A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation.This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiolog...A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation.This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus,one of the most common neurological conditions worldwide.In this review,we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition.Then,we outline the definition,classification,and biological role of non-coding RNAs.Subsequently,we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail.Specifically,we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus,including glymphatic pathways,neuroinflammatory processes,and neurological dysplasia,on the basis of the existing evidence.Lastly,we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments.展开更多
Perinatal exposure to infection/inflammation is highly associated with neural injury,and subsequent impaired cortical growth,disturbances in neuronal connectivity,and impaired neurodevelopment.However,our understandin...Perinatal exposure to infection/inflammation is highly associated with neural injury,and subsequent impaired cortical growth,disturbances in neuronal connectivity,and impaired neurodevelopment.However,our understanding of the pathophysiological substrate underpinning these changes in brain structure and function is limited.The objective of this review is to summarize the growing evidence from animal trials and human cohort studies that suggest exposure to infection/inflammation during the perinatal period promotes regional impairments in neuronal maturation and function,including loss of high-frequency electroencephalographic activity,and reduced growth and arborization of cortical dendrites and dendritic spines resulting in reduced cortical volume.These inflammation-induced disturbances to neuronal structure and function are likely to underpin subsequent disturbances to cortical development and connectivity in fetuses and/or newborns exposed to infection/inflammation during the perinatal period,leading,in the long term,to impaired neurodevelopment.The combined use of early electroencephalography monitoring with neuroimaging techniques that enable detailed evaluation of brain microstructure,and the use of therapeutics that successfully target systemic and central nervous system inflammation could provide an effective strategy for early detection and therapeutic intervention.展开更多
BACKGROUND There is a possible link between depression and anxiety about suicidal ideation among parents of children with congenital heart disease(CHD).AIM To document the effects of depression and anxiety on parental...BACKGROUND There is a possible link between depression and anxiety about suicidal ideation among parents of children with congenital heart disease(CHD).AIM To document the effects of depression and anxiety on parental suicidal ideation among children with CHD and the associated factors.METHODS This was a cross-sectional study among 50 parents of children with CHD who attended the Cardiac Clinic of University of Nigeria Teaching Hospital Ituku-Ozalla.Information was obtained using the Columbia Suicide Severity Rating Scale and the Hospital Anxiety and Depression Scale.RESULTS A greater percentage of parents whose child had a heart defect had anxiety symptoms(50.0%)than did those whose child had no heart defect(24.0%),and the difference in proportions was statistically significant(χ^(2)=7.250,P=0.007).A greater percentage of parents whose child had a heart defect had suicidal ideation(28.0%)than did those whose child had no heart defect(8.0%),and the difference in proportions was statistically significant(χ^(2)=6.775 P=0.009).A positive correlation was elicited between anxiety and suicide ideation,and this correlation was statistically significant(r=0.748,P<0.001).A positive correlation was elicited between depression and suicidal ideation scores,and this was statistically significant(r=0.617,P<0.001).CONCLUSION There is strong interconnectivity between anxiety and depression with suicidal ideation.There is an urgent need to start screening for the mental health of parents of children with CHD to avert the high propensity of complete suicide.In addition,policy makers may introduce a national clinical practice guideline on the importance of psychotherapy and mental health screening and targeted interventions for parents of children with CHD.展开更多
Stress granules are membraneless organelles that serve as a protective cellular response to external stressors by sequestering non-translating messenger RNAs(mRNAs)and regulating protein synthesis.Stress granules form...Stress granules are membraneless organelles that serve as a protective cellular response to external stressors by sequestering non-translating messenger RNAs(mRNAs)and regulating protein synthesis.Stress granules formation mechanism is conserved across species,from yeast to mammals,and they play a critical role in minimizing cellular damage during stress.Composed of heterogeneous ribonucleoprotein complexes,stress granules are enriched not only in mRNAs but also in noncoding RNAs and various proteins,including translation initiation factors and RNA-binding proteins.Genetic mutations affecting stress granule assembly and disassembly can lead to abnormal stress granule accumulation,contributing to the progression of several diseases.Recent research indicates that stress granule dynamics are pivotal in determining their physiological and pathological functions,with acute stress granule formation offering protection and chronic stress granule accumulation being detrimental.This review focuses on the multifaceted roles of stress granules under diverse physiological conditions,such as regulation of mRNA transport,mRNA translation,apoptosis,germ cell development,phase separation processes that govern stress granule formation,and their emerging implications in pathophysiological scenarios,such as viral infections,cancer,neurodevelopmental disorders,neurodegeneration,and neuronal trauma.展开更多
The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cereb...The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82171347,82371362the Natural Science Foundation of Hunan Province,No.2022JJ30971the Scientific Research Project of Hunan Provincial Health Commission of China,No.202204040024(all to GX).
文摘A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation.This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus,one of the most common neurological conditions worldwide.In this review,we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition.Then,we outline the definition,classification,and biological role of non-coding RNAs.Subsequently,we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail.Specifically,we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus,including glymphatic pathways,neuroinflammatory processes,and neurological dysplasia,on the basis of the existing evidence.Lastly,we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments.
基金supported by National Health and Medical Research Council of Australia(APP1090890 and APP1164954)Cerebral Palsy Alliance(ERG02123)the Victorian Government’s Operational Infrastructure Support Program。
文摘Perinatal exposure to infection/inflammation is highly associated with neural injury,and subsequent impaired cortical growth,disturbances in neuronal connectivity,and impaired neurodevelopment.However,our understanding of the pathophysiological substrate underpinning these changes in brain structure and function is limited.The objective of this review is to summarize the growing evidence from animal trials and human cohort studies that suggest exposure to infection/inflammation during the perinatal period promotes regional impairments in neuronal maturation and function,including loss of high-frequency electroencephalographic activity,and reduced growth and arborization of cortical dendrites and dendritic spines resulting in reduced cortical volume.These inflammation-induced disturbances to neuronal structure and function are likely to underpin subsequent disturbances to cortical development and connectivity in fetuses and/or newborns exposed to infection/inflammation during the perinatal period,leading,in the long term,to impaired neurodevelopment.The combined use of early electroencephalography monitoring with neuroimaging techniques that enable detailed evaluation of brain microstructure,and the use of therapeutics that successfully target systemic and central nervous system inflammation could provide an effective strategy for early detection and therapeutic intervention.
文摘BACKGROUND There is a possible link between depression and anxiety about suicidal ideation among parents of children with congenital heart disease(CHD).AIM To document the effects of depression and anxiety on parental suicidal ideation among children with CHD and the associated factors.METHODS This was a cross-sectional study among 50 parents of children with CHD who attended the Cardiac Clinic of University of Nigeria Teaching Hospital Ituku-Ozalla.Information was obtained using the Columbia Suicide Severity Rating Scale and the Hospital Anxiety and Depression Scale.RESULTS A greater percentage of parents whose child had a heart defect had anxiety symptoms(50.0%)than did those whose child had no heart defect(24.0%),and the difference in proportions was statistically significant(χ^(2)=7.250,P=0.007).A greater percentage of parents whose child had a heart defect had suicidal ideation(28.0%)than did those whose child had no heart defect(8.0%),and the difference in proportions was statistically significant(χ^(2)=6.775 P=0.009).A positive correlation was elicited between anxiety and suicide ideation,and this correlation was statistically significant(r=0.748,P<0.001).A positive correlation was elicited between depression and suicidal ideation scores,and this was statistically significant(r=0.617,P<0.001).CONCLUSION There is strong interconnectivity between anxiety and depression with suicidal ideation.There is an urgent need to start screening for the mental health of parents of children with CHD to avert the high propensity of complete suicide.In addition,policy makers may introduce a national clinical practice guideline on the importance of psychotherapy and mental health screening and targeted interventions for parents of children with CHD.
基金supported by a grant from the Merkin Peripheral Neuropathy and Nerve Regeneration Center(to PKS)the Rutgers University Startup Fund(to PKS).
文摘Stress granules are membraneless organelles that serve as a protective cellular response to external stressors by sequestering non-translating messenger RNAs(mRNAs)and regulating protein synthesis.Stress granules formation mechanism is conserved across species,from yeast to mammals,and they play a critical role in minimizing cellular damage during stress.Composed of heterogeneous ribonucleoprotein complexes,stress granules are enriched not only in mRNAs but also in noncoding RNAs and various proteins,including translation initiation factors and RNA-binding proteins.Genetic mutations affecting stress granule assembly and disassembly can lead to abnormal stress granule accumulation,contributing to the progression of several diseases.Recent research indicates that stress granule dynamics are pivotal in determining their physiological and pathological functions,with acute stress granule formation offering protection and chronic stress granule accumulation being detrimental.This review focuses on the multifaceted roles of stress granules under diverse physiological conditions,such as regulation of mRNA transport,mRNA translation,apoptosis,germ cell development,phase separation processes that govern stress granule formation,and their emerging implications in pathophysiological scenarios,such as viral infections,cancer,neurodevelopmental disorders,neurodegeneration,and neuronal trauma.
基金supported by the Grant PID2021-126715OB-IOO financed by MCIN/AEI/10.13039/501100011033 and"ERDFA way of making Europe"by the Grant PI22CⅢ/00055 funded by Instituto de Salud CarlosⅢ(ISCⅢ)+6 种基金the UFIECPY 398/19(PEJ2018-004965) grant to RGS funded by AEI(Spain)the UFIECPY-396/19(PEJ2018-004961)grant financed by MCIN (Spain)FI23CⅢ/00003 grant funded by ISCⅢ-PFIS Spain) to PMMthe UFIECPY 328/22 (PEJ-2021-TL/BMD-21001) grant to LM financed by CAM (Spain)the grant by CAPES (Coordination for the Improvement of Higher Education Personnel)through the PDSE program (Programa de Doutorado Sanduiche no Exterior)to VSCG financed by MEC (Brazil)
文摘The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.