves the performance and robustness,achieving accuracy of 67.00%for“happy”,54.90%for“an?gry”,and 51.69%for“sad”. 展开更多
关键词 DEEP neutral network ENSEMBLE method MULTIMODAL EMOTION recognition TRANSFER learning
在线阅读 下载PDF
大型企业E-learning项目运营体系研究——以国家电网公司网络大学为例
3
作者 谢正宁 惠亮 谢文全 《企业技术开发》 2016年第10期114-116,共3页
国内企业E-leaning发展飞速,国家电网公司也跟上节奏产生了丰富的成果,但在线学习的效果还有待提升。文章结合国内先进实践经验以及国家电网公司网络大学现状,提出个人的见解和思考。
关键词 E-learning项目 运营体系 网络大学
在线阅读 下载PDF
Rapid Fault Analysis by Deep Learning-Based PMU for Smart Grid System 被引量:1
4
作者 J.Shanmugapriya K.Baskaran 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1581-1594,共14页
Smart Grids(SG)is a power system development concept that has received significant attention nationally.SG signifies real-time data for specific communication requirements.The best capabilities for monitoring and control... Smart Grids(SG)is a power system development concept that has received significant attention nationally.SG signifies real-time data for specific communication requirements.The best capabilities for monitoring and controlling the grid are essential to system stability.One of the most critical needs for smart-grid execution is fast,precise,and economically synchronized measurements,which are made feasible by Phasor Measurement Units(PMU).PMUs can pro-vide synchronized measurements and measure voltages as well as current phasors dynamically.PMUs utilize GPS time-stamping at Coordinated Universal Time(UTC)to capture electric phasors with great accuracy and precision.This research tends to Deep Learning(DL)advances to design a Residual Network(ResNet)model that can accurately identify and classify defects in grid-connected systems.As part of fault detection and probe,the proposed strategy uses a ResNet-50 tech-nique to evaluate real-time measurement data from geographically scattered PMUs.As a result of its excellent signal classification efficiency and ability to extract high-quality signal features,its fault diagnosis performance is excellent.Our results demonstrate that the proposed method is effective in detecting and classifying faults at sufficient time.The proposed approaches classify the fault type with a precision of 98.5%and an accuracy of 99.1%.The long-short-term memory(LSTM),Convolutional Neural Network(CNN),and CNN-LSTM algo-rithms are applied to compare the networks.Real-world data tends to evaluate these networks. 展开更多
关键词 Smart grid phasor measurement units global positioning system coordinated universal time deep learning residual network–50
在线阅读 下载PDF
A survey and benchmark evaluation for neural-network-based lossless universal compressors toward multi-source data
5
作者 Hui SUN Huidong MA +7 位作者 Feng LING Haonan XIE Yongxia SUN Liping YI Meng YAN Cheng ZHONG Xiaoguang LIU Gang WANG 《Frontiers of Computer Science》 2025年第7期79-94,共16页
As various types of data grow explosively,largescale data storage,backup,and transmission become challenging,which motivates many researchers to propose efficient universal compression algorithms for multi-source data... As various types of data grow explosively,largescale data storage,backup,and transmission become challenging,which motivates many researchers to propose efficient universal compression algorithms for multi-source data.In recent years,due to the emergence of hardware acceleration devices such as GPUs,TPUs,DPUs,and FPGAs,the performance bottleneck of neural networks(NN)has been overcome,making NN-based compression algorithms increasingly practical and popular.However,the research survey for the NN-based universal lossless compressors has not been conducted yet,and there is also a lack of unified evaluation metrics.To address the above problems,in this paper,we present a holistic survey as well as benchmark evaluations.Specifically,i)we thoroughly investigate NNbased lossless universal compression algorithms toward multisource data and classify them into 3 types:static pre-training,adaptive,and semi-adaptive.ii)We unify 19 evaluation metrics to comprehensively assess the compression effect,resource consumption,and model performance of compressors.iii)We conduct experiments more than 4600 CPU/GPU hours to evaluate 17 state-of-the-art compressors on 28 real-world datasets across data types of text,images,videos,audio,etc.iv)We also summarize the strengths and drawbacks of NNbased lossless data compressors and discuss promising research directions.We summarize the results as the NN-based Lossless Compressors Benchmark(NNLCB,See fahaihi.github.io/NNLCB website),which will be updated and maintained continuously in the future. 展开更多
关键词 lossless compression benchmark evaluation universal compressors neural networks deep learning
原文传递
Real-time and universal network for volumetric imaging from microscale to macroscale at high resolution
6
作者 Bingzhi Lin Feng Xing +7 位作者 Liwei Su Kekuan Wang Yulan Liu Diming Zhang Xusan Yang Huijun Tan Zhijing Zhu Depeng Wang 《Light(Science & Applications)》 2025年第7期1851-1869,共19页
Light-field imaging has wide applications in various domains,including microscale life science imaging,mesoscale neuroimaging,and macroscale fluid dynamics imaging.The development of deep learning-based reconstruction... Light-field imaging has wide applications in various domains,including microscale life science imaging,mesoscale neuroimaging,and macroscale fluid dynamics imaging.The development of deep learning-based reconstruction methods has greatly facilitated high-resolution light-field image processing,however,current deep learning-based light-field reconstruction methods have predominantly concentrated on the microscale.Considering the multiscale imaging capacity of light-field technique,a network that can work over variant scales of light-field image reconstruction will significantly benefit the development of volumetric imaging.Unfortunately,to our knowledge,no one has reported a universal high-resolution light-field image reconstruction algorithm that is compatible with microscale,mesoscale,and macroscale.To fill this gap,we present a real-time and universal network(RTU-Net)to reconstruct high-resolution light-field images at any scale.RTU-Net,as the first network that works over multiscale light-field image reconstruction,employs an adaptive loss function based on generative adversarial theory and consequently exhibits strong generalization capability.We comprehensively assessed the performance of RTU-Net through the reconstruction of multiscale light-field images,including microscale tubulin and mitochondrion dataset,mesoscale synthetic mouse neuro dataset,and macroscale light-field particle imaging velocimetry dataset.The results indicated that RTU-Net has achieved real-time and high-resolution light-field image reconstruction for volume sizes ranging from 300μm×300μm×12μm to 25 mm×25 mm×25 mm,and demonstrated higher resolution when compared with recently reported light-field reconstruction networks.The high-resolution,strong robustness,high efficiency,and especially the general applicability of RTU-Net will significantly deepen our insight into high-resolution and volumetric imaging. 展开更多
关键词 fluid dynamics imagingthe deep learning life science imagingmesoscale neuroimagingand multiscale imaging real time reconstruction universal network network high resolution light field imaging
原文传递
An approach for full space inverse materials design by combining universal machine learning potential,universal property model,and optimization algorithm
7
作者 Guanjian Cheng Xin-Gao Gong Wan-Jian Yin 《Science Bulletin》 SCIE EI CAS CSCD 2024年第19期3066-3074,共9页
We present a full space inverse materials design(FSIMD)approach that fully automates the materials design for target physical properties without the need to provide the atomic composition,chemical stoichiometry,and cr... We present a full space inverse materials design(FSIMD)approach that fully automates the materials design for target physical properties without the need to provide the atomic composition,chemical stoichiometry,and crystal structure in advance.Here,we used density functional theory reference data to train a universal machine learning potential(UPot)and transfer learning to train a universal bulk modulus model(UBmod).Both UPot and UBmod were able to cover materials systems composed of any element among 42 elements.Interfaced with optimization algorithm and enhanced sampling,the FSIMD approach is applied to find the materials with the largest cohesive energy and the largest bulk modulus,respectively.NaCl-type ZrC was found to be the material with the largest cohesive energy.For bulk modulus,diamond was identified to have the largest value.The FSIMD approach is also applied to design materials with other multi-objective properties with accuracy limited principally by the amount,reliability,and diversity of the training data.The FSIMD approach provides a new way for inverse materials design with other functional properties for practical applications. 展开更多
关键词 Inverse materials design universal machine learning potential Graph neural networks Bayesian optimization
原文传递
基于多任务学习的通用滤波多载波调制识别与信噪比估计
8
作者 张天骐 吴云戈 +1 位作者 吴仙越 李春运 《电讯技术》 北大核心 2025年第8期1213-1220,共8页
非协作通信通用滤波多载波(Universal Filtered Multi-carrier,UFMC)信号子载波所存在的调制识别以及信噪比估计问题有待解决,但目前研究只针对于单一任务。对此,提出一种利用多任务学习框架的神经网络模型,同时解决调制识别以及信噪比... 非协作通信通用滤波多载波(Universal Filtered Multi-carrier,UFMC)信号子载波所存在的调制识别以及信噪比估计问题有待解决,但目前研究只针对于单一任务。对此,提出一种利用多任务学习框架的神经网络模型,同时解决调制识别以及信噪比估计任务。首先得到UFMC系统接收端信号,求解出信号同相正交分量作为输入特征;接着在多任务学习框架上构建神经网络,采用的神经网络是将卷积神经网络与长短时记忆网络串联;最后利用上述模型对两个任务进行联合求解。实验结果表明,所构建多任务学习模型性能优于单任务学习,在信噪比为0 dB时,子载波调制识别准确率提升7.71%,信噪比估计均方误差减小45.6%。 展开更多
关键词 通用滤波多载波(UFMC) 调制识别 信噪比估计 多任务学习 神经网络
在线阅读 下载PDF
隐喻分析视角下对师范生教育技术应用认知的探究
9
作者 杨九民 张祺晖 +1 位作者 徐珂 章仪 《现代教育技术》 2025年第2期128-136,共9页
“互联网+”背景下,技术赋能教学对师范生的能力意识提出了更高的要求,了解当前师范生对教学中技术应用的认知对提升其专业技术素养至关重要。为此,文章首先以华中师范大学的86名师范生为例,通过隐喻分析探究其对技术应用于教学的认识,... “互联网+”背景下,技术赋能教学对师范生的能力意识提出了更高的要求,了解当前师范生对教学中技术应用的认知对提升其专业技术素养至关重要。为此,文章首先以华中师范大学的86名师范生为例,通过隐喻分析探究其对技术应用于教学的认识,发现这些师范生共产生了47种不同的隐喻,可分为发展、便利、必要、动力和威胁五个类别。然后,文章利用非参数检验和认知网络深入分析,结果显示不同隐喻类别组的师范生在实践表现和认知思维结构上差异显著,具体表现为必要组最佳、发展组最次,同时发现元认知能力对技术应用具有重要影响。文章通过研究,旨在利用隐喻来分析评估师范生对技术应用的认识,挖掘改善教学的有效信息,从而为师范教育的改革与发展提供更为深刻的理论和实践指导。 展开更多
关键词 隐喻 意识态度 师范生 课程表现 认知网络分析
在线阅读 下载PDF
基于ChatGPT的高校突发事件网络舆情情感分析研究
10
作者 江长斌 陈子涵 +2 位作者 黄英辉 王丹丹 何珂 《数字图书馆论坛》 2025年第6期53-62,共10页
探索生成式人工智能在高校突发舆情事件管理中的应用,旨在推动高校网络舆情管理技术的创新,也为生成式人工智能在社会治理领域的应用探索提供新的视角。融合提示工程与上下文学习,构建基于生成式人工智能的情感分析框架,并以ChatGPT为... 探索生成式人工智能在高校突发舆情事件管理中的应用,旨在推动高校网络舆情管理技术的创新,也为生成式人工智能在社会治理领域的应用探索提供新的视角。融合提示工程与上下文学习,构建基于生成式人工智能的情感分析框架,并以ChatGPT为核心模型展开研究。以“北京某大学女博士实名举报博导性骚扰”事件为研究案例,采用网络爬虫获取微博平台数据,结合信息生命周期理论划分舆情演化阶段。通过少样本学习策略筛选10条高质量标注示例,引导ChatGPT情感分析模型实现情感分类,并挖掘多阶段负向情感关键词以揭示演化规律。研究发现该事件舆情呈现质疑、愤怒、反思、理性四阶段特征,负向情感占比从发生期的48.3%攀升至爆发期峰值58.5%,随后逐步回落至消退期的40.4%,呈现先升后降的演化趋势。研究表明,ChatGPT情感分析整体性能优于TF-IDF-SVM与CNN-BiLSTM-Attention等传统基线方法,其模型整体准确率较传统基线模型分别提升5.87个百分点和1.56个百分点,且在隐喻与反讽等复杂语境下负向情感分类表现更优。 展开更多
关键词 生成式人工智能 ChatGPT 上下文学习 提示工程 高校突发事件 网络舆情 情感演化
在线阅读 下载PDF
基于通用扰动的对抗网络流量生成方法 被引量:1
11
作者 丁瑞阳 孙磊 +2 位作者 戴乐育 臧韦菲 徐八一 《计算机科学》 北大核心 2025年第2期336-343,共8页
人工智能技术在网络流量分类领域表现出了巨大潜力,对网络空间安全的战略格局产生了深刻影响。但也有研究发现,深度学习模型有着严重的脆弱性,针对该脆弱性衍生的对抗样本可以大幅度降低模型检测的正确率。目前对抗样本在图像分类领域... 人工智能技术在网络流量分类领域表现出了巨大潜力,对网络空间安全的战略格局产生了深刻影响。但也有研究发现,深度学习模型有着严重的脆弱性,针对该脆弱性衍生的对抗样本可以大幅度降低模型检测的正确率。目前对抗样本在图像分类领域得到了广泛深入的研究,在网络流量分类领域还处于发展阶段。现有的对抗网络流量技术仅对特定样本有效,并且时间开销较大、实用性低。为此,提出了基于通用扰动的对抗网络流量生成方法,其利用空间特征分布的性质寻找通用扰动向量,将该扰动添加到正常流量生成对抗网络流量,令网络流量分类器以高概率检测错误。在Moore和ISCX2016数据集上与现有方法进行了实验测试。结果表明,同等条件下,该方法生成对抗网络流量攻击分类器时对Moore和ISCX2016数据集内样本均有效,成功率高达80%以上;并且可以有效攻击不同的分类器,具有模型迁移性效果;同时实现了对抗网络流量的快速生成,平均生成时间开销低于1 ms,效率远优于现有方法。 展开更多
关键词 深度学习 网络流量分类 对抗网络流量 通用扰动
在线阅读 下载PDF
基于BERT的校企合作场景下的专家推荐算法 被引量:1
12
作者 杨学志 尚楚涵 封军 《计算机工程与设计》 北大核心 2025年第9期2578-2585,共8页
针对当前高校专家推荐算法忽视专家研究主题变化、模型指标偏低的问题,提出一种基于预训练模型BERT的专家推荐算法。使用隐含狄利克雷分布(LDA)提取专家变化的研究主题;构建基于BERT的企业需求编码器与专家编码器,深层编码相关信息的同... 针对当前高校专家推荐算法忽视专家研究主题变化、模型指标偏低的问题,提出一种基于预训练模型BERT的专家推荐算法。使用隐含狄利克雷分布(LDA)提取专家变化的研究主题;构建基于BERT的企业需求编码器与专家编码器,深层编码相关信息的同时利用多头注意力捕获专家研究主题的动态变化,通过特征融合与降维计算二者匹配度获得推荐结果。在真实数据集上进行了多组实验,结果表明性能指标与实际推荐效果均优于目前主流专家推荐算法。 展开更多
关键词 专家推荐 深度学习 注意力机制 校企合作 文本挖掘 特征提取 双向神经网络
在线阅读 下载PDF
基于CNN和自注意力神经网络的代码补全方法
13
作者 陈伟 何成万 +2 位作者 余秋惠 贺正源 罗蝶 《计算机工程与设计》 北大核心 2025年第10期2919-2926,共8页
由于基于抽象语法树的代码补全模型在提取代码序列细粒度的局部特征方面能力较差,并且难以应用于实际开发场景,提出一种基于卷积神经网络(convolutional neural network,CNN)和自注意力神经网络Transformer的代码补全方法。采用基于代... 由于基于抽象语法树的代码补全模型在提取代码序列细粒度的局部特征方面能力较差,并且难以应用于实际开发场景,提出一种基于卷积神经网络(convolutional neural network,CNN)和自注意力神经网络Transformer的代码补全方法。采用基于代码轻量级语法信息的预处理方法,并提出将CNN与Transformer网络以参数有效的方式结合,对代码序列的全局和局部依赖关系进行全面性建模。模型采用多任务学习机制(multi-task learning,MTL)共享代码token值和类型信息,提取代码序列中的语法和语义特征完成代码token级补全任务。实验结果表明,所提出的代码补全方法在ETH 150K Python数据集上准确率达到74.85%,显著优于基线方法。 展开更多
关键词 代码补全 多任务学习 Transformer 卷积神经网络 抽象语法树 轻量级语法 深度学习
在线阅读 下载PDF
基于提示学习的ERNIE-BiLSTM-PN通用信息抽取方法研究 被引量:1
14
作者 刘万里 雍新有 +3 位作者 曹开臣 陈俞舟 刘禄波 蔡世民 《电子科技大学学报》 北大核心 2025年第3期411-423,共13页
随着大数据时代的到来,信息抽取已成为自然语言处理领域的重要研究方向。信息抽取涉及多项任务,包括命名实体识别、关系抽取和事件抽取等,每项任务通常需要依靠专用模型来应对其特定的挑战。该文提出一种基于提示学习的ERNIE-BiLSTM-PN... 随着大数据时代的到来,信息抽取已成为自然语言处理领域的重要研究方向。信息抽取涉及多项任务,包括命名实体识别、关系抽取和事件抽取等,每项任务通常需要依靠专用模型来应对其特定的挑战。该文提出一种基于提示学习的ERNIE-BiLSTM-PN通用信息抽取方法(EBP-UIE),结合预训练语言模型(ERNIE)、双向长短期记忆网络(BiLSTM)和指针网络(PN),旨在通过一个统一的框架解决信息抽取任务的复杂性,并实现跨任务知识的共享。ERNIE优化了对文本的深层理解和上下文分析,BiLSTM的应用加强了对序列特征的捕捉及长距离依赖关系的解析,PN则提高了对文本中信息元素起止位置的精确标定,提示学习机制灵活实现多个信息抽取任务的统一建模。实验结果显示:在命名实体识别任务,EBP-UIE在MSRA和PeopleDaily数据集上的F1分数比UIE模型分别高出7.12%和0.53%;在关系抽取任务,EBP-UIE在DuIE数据集上的F1分数超过UIE模型6.84%;对于事件抽取任务,EBP-UIE在DuEE数据集上的触发词和论元抽取F1分数分别比UIE模型高出4.49%和0.95%。 展开更多
关键词 通用信息抽取 深度学习 指针网络 提示学习
在线阅读 下载PDF
高校图书馆自主学习中心资源整合优化研究
15
作者 吉云 《江苏科技信息》 2025年第15期100-104,共5页
随着信息技术的迅速发展,高校图书馆的功能从传统文献管理逐渐向自主学习支持转型。基于网络的自主学习中心旨在通过整合数字资源和优化学习环境,提升学生的自主学习能力和信息素养,为高校图书馆的服务转型提供新思路。文章采用文献综... 随着信息技术的迅速发展,高校图书馆的功能从传统文献管理逐渐向自主学习支持转型。基于网络的自主学习中心旨在通过整合数字资源和优化学习环境,提升学生的自主学习能力和信息素养,为高校图书馆的服务转型提供新思路。文章采用文献综述和案例分析相结合的研究方法,探讨国内外高校图书馆自主学习中心的建设现状,分析其在资源整合、技术支持、用户参与度等方面的主要问题,提出优化策略。高校图书馆自主学习中心的建设需加强资源整合与技术创新,提供个性化学习支持,提升用户参与度和学习体验。通过优化资源和技术,推动高校图书馆在教育数字化转型中的核心作用。 展开更多
关键词 自主学习中心 高校图书馆 网络技术 数字化转型 资源整合
在线阅读 下载PDF
Constraints on typical relic gravitational waves based on data of LIGO
16
作者 Minghui Zhang Hao Wen 《Communications in Theoretical Physics》 2025年第8期100-112,共13页
Relic gravitational waves(RGWs)from the early Universe carry crucial and fundamental cosmological information.Therefore,it is of extraordinary importance to investigate potential RGW signals in the data from observato... Relic gravitational waves(RGWs)from the early Universe carry crucial and fundamental cosmological information.Therefore,it is of extraordinary importance to investigate potential RGW signals in the data from observatories such as the LIGO-Virgo-KAGRA network.Here,focusing on typical RGWs from the inflation and the first-order phase transition(by sound waves and bubble collisions),effective and targeted deep learning neural networks are established to search for these RGW signals within the real LIGO data(O2,O3a and O3b).Through adjustment and adaptation processes,we develop suitable Convolutional Neural Networks(CNNs)to estimate the likelihood(characterized by quantitative values and distributions)that the focused RGW signals are present in the LIGO data.We find that if the constructed CNN properly estimates the parameters of the RGWs,it can determine with high accuracy(approximately 94%to 99%)whether the samples contain such RGW signals;otherwise,the likelihood provided by the CNN cannot be considered reliable.After testing a large amount of LIGO data,the findings show no evidence of RGWs from:1)inflation,2)sound waves,or 3)bubble collisions,as predicted by the focused theories.The results also provide upper limits of their GW spectral energy densities of h^(2)Ω_(gw)~10^(-5),respectively for parameter boundaries within 1)[β∈(-1.87,-1.85)×α∈(0.005,0.007)],2)[β/H_(pt)∈(0.02,0.16)×α∈(1,10)×T_(pt)∈(5*10^(9),10^(10))Gev],and 3)[β/H_(pt)∈(0.08,0.2)×α∈(1,10)×T_(pt)∈(5*10^(9),8*10^(10))Gev].In short,null results and upper limits are obtained,and the analysis suggests that our developed methods and neural networks to search for typical RGWs in the LIGO data are effective and reliable,providing a viable scheme for exploring possible RGWs from the early Universe and placing constraints on relevant cosmological theories. 展开更多
关键词 relic gravitational wave early universe LIGO deep learning neural networks
原文传递
A duplication-free quantum neural network for universal approximation
17
作者 Xiaokai Hou Guanyu Zhou +2 位作者 Qingyu Li Shan Jin Xiaoting Wang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第7期2-16,共15页
Different from the concept of universal computation,the universality of a quantum neural network focuses on the ability to approximate arbitrary functions and is an important guarantee for effectiveness.However,conven... Different from the concept of universal computation,the universality of a quantum neural network focuses on the ability to approximate arbitrary functions and is an important guarantee for effectiveness.However,conventional approaches of constructing a universal quantum neural network may result in a huge quantum register that is challenging to implement due to noise on a near-term device.To address this,we propose a simple design of a duplication-free quantum neural network whose universality can be rigorously proven.Specifically,instead of using multiple duplicates of the quantum register,our method relies on a single quantum register combined with multiple activation functions to create nonlinearity and achieve universality.Accordingly,our proposal requires significantly fewer qubits with shallower circuits,and hence substantially reduces the resource overhead and the noise effect.In addition,simulations demonstrate that our universality design is able to achieve a better learning accuracy in the presence of noise,illustrating a great potential in solving larger-scale learning problems on near-term devices. 展开更多
关键词 quantum computing quantum machine learning quantum neural network universalITY
原文传递
基于通用学习网络的pH控制过程辨识 被引量:4
18
作者 韩敏 贾小勐 《大连理工大学学报》 CAS CSCD 北大核心 2003年第1期119-123,共5页
pH控制过程是典型的非线性过程,传统的辨识方法尚不能很好地辨识该过程.利用一种新型的神经网络——通用学习网络对该过程进行辨识,取得了良好的辨识结果,网络训练误差和泛化误差均达到较高精度,网络训练输出曲线与教师信号曲线拟合良好.
关键词 pH控制过程 通用学习网络 酸碱中和过程 系统辨识 人工神经网络 网络训练
在线阅读 下载PDF
基于神经网络的交叉口多相位模糊控制 被引量:9
19
作者 许伦辉 衷路生 徐建闽 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第6期67-70,79,共5页
根据城市交叉口交通流的特点,给出了一种交叉口多相位自适应控制算法,综合考虑相邻车道上的车队长度,利用多层BP神经网络实现了道路交叉口多相位模糊控制.仿真结果表明,文中所设计的模糊神经网络控制器能有效地减少单交叉口平均车辆延误... 根据城市交叉口交通流的特点,给出了一种交叉口多相位自适应控制算法,综合考虑相邻车道上的车队长度,利用多层BP神经网络实现了道路交叉口多相位模糊控制.仿真结果表明,文中所设计的模糊神经网络控制器能有效地减少单交叉口平均车辆延误,具有较强的学习和泛化能力,是实现交通系统智能控制的一条新途径. 展开更多
关键词 交通控制 模糊控制 神经网络 BP学习算法 车辆平均延误
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部