The water medium hydraulic retarder is the latest type of auxiliary braking device and has the characteristics of high power density,large braking torque,and compact structure.During traveling,this device can convert ...The water medium hydraulic retarder is the latest type of auxiliary braking device and has the characteristics of high power density,large braking torque,and compact structure.During traveling,this device can convert the kinetic energy of a vehicle to the heat energy of the cooling liquid and replace the service brake under non-emergency braking conditions.With regard to the constant-speed function of the water medium hydraulic retarder,this study designs a controller based on the neural network proportional-integral-derivative(PID)algorithm to achieve the steady traveling of the vehicle at constant velocity during a downhill course by controlling the filling ratio of the water medium hydraulic retarder.To validate the algorithm’s effectiveness,the dynamic model of the heavy-duty vehicle in the downhill process and the physical model of the water medium hydraulic retarder are developed.Three operating conditions,including a fixed slope,step-changing slope,and continuous changing slope,are set,and a simulation test is carried out in the MATLAB/Simulink environment.The neural network PID algorithm has better adaptability in controlling than the traditional PID algorithm.Thus,it controls the water medium hydraulic retarder such that the braking requirements of heavy-duty vehicles under a changing slope working condi-tion are satisfied,and it performs constant-speed control when the vehicle travels downhill.Therefore,the proposed control method can significantly improve the safety of road traffic.展开更多
The hydraulic roll bending control system usually has the dynamic characteristics of nonlinearity, slow time variance and strong outside interference in the roiling process, so it is difficult to establish a precise m...The hydraulic roll bending control system usually has the dynamic characteristics of nonlinearity, slow time variance and strong outside interference in the roiling process, so it is difficult to establish a precise mathemati- cal model for control. So, a new method for establishing a hydraulic roll bending control system is put forward by cerebellar model articulation controller (CMAC) neural network and proportional-integral-derivative (PID) coupling control strategy. The non-linear relationship between input and output can be achieved by the concept mapping and the actual mapping of CMAC. The simulation results show that, compared with the conventional PID control algo- rithm, the parallel control algorithm can overcome the influence of parameter change of roll bending system on the control performance, thus improve the anti jamming capability of the system greatly, reduce the dependence of con- trol performance on the accuracy of the analytical model, enhance the tracking performance of hydraulic roll bending loop for the hydraulic and roll bending force and increase system response speed. The results indicate that the CMAC-P1D coupling control strategy for hydraulic roll bending system is effective.展开更多
A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established vi...A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.展开更多
For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a tra...For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.展开更多
In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algnrithm)-based PID neural network controller is designed and trained tO emulate the operation of a c...In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algnrithm)-based PID neural network controller is designed and trained tO emulate the operation of a complete system (magnetic bearing, controller, and power amplifiers). The feasibility of using a neural network to control nonlinear magnetic bearing systems with unknown dynamics is demonstrated. The key concept of the control scheme is to use GA to evaluate the candidate solutions (chromosomes), increase the generalization ability of PID neural network and avoid suffering from the local minima problem in network learning due to the use of gradient descent learning method. The simulation results show that the proposed architecture provides well robust performance and better reinforcement learning capability in controlling magnetic bearing systems.展开更多
基金funded by The National Key R&D Program of China(2016YFB0101402).
文摘The water medium hydraulic retarder is the latest type of auxiliary braking device and has the characteristics of high power density,large braking torque,and compact structure.During traveling,this device can convert the kinetic energy of a vehicle to the heat energy of the cooling liquid and replace the service brake under non-emergency braking conditions.With regard to the constant-speed function of the water medium hydraulic retarder,this study designs a controller based on the neural network proportional-integral-derivative(PID)algorithm to achieve the steady traveling of the vehicle at constant velocity during a downhill course by controlling the filling ratio of the water medium hydraulic retarder.To validate the algorithm’s effectiveness,the dynamic model of the heavy-duty vehicle in the downhill process and the physical model of the water medium hydraulic retarder are developed.Three operating conditions,including a fixed slope,step-changing slope,and continuous changing slope,are set,and a simulation test is carried out in the MATLAB/Simulink environment.The neural network PID algorithm has better adaptability in controlling than the traditional PID algorithm.Thus,it controls the water medium hydraulic retarder such that the braking requirements of heavy-duty vehicles under a changing slope working condi-tion are satisfied,and it performs constant-speed control when the vehicle travels downhill.Therefore,the proposed control method can significantly improve the safety of road traffic.
基金Item Sponsored by National High-Tech Research and Development Program(863Program)of China(2009AA04Z143)Natural Science Foundation of Hebei Province of China(E2006001038)Hebei Provincial Science and Technology Project of China(10212101D)
文摘The hydraulic roll bending control system usually has the dynamic characteristics of nonlinearity, slow time variance and strong outside interference in the roiling process, so it is difficult to establish a precise mathemati- cal model for control. So, a new method for establishing a hydraulic roll bending control system is put forward by cerebellar model articulation controller (CMAC) neural network and proportional-integral-derivative (PID) coupling control strategy. The non-linear relationship between input and output can be achieved by the concept mapping and the actual mapping of CMAC. The simulation results show that, compared with the conventional PID control algo- rithm, the parallel control algorithm can overcome the influence of parameter change of roll bending system on the control performance, thus improve the anti jamming capability of the system greatly, reduce the dependence of con- trol performance on the accuracy of the analytical model, enhance the tracking performance of hydraulic roll bending loop for the hydraulic and roll bending force and increase system response speed. The results indicate that the CMAC-P1D coupling control strategy for hydraulic roll bending system is effective.
基金Project(2011ZA51001)supported by National Aerospace Science Foundation of China
文摘A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.
基金This paper is supported by the National Foundamental Research Program of China (No. 2002CB312201), the State Key Program of NationalNatural Science of China (No. 60534010), the Funds for Creative Research Groups of China (No. 60521003), and Program for Changjiang Scholarsand Innovative Research Team in University (No. IRT0421).
文摘For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.
基金This project is supported by National Natural Science Foundation of China (No. 5880203).
文摘In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algnrithm)-based PID neural network controller is designed and trained tO emulate the operation of a complete system (magnetic bearing, controller, and power amplifiers). The feasibility of using a neural network to control nonlinear magnetic bearing systems with unknown dynamics is demonstrated. The key concept of the control scheme is to use GA to evaluate the candidate solutions (chromosomes), increase the generalization ability of PID neural network and avoid suffering from the local minima problem in network learning due to the use of gradient descent learning method. The simulation results show that the proposed architecture provides well robust performance and better reinforcement learning capability in controlling magnetic bearing systems.