The trajectory of the controlled system in phase space has been investigated, and different learning methods are applied to the single adaptive neuron controller according to the pattem of the control system. The adva...The trajectory of the controlled system in phase space has been investigated, and different learning methods are applied to the single adaptive neuron controller according to the pattem of the control system. The advantage of the controller presented has been shown by simulation of a satellite attitude stability control system.展开更多
A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An...A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.展开更多
Despite the intensive studies on neurons, the control mechanism in real interactions of neurons is still unclear. This paper presents an understanding of this kind of control mechanism, controlling a neuron by stimula...Despite the intensive studies on neurons, the control mechanism in real interactions of neurons is still unclear. This paper presents an understanding of this kind of control mechanism, controlling a neuron by stimulating another coupled neuron, with the uncertainties taken into consideration for both neurons. Two observers and a differentiator, which comprise the first-order low-pass filters, are first designed for estimating the uncertainties. Then, with the estimated values combined, a robust nonlinear controller with a saturation function is presented to track the desired membrane potential. Finally,two typical bursters of neurons with the desired membrane potentials are proposed in the simulation, and the numerical results show that they are tracked very well by the proposed controller.展开更多
In this paper we present a combined algorithm for the synchronization control of two gap junction coupled chaotic FitzHugh-Nagumo (FHN) neurons in an external electrical stimulation. The controller consists of a com...In this paper we present a combined algorithm for the synchronization control of two gap junction coupled chaotic FitzHugh-Nagumo (FHN) neurons in an external electrical stimulation. The controller consists of a combination of dynam- ical sliding mode control and adaptive backstepping control. The combined algorithm yields an adaptive dynamical sliding mode control law which has the advantage over static sliding mode-based controllers of being chattering-free, i.e., a suffi- ciently smooth control input signal is generated. It is shown that the proposed control scheme can not only compensate for the system uncertainty, but also guarantee the stability of the synchronized error system. In addition, numerical simulations are also performed to demonstrate the effectiveness of the proposed adaptive controller.展开更多
Traumatic brain injury (TBI) is a mechanical injury to brain tissue that leads to an impairment of function and a broad spectrum of symptoms and disabilities; often, it is followed by diffuse axonal injury, which ca...Traumatic brain injury (TBI) is a mechanical injury to brain tissue that leads to an impairment of function and a broad spectrum of symptoms and disabilities; often, it is followed by diffuse axonal injury, which causes denaturation of the white matter and axon retraction, leaving patients with severe brain damage or even in a persistent vegetative state.展开更多
In this paper, the weld pool shape control by intelligent strategy was studied. A neuron self-learning PSD controller for backside width of weld pool in pulsed GTAW with wire filler was designed. The PSD control arith...In this paper, the weld pool shape control by intelligent strategy was studied. A neuron self-learning PSD controller for backside width of weld pool in pulsed GTAW with wire filler was designed. The PSD control arithmetic was analyzed, simulating experiment by MATLAB software was done, and the validating experiments on varied heat sink workpiece and varied gap workpiece were successfully implemented. The study results show that the neuron self-learning PSD control method can attain a perfect control effect under different set values and conditions, and is suitable for the welding process with the varied structure and coefficients of control model.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an externa...An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.展开更多
An artificial neural network model for backside bead width was established and three control methods——PID, fuzzy and neuron were designed, simulated and tested. The test results of bead on plate weld of GTAW indicat...An artificial neural network model for backside bead width was established and three control methods——PID, fuzzy and neuron were designed, simulated and tested. The test results of bead on plate weld of GTAW indicate that the artificial neural network (ANN) modeling and learning control method have more advantages than the conventional method. They show that the ANN modeling and learning control method is an effective approach to real time control of welding dynamics and ideal quality.展开更多
针对电动调节阀控制系统在实际生产过程中存在的非线性、多扰动等问题,提出一种基于改进蚁群算法优化单神经元PID(proportional integral derivative)的控制方法并将其应用于阀门开度控制中。该方法利用单神经元网络的自学习和自适应能...针对电动调节阀控制系统在实际生产过程中存在的非线性、多扰动等问题,提出一种基于改进蚁群算法优化单神经元PID(proportional integral derivative)的控制方法并将其应用于阀门开度控制中。该方法利用单神经元网络的自学习和自适应能力,实现PID控制参数的在线整定,并采用改进的蚁群优化算法优化单神经元PID中的学习速率和神经元比例系数,有效克服了单神经元PID中的学习速率和神经元比例系数因经验设定而无法达到预期控制效果的不足。仿真对比结果显示,相比于传统PID、单神经元PID以及基于蚁群优化算法优化单神经元PID 3种控制方法,本文提出的控制方法超调量分别减少了10.2%、6.1%和1.8%,同时调节时间也相应缩短了0.22、0.07、0.03 s,并且表现出更强的自适应和抗干扰能力,能够使阀门开度控制更加稳定可靠。展开更多
目前,国内大多数自来水厂采用的是一种基于PLC的集散式(DCS,Distributed Control System)控制系统。这里介绍构建基于Lorworks的水厂管控一体化网络的方法和途径,包括前端测控设备的配置、智能节点的配置和Neuron C编程。最后给出输入...目前,国内大多数自来水厂采用的是一种基于PLC的集散式(DCS,Distributed Control System)控制系统。这里介绍构建基于Lorworks的水厂管控一体化网络的方法和途径,包括前端测控设备的配置、智能节点的配置和Neuron C编程。最后给出输入输出控制程序,供参考。这是一种真正全分布式管控一体化网络的前端智能节点配置与设计方案。展开更多
文摘The trajectory of the controlled system in phase space has been investigated, and different learning methods are applied to the single adaptive neuron controller according to the pattem of the control system. The advantage of the controller presented has been shown by simulation of a satellite attitude stability control system.
基金Project(2010GK3091) supported by Industrial Support Project in Science and Technology of Hunan Province, ChinaProject(10B058) supported by Excellent Youth Foundation Subsidized Project of Hunan Provincial Education Department, China
文摘A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.
基金Project supported by the National Natural Science Foundation of China(No.11372354)the Jiangsu Innovation Program for Graduate Education(No.KYLX16 0308)
文摘Despite the intensive studies on neurons, the control mechanism in real interactions of neurons is still unclear. This paper presents an understanding of this kind of control mechanism, controlling a neuron by stimulating another coupled neuron, with the uncertainties taken into consideration for both neurons. Two observers and a differentiator, which comprise the first-order low-pass filters, are first designed for estimating the uncertainties. Then, with the estimated values combined, a robust nonlinear controller with a saturation function is presented to track the desired membrane potential. Finally,two typical bursters of neurons with the desired membrane potentials are proposed in the simulation, and the numerical results show that they are tracked very well by the proposed controller.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61072012, 61104032, and 61172009)the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 60901035 and 50907044)
文摘In this paper we present a combined algorithm for the synchronization control of two gap junction coupled chaotic FitzHugh-Nagumo (FHN) neurons in an external electrical stimulation. The controller consists of a combination of dynam- ical sliding mode control and adaptive backstepping control. The combined algorithm yields an adaptive dynamical sliding mode control law which has the advantage over static sliding mode-based controllers of being chattering-free, i.e., a suffi- ciently smooth control input signal is generated. It is shown that the proposed control scheme can not only compensate for the system uncertainty, but also guarantee the stability of the synchronized error system. In addition, numerical simulations are also performed to demonstrate the effectiveness of the proposed adaptive controller.
基金supported by grants from the Spanish Ministry of Economy and Competitivenessthe European Regional Development Fund 2007-2013(BFU2014-56300-P)+4 种基金the Xunta de Galicia(GPC2014/030)supported by a grant from the Xunta de Galicia(2016-PG008)a grant from the crowdfunding platform Precipita(FECYTSpanish Ministry of Economy and Competitivenessgrant number 2017-CP081)
文摘Traumatic brain injury (TBI) is a mechanical injury to brain tissue that leads to an impairment of function and a broad spectrum of symptoms and disabilities; often, it is followed by diffuse axonal injury, which causes denaturation of the white matter and axon retraction, leaving patients with severe brain damage or even in a persistent vegetative state.
文摘In this paper, the weld pool shape control by intelligent strategy was studied. A neuron self-learning PSD controller for backside width of weld pool in pulsed GTAW with wire filler was designed. The PSD control arithmetic was analyzed, simulating experiment by MATLAB software was done, and the validating experiments on varied heat sink workpiece and varied gap workpiece were successfully implemented. The study results show that the neuron self-learning PSD control method can attain a perfect control effect under different set values and conditions, and is suitable for the welding process with the varied structure and coefficients of control model.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
文摘An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.
文摘An artificial neural network model for backside bead width was established and three control methods——PID, fuzzy and neuron were designed, simulated and tested. The test results of bead on plate weld of GTAW indicate that the artificial neural network (ANN) modeling and learning control method have more advantages than the conventional method. They show that the ANN modeling and learning control method is an effective approach to real time control of welding dynamics and ideal quality.
文摘针对电动调节阀控制系统在实际生产过程中存在的非线性、多扰动等问题,提出一种基于改进蚁群算法优化单神经元PID(proportional integral derivative)的控制方法并将其应用于阀门开度控制中。该方法利用单神经元网络的自学习和自适应能力,实现PID控制参数的在线整定,并采用改进的蚁群优化算法优化单神经元PID中的学习速率和神经元比例系数,有效克服了单神经元PID中的学习速率和神经元比例系数因经验设定而无法达到预期控制效果的不足。仿真对比结果显示,相比于传统PID、单神经元PID以及基于蚁群优化算法优化单神经元PID 3种控制方法,本文提出的控制方法超调量分别减少了10.2%、6.1%和1.8%,同时调节时间也相应缩短了0.22、0.07、0.03 s,并且表现出更强的自适应和抗干扰能力,能够使阀门开度控制更加稳定可靠。
文摘目前,国内大多数自来水厂采用的是一种基于PLC的集散式(DCS,Distributed Control System)控制系统。这里介绍构建基于Lorworks的水厂管控一体化网络的方法和途径,包括前端测控设备的配置、智能节点的配置和Neuron C编程。最后给出输入输出控制程序,供参考。这是一种真正全分布式管控一体化网络的前端智能节点配置与设计方案。