期刊文献+
共找到3,124篇文章
< 1 2 157 >
每页显示 20 50 100
Mirror neuron system as the joint from action to language 被引量:3
1
作者 陈巍 袁逖飞 《Neuroscience Bulletin》 SCIE CAS CSCD 2008年第4期259-264,共6页
Mirror neuron system (MNS) represents one past decade, and it has been found to involve in multiple of the most important discoveries of cognitive neuroscience in the aspects of brain functions including action unde... Mirror neuron system (MNS) represents one past decade, and it has been found to involve in multiple of the most important discoveries of cognitive neuroscience in the aspects of brain functions including action understanding, imitation, language understanding, empathy, action prediction and speech evolution. This manuscript reviewed the function of MNS in action understanding as well as language evolution, and specifically assessed its roles as the bridge from body language to fluent speeches. Then we discussed the speech defects of autism patients due to the disruption of MNS. Finally, given that MNS is plastic in adult brain, we proposed MNS targeted therapy provides an efficient rehabilitation approach for brain damages conditions as well as autism patients. 展开更多
关键词 mirror neuron system action understanding LANGUAGE REHABILITATION
在线阅读 下载PDF
Human mirror neuron system and its plasticity 被引量:1
2
作者 Wei Chen Tifei Yuan +1 位作者 Yin Wang Jun Ding 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第3期321-323,共3页
The mirror neuron system (MNS) was first discovered in non-human primates; these neurons fire when a monkey performs an action or observes another monkey (or even some people) performing that same action. Recent f... The mirror neuron system (MNS) was first discovered in non-human primates; these neurons fire when a monkey performs an action or observes another monkey (or even some people) performing that same action. Recent findings have suggested that neural rehabilitation might be achieved through the activation of the MNS in patients after stroke. We propose two major mechanisms (one involving adult neurogenesis and another involving brain-derived neurotrophic factor) that may underlie the activation, modulation and experience-dependent plasticity in the MNS, for further study on promoting central nerve functional reconstruction and rehabilitation of patients with central nervous system injury. 展开更多
关键词 mirror neuron system adult neurogenesis neural plasticity REHABILITATION spinal cord injury
暂未订购
Electroencephalogram evidence for the activation of human mirror neuron system during the observation of intransitive shadow and line drawing actions 被引量:1
3
作者 Huaping Zhu Yaoru Sun Fang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第3期251-257,共7页
Previous studies have demonstrated that hand shadows may activate the motor cortex associated with the mirror neuron system in human brain. However, there is no evidence of activity of the human mirror neuron system d... Previous studies have demonstrated that hand shadows may activate the motor cortex associated with the mirror neuron system in human brain. However, there is no evidence of activity of the human mirror neuron system during the observation of intransitive movements by shadows and line drawings of hands. This study examined the suppression of electroencephalography mu waves (8-13 Hz) induced by observation of stimuli in 18 healthy students. Three stimuli were used: real hand actions, hand shadow actions and actions made by line drawings of hands. The results showed significant desynchronization of the mu rhythm ("mu suppression") across the sensodmotor cortex (recorded at C3, Cz and C4), the frontal cortex (recorded at F3, Fz and F4) and the central and right posterior parietal cortex (recorded at Pz and P4) under all three conditions. Our experimental findings suggest that the observation of "impoverished hand actions", such as intransitive movements of shadows and line drawings of hands, is able to activate widespread cortical areas related to the putative human mirror neuron system. 展开更多
关键词 neural regeneration clinical practice mirror neuron system action understanding direct matchinghypothesis mu suppression event-related desynchronization mu rhythm ELECTROENCEPHALOGRAM impoverished hand actions grants-supported paper photographs-containing paper neuroregeneration
暂未订购
Neuron system shock superimposed response based on catastrophe dynamics
4
作者 李斌 陈超 李拓 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1099-1106,共8页
With the rapid development of computer science and artificial intelligence technology, the complexity and intelligence of the neural network models constructed by people have been greatly improved. When the complex ne... With the rapid development of computer science and artificial intelligence technology, the complexity and intelligence of the neural network models constructed by people have been greatly improved. When the complex neuron system is subjected to the impact of "catastrophic", its original characteristics may be changed, and the consequences are difficult to predict. Catastrophe dynamics mainly studies the source of the sudden violent change of nature and human society and its evolution. The impact of the system can be divided into endogenous and exogenous shocks. In this article, catastrophe theory is used to study the neuron system. Based on the mean field model of Hurst and Sornette, introducing the weight parameters, mathematical models are constructed to study the response characteristics of the neuron system in face of exogenous shocks, endogenous shocks, and integrated shocks. The time characteristics of the shock response of the neuron system are discussed too, such as the instantaneous and long-term response of the system in face of shocks, the different response forms according to the weight or linear superposition, and the influence of adjusting parameters on the neuron system. The research result shows that the authoritarian coefficient and weight coefficient have a very important influence on the response of neuron system; By adjusting the two coefficients, the purpose of disaster prevention, self-healing protection and response reducing can be well achieved. 展开更多
关键词 neuron system catastrophe dynamics endogenous shock exogenous shock superimposed response
在线阅读 下载PDF
Synchronization in the Uncoupled Neuron System
5
作者 张季谦 黄守芳 +2 位作者 庞四焘 汪茂胜 高升 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第12期9-13,共5页
Using the model of Hindmarsh Rose neurons, we study the synchronous behavior of the firing patterns in an uncoupled cell system. In this work, the membrane current Iext is selected as a controllable parameter, whose i... Using the model of Hindmarsh Rose neurons, we study the synchronous behavior of the firing patterns in an uncoupled cell system. In this work, the membrane current Iext is selected as a controllable parameter, whose initial values for all N cells are set to be near one of the bifurcation points randomly. It is found that the system will show un-synchronous state when the external stimuli is absent, otherwise, full synchrony will appear, even though without any coupling connection among these N neurons, indicating the occurrence of uncoupled synchrony. Moreover, similar behavior could also be observed when these neurons are set to be near other bifurcation points. The synchronous error is calculated for discussing this uncoupled synehrony behavior. Finally, we find that such synchrony may have some inherent relevance with the decrease of phase difference between different cells. Our results suggest that biological neuron systems may achieve an effective response to external feeble stimulus by the mode of uncoupled synchrony instead of only by the coupled scheme. 展开更多
关键词 Synchronization in the Uncoupled neuron system
原文传递
Neural Correlates of Developmental Coordination Disorder: The Mirror Neuron System Hypothesis
6
作者 Julie M. Werner Sharon A. Cermak Lisa Aziz-Zadeh 《Journal of Behavioral and Brain Science》 2012年第2期258-268,共11页
Primary impairments of developmental coordination disorder (DCD) include impairments in motor skill, motor learning, and imitation. Such difficulties present challenges for individuals with DCD and may persist into ad... Primary impairments of developmental coordination disorder (DCD) include impairments in motor skill, motor learning, and imitation. Such difficulties present challenges for individuals with DCD and may persist into adulthood, negatively impacting daily life in school, work, and social domains. A better understanding of the neural correlates of motor and imitation impairments in DCD holds the potential for informing development of treatment approaches to address these impairments. Although the disorder is assumed to be of neurological origin, little is known of the brain-based etiology of DCD. In recent years the discovery of a fronto-parietal circuit—known as the mirror neuron system—has enabled researchers to better understand imitation, general motor functions, and aspects of social cognition. Given its involvement in imitation and other motor functions, we propose that dysfunction in the mirror neuron system may underlie the characteristic impairments of DCD. We review literature pertaining to the mirror neuron system and develop a theory of disordered mirror neuron functioning in DCD. Finally, we review the limited neuroimaging literature available on neural correlates of DCD and show that the findings from those investigations are congruent with a mirror neuron system theory of DCD. Future research in this population should be designed to investigate specifically mirror neuron regions in individuals with DCD during skilled motor tasks and imitation in particular. 展开更多
关键词 DEVELOPMENTAL Coordination DISORDER DYSPRAXIA IMITATION Mirror neuron system Motor Learning
暂未订购
Study on the Single Event Reliability of PAVLOV Neuron System
7
作者 Mao Guangbo Quan Jiale +9 位作者 Guo Jinlong Su Xiaohui Liu Wenjing Wu Ruqun Zhao Jing Shen Cheng Mou Hongjin Li Junshuai Li Bo Du Guanghua 《IMP & HIRFL Annual Report》 2022年第1期149-150,共2页
The reliability of the AI systems to the harsh space radiation is of great concerns with the increasing application in aerospace.Because of its neuromorphic device architecture and operation mode,low-power neuron chip... The reliability of the AI systems to the harsh space radiation is of great concerns with the increasing application in aerospace.Because of its neuromorphic device architecture and operation mode,low-power neuron chips have enormous potentials in resistance of single event effect,which is one of the most important failures of spacecraft caused by space radiation.In this work,a mixed-signal spiking neuron chip,named PAVLOV^([1]),has been studied at circuit and chip level with respect to its response to single event errors. 展开更多
关键词 EVENT RELIABILITY neuron
在线阅读 下载PDF
The 5-HT Descending Facilitation System Contributes to the Disinhibition of Spinal PKCγ Neurons and Neuropathic Allodynia via 5-HT_(2C) Receptors
8
作者 Xiao Zhang Xiao-Lan He +6 位作者 Zhen-Hua Jiang Jing Qi Chen-Chen Huang Jian-Shuai Zhao Nan Gu Yan Lu Qun Wang 《Neuroscience Bulletin》 2025年第7期1161-1180,共20页
Neuropathic pain,often featuring allodynia,imposes significant physical and psychological burdens on patients,with limited treatments due to unclear central mechanisms.Addressing this challenge remains a crucial unsol... Neuropathic pain,often featuring allodynia,imposes significant physical and psychological burdens on patients,with limited treatments due to unclear central mechanisms.Addressing this challenge remains a crucial unsolved issue in pain medicine.Our previous study,using protein kinase C gamma(PKCγ)-tdTomato mice,highlights the spinal feedforward inhibitory circuit involving PKCγ neurons in gating neuropathic allodynia.However,the regulatory mechanisms governing this circuit necessitate further elucidation.We used diverse transgenic mice and advanced techniques to uncover the regulatory role of the descending serotonin(5-HT)facilitation system on spinal PKCγ neurons.Our findings revealed that 5-HT neurons from the rostral ventromedial medulla hyperpolarize spinal inhibitory interneurons via 5-HT_(2C) receptors,disinhibiting the feedforward inhibitory circuit involving PKCγ neurons and exacerbating allodynia.Inhibiting spinal 5-HT_(2C) receptors restored the feedforward inhibitory circuit,effectively preventing neuropathic allodynia.These insights offer promising therapeutic targets for neuropathic allodynia management,emphasizing the potential of spinal 5-HT_(2C) receptors as a novel avenue for intervention. 展开更多
关键词 PKCγneurons Inhibitory interneurons Neuropathic allodynia 5-HT descending facilitation system 5-HT_(2C)receptors
原文传递
A core scientific problem in the treatment of central nervous system diseases:newborn neurons 被引量:2
9
作者 Peng Hao Zhaoyang Yang +1 位作者 Kwok-Fai So Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2588-2601,共14页
It has long been asserted that failure to recover from central nervous system diseases is due to the system's intricate structure and the regenerative incapacity of adult neurons.Yet over recent decades,numerous s... It has long been asserted that failure to recover from central nervous system diseases is due to the system's intricate structure and the regenerative incapacity of adult neurons.Yet over recent decades,numerous studies have established that endogenous neurogenesis occurs in the adult central nervous system,including humans'.This has challenged the long-held scientific consensus that the number of adult neurons remains constant,and that new central nervous system neurons cannot be created or renewed.Herein,we present a comprehensive overview of the alterations and regulatory mechanisms of endogenous neurogenesis following central nervous system injury,and describe novel treatment strategies that to rget endogenous neurogenesis and newborn neurons in the treatment of central nervous system injury.Central nervous system injury frequently results in alterations of endogenous neurogenesis,encompassing the activation,proliferation,ectopic migration,diffe rentiation,and functional integration of endogenous neural stem cells.Because of the unfavorable local microenvironment,most activated neural stem cells diffe rentiate into glial cells rather than neurons.Consequently,the injury-induced endogenous neurogenesis response is inadequate for repairing impaired neural function.Scientists have attempted to enhance endogenous neurogenesis using various strategies,including using neurotrophic factors,bioactive materials,and cell reprogramming techniques.Used alone or in combination,these therapeutic strategies can promote targeted migration of neural stem cells to an injured area,ensure their survival and diffe rentiation into mature functional neurons,and facilitate their integration into the neural circuit.Thus can integration re plenish lost neurons after central nervous system injury,by improving the local microenvironment.By regulating each phase of endogenous neurogenesis,endogenous neural stem cells can be harnessed to promote effective regeneration of newborn neurons.This offers a novel approach for treating central nervous system injury. 展开更多
关键词 bioactive materials brain trauma endogenous neurogenesis hippocampal dentate gyrus neural stem cells neurotrophic factors newborn neurons spinal cord injury stroke subventricular zone
暂未订购
Exercise-induced adaptation of neurons in the vertebrate locomotor system 被引量:1
10
作者 Yue Dai Yi Cheng +2 位作者 Renkai Ge Ke Chen Liming Yang 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第2期160-171,共12页
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise... Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise has long been an area of active research.Studies of the vertebrate locomotor system’s adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise.In this brief review,we highlight recent results and insights from the field with a focus on the following mechanisms:(a)alterations in neuronal excitability during acute exercise;(b)alterations in neuronal excitability after chronic exercise;(c)exercise-induced changes in neuronal membrane properties via modulation of ion channel activity;(d)exercise-enhanced dendritic plasticity;and(e)exercise-induced alterations in neuronal gene expression and protein synthesis.Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise. 展开更多
关键词 Dendritic plasticity EXCITABILITY Exercise Ion channel modulation neuron adaptation
在线阅读 下载PDF
NOX4 exacerbates Parkinson's disease pathology by promoting neuronal ferroptosis and neuroinflammation 被引量:3
11
作者 Zhihao Lin Changzhou Ying +6 位作者 Xiaoli Si Naijia Xue Yi Liu Ran Zheng Ying Chen Jiali Pu Baorong Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第7期2038-2052,共15页
Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidati... Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease. 展开更多
关键词 dopaminergic neuron ferroptosis NADPH oxidase 4(NOX4) NEUROINFLAMMATION Parkinson's disease
暂未订购
Olfactory receptors in neural regeneration in the central nervous system 被引量:2
12
作者 Rafael Franco Claudia Garrigós +3 位作者 Toni Capó Joan Serrano-Marín Rafael Rivas-Santisteban Jaume Lillo 《Neural Regeneration Research》 SCIE CAS 2025年第9期2480-2494,共15页
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor... Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries. 展开更多
关键词 adenosine receptors adrenergic receptors ectopic expression G proteincoupled receptors GLIA neuronS
暂未订购
Transforming growth factor-beta 1 enhances discharge activity of cortical neurons 被引量:1
13
作者 Zhihui Ren Tian Li +5 位作者 Xueer Liu Zelin Zhang Xiaoxuan Chen Weiqiang Chen Kangsheng Li Jiangtao Sheng 《Neural Regeneration Research》 SCIE CAS 2025年第2期548-556,共9页
Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may de... Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system. 展开更多
关键词 central nervous system cortical neurons ERK firing properties JNK Nav1.3 p38 transforming growth factor-beta 1 traumatic brain injury voltage-gated sodium currents
暂未订购
Synchronization and firing mode transition of two neurons in a bilateral auditory system driven by a high–low frequency signal
14
作者 Charles Omotomide Apata 唐浥瑞 +2 位作者 周祎凡 蒋龙 裴启明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期722-735,共14页
The FitzHugh–Nagumo neuron circuit integrates a piezoelectric ceramic to form a piezoelectric sensing neuron,which can capture external sound signals and simulate the auditory neuron system.Two piezoelectric sensing ... The FitzHugh–Nagumo neuron circuit integrates a piezoelectric ceramic to form a piezoelectric sensing neuron,which can capture external sound signals and simulate the auditory neuron system.Two piezoelectric sensing neurons are coupled by a parallel circuit consisting of a Josephson junction and a linear resistor,and a binaural auditory system is established.Considering the non-singleness of external sound sources,the high–low frequency signal is used as the input signal to study the firing mode transition and synchronization of this system.It is found that the angular frequency of the high–low frequency signal is a key factor in determining whether the dynamic behaviors of two coupled neurons are synchronous.When they are in synchronization at a specific angular frequency,the changes in physical parameters of the input signal and the coupling strength between them will not destroy their synchronization.In addition,the firing mode of two coupled auditory neurons in synchronization is affected by the characteristic parameters of the high–low frequency signal rather than the coupling strength.The asynchronous dynamic behavior and variations in firing modes will harm the auditory system.These findings could help determine the causes of hearing loss and devise functional assistive devices for patients. 展开更多
关键词 piezoelectric ceramic Josephson junction auditory neuron SYNCHRONIZATION
原文传递
Neuronal Regulation of Feeding and Energy Metabolism: A Focus on the Hypothalamus and Brainstem 被引量:1
15
作者 Jing Chen Meiting Cai Cheng Zhan 《Neuroscience Bulletin》 2025年第4期665-675,共11页
In the face of constantly changing environments,the central nervous system(CNS)rapidly and accurately calculates the body's needs,regulates feeding behavior,and maintains energy homeostasis.The arcuate nucleus of ... In the face of constantly changing environments,the central nervous system(CNS)rapidly and accurately calculates the body's needs,regulates feeding behavior,and maintains energy homeostasis.The arcuate nucleus of the hypothalamus(ARC)plays a key role in this process,serv-ing as a critical brain region for detecting nutrition-related hormones and regulating appetite and energy homeostasis.Agouti-related protein(AgRP)/neuropeptide Y(NPY)neu-rons in the ARC are core elements that interact with other brain regions through a complex appetite-regulating network to comprehensively control energy homeostasis.In this review,we explore the discovery and research progress of AgRP neurons in regulating feeding and energy metabolism.In addition,recent advances in terms of feeding behavior and energy homeostasis,along with the redundant neural mecha-nisms involved in energy metabolism,are discussed.Finally,the challenges and opportunities in the field of neural regula-tion of feeding and energy metabolism are briefly discussed. 展开更多
关键词 HYPOTHALAMUS AgRP neurons Feeding behavior Energy homeostasis BRAINSTEM NTS VLM Catecholaminergic neurons NPY neurons
原文传递
FK506 contributes to peripheral nerve regeneration by inhibiting neuroinflammatory responses and promoting neuron survival
16
作者 Yuhui Kou Zongxue Jin +3 位作者 Yusong Yuan Bo Ma Wenyong Xie Na Han 《Neural Regeneration Research》 SCIE CAS 2025年第7期2108-2115,共8页
FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways ... FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons. 展开更多
关键词 FK506 inflammation motor neurons nerve regeneration neuron peripheral nerve injury sensory neurons
暂未订购
Functions of nuclear factor Y in nervous system development,function and health
17
作者 Pedro Moreira Roger Pocock 《Neural Regeneration Research》 SCIE CAS 2025年第10期2887-2894,共8页
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 y... Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression. 展开更多
关键词 axon guidance CCAAT boxes neuronal degeneration neuronal differentiation neuronal regeneration nuclear factor Y complex transcription factor transcriptional regulation
暂未订购
Electropolymerized dopamine-based memristors using threshold switching behaviors for artificial current-activated spiking neurons 被引量:1
18
作者 Bowen Zhong Xiaokun Qin +4 位作者 Zhexin Li Yiqiang Zheng Lingchen Liu Zheng Lou Lili Wang 《Journal of Semiconductors》 2025年第2期98-103,共6页
Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely us... Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely used for artificial spiking synapses due to their relatively poor memrisitve performance.Here,for the first time,we present an organic memristor based on an electropolymerized dopamine-based memristive layer.This polydopamine-based memristor demonstrates the improve-ments in key performance,including a low threshold voltage of 0.3 V,a thin thickness of 16 nm,and a high parasitic capaci-tance of about 1μF·mm^(-2).By leveraging these properties in combination with its stable threshold switching behavior,we con-struct a capacitor-free and low-power artificial spiking neuron capable of outputting the oscillation voltage,whose spiking fre-quency increases with the increase of current stimulation analogous to a biological neuron.The experimental results indicate that our artificial spiking neuron holds potential for applications in neuromorphic computing and systems. 展开更多
关键词 ELECTROPOLYMERIZATION POLYDOPAMINE MEMRISTOR threshold switching spiking voltage artificial neuron
在线阅读 下载PDF
Inhibitory gamma-aminobutyric acidergic neurons in the anterior cingulate cortex participate in the comorbidity of pain and emotion
19
作者 Lu Guan Mengting Qiu +10 位作者 Na Li Zhengxiang Zhou Ru Ye Liyan Zhong Yashuang Xu Junhui Ren Yi Liang Xiaomei Shao Jianqiao Fang Junfan Fang Junying Du 《Neural Regeneration Research》 SCIE CAS 2025年第10期2838-2854,共17页
Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairme... Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission.This review primarily aims to outline the main circuitry(including the input and output connectivity)of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons;it also describes the neurotransmitters/neuromodulators affecting these neurons,their intercommunication with other neurons,and their importance in mental comorbidities associated with chronic pain disorders.Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions.However,the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive.It is also unclear as to whether the mechanisms are presynaptic or postsynaptic.Further exploration of the complexities of this system may reveal new pathways for research and drug development. 展开更多
关键词 anterior cingulate cortex ANXIETY chronic pain circuit communication COMORBIDITY depression gamma-aminobutyric acidergic neurons parvalbumin neurons synaptic transmission
暂未订购
Mechanistic insights of neuronal death and neuroprotective therapeutic approaches in stroke 被引量:1
20
作者 Chun Li Yuping Luo Siguang Li 《Neural Regeneration Research》 2026年第3期869-886,共18页
Stroke,particularly ischemic stroke,is the leading cause of long-term disability and mortality worldwide.It occurs due to the occlusion of the cerebral arteries,which significantly reduces the delivery of blood,oxygen... Stroke,particularly ischemic stroke,is the leading cause of long-term disability and mortality worldwide.It occurs due to the occlusion of the cerebral arteries,which significantly reduces the delivery of blood,oxygen,and essential nutrients to brain tissues.This deprivation triggers a cascade of cellular events that ultimately leads to neuronal death.Recent studies have clarified the multifactorial pathogenesis of ischemic stroke,highlighting the roles of energy failure,excitotoxicity,oxidative stress,neuroinflammation,and apoptosis.This review aimed to provide a comprehensive insight into the fundamental mechanisms driving neuronal death triggered by ischemia and to examine the progress of neuroprotective therapeutic approaches designed to mitigate neuronal loss and promote neurological recovery after a stroke.Additionally,we explored widely accepted findings regarding the potential pathways implicated in neuronal death during ischemic stroke,including the interplay of apoptosis,autophagy,pyroptosis,ferroptosis,and necrosis,which collectively influence neuronal fate.We also discussed advancements in neuroprotective therapeutics,encompassing a range of interventions from pharmacological modulation to stem cell-based therapies,aimed at reducing neuronal injury and enhancing functional recovery following ischemic stroke.Despite these advancements,challenges remain in translating mechanistic insights into effective clinical therapies.Although neuroprotective strategies have shown promise in preclinical models,their efficacy in human trials has been inconsistent,often due to the complex pathology of ischemic stroke and the timing of interventions.In conclusion,this review synthesizes mechanistic insights into the intricate interplay of molecular and cellular pathways driving neuronal death post-ischemia.It sheds light on cutting-edge advancements in potential neuroprotective therapeutics,underscores the promise of regenerative medicine,and offers a forward-looking perspective on potential clinical breakthroughs.The ongoing evolution of precision-targeted interventions is expected to significantly enhance preventative strategies and improve clinical outcomes. 展开更多
关键词 apoptosis cerebral infarction clinical trial inflammation ischemic stroke mitochondria neurons NEUROPROTECTION oxidative stress PATHOPHYSIOLOGY stem cells
暂未订购
上一页 1 2 157 下一页 到第
使用帮助 返回顶部