Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ...Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.展开更多
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification probl...In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.展开更多
The contents of sensor registration in the multi-sensor data fusion system are introduced, and some existing methods are analyzed. Then, one approach to sensor registration based on BP neural network is proposed. Here...The contents of sensor registration in the multi-sensor data fusion system are introduced, and some existing methods are analyzed. Then, one approach to sensor registration based on BP neural network is proposed. Here the measurements from radar are transformed from the polar coordinate system to the Cartesian coordinate through a BP neural network. With this approach, the systematic errors are removed as well as the coordinate is transformed. The efficiency of this method is demonstrated by simulation, and the result show that this approach could remove the systematic errors effectively and the DAR are closer to real position than DBR.展开更多
Decision fusion rules for Wireless Sensor Networks (WSNs) under Nakagami fading channels are investigated in this paper. Considering the application limitation of Likelihood Ratio Test fusion rule based on information...Decision fusion rules for Wireless Sensor Networks (WSNs) under Nakagami fading channels are investigated in this paper. Considering the application limitation of Likelihood Ratio Test fusion rule based on information of Channel Statistics using Series expansion (LRT-CSS),and the detection performance limitation of the Censoring based Mixed Fusion rule (CMF),a new LRT fusion rule based on information of channel statistics has been presented using Laplace approximation (LRT-CSL). Theoretical analysis and simulations show that the proposed fusion rule provides better detection performance than the Censoring based Mixed Fusion (CMF) and LRT-CSS fusion rules. Furthermore,compared with LRT-CSS fusion rule,the proposed fusion rule expands the application range of likelihood ratio test fusion rule.展开更多
The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This a...The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.展开更多
The problem of distributed fusion and random observation loss for mobile sensor networks is investigated herein.In view of the fact that the measured values,sampling frequency and noise of various sensors are differen...The problem of distributed fusion and random observation loss for mobile sensor networks is investigated herein.In view of the fact that the measured values,sampling frequency and noise of various sensors are different,the observation model of a heterogeneous network is constructed.A binary random variable is introduced to describe the drop of observation component and the topology switching problem caused by complete observation loss is also considered.A cubature information filtering algorithm is adopted to design local filters for each observer to suppress the negative effects of measurement noise.To derive a consistent and accurate estimation result,a novel weighted average consensus-based filtering approach is put forward.For the sensor that suffers from observation loss,its local prediction information vector is fused with the information contribution vectors of the neighbors to obtain the local estimation.Then the consensus weight matrix is designed for consensus-based distributed collaborative information fusion.The boundness of the estimation errors is proved by employing the stochastic stability theory.In the end,two numerical examples are offered to assert the validity of the presented method.展开更多
According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e...According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.展开更多
We present a novel paradigm of sensor placement concerning data precision and estimation.Multiple abstract sensors are used to measure a quantity of a moving target in the scenario of a wireless sensor network.These s...We present a novel paradigm of sensor placement concerning data precision and estimation.Multiple abstract sensors are used to measure a quantity of a moving target in the scenario of a wireless sensor network.These sensors can cooperate with each other to obtain a precise estimate of the quantity in a real-time manner.We consider a problem on planning a minimum-cost scheme of sensor placement with desired data precision and resource consumption.Measured data is modeled as a Gaussian random variable with a changeable variance.A gird model is used to approximate the problem.We solve the problem with a heuristic algorithm using branch-and-bound method and tabu search.Our experiments demonstrate that the algorithm is correct in a certain tolerance,and it is also efficient and scalable.展开更多
Noise (from different sources), data dimension, and fading can have dramatic effects on the performance of wireless sensor networks and the decisions made at the fusion center. Any of these parameters alone or their c...Noise (from different sources), data dimension, and fading can have dramatic effects on the performance of wireless sensor networks and the decisions made at the fusion center. Any of these parameters alone or their combined result can affect the final outcome of a wireless sensor network. As such, total elimination of these parameters could also be damaging to the final outcome, as it may result in removing useful information that can benefit the decision making process. Several efforts have been made to find the optimal balance between which parameters, where, and how to remove them. For the most part, experts in the field agree that it is more beneficial to remove noise and/or compress data at the node level. We have developed computationally low power, low bandwidth, and low cost filters that will remove the noise and compress the data so that a decision can be made at the node level. This wavelet-based method is guaranteed to converge to a stationary point for both uncorrelated and correlated sensor data. This is mainly stressed so that the low power, low bandwidth, and low computational overhead of the wireless sensor network node constraints are met while fused datasets can still be used to make reliable decisions.展开更多
A system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study.The wearable device consisted of a six-axis sensor,Raspberry Pi 3,and a power bank.M...A system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study.The wearable device consisted of a six-axis sensor,Raspberry Pi 3,and a power bank.Multiple kernel sizes were used in convolutional neural network(CNN)to evaluate their performance for extracting features.Moreover,a multiscale CNN with two kernel sizes was used to perform feature fusion at different scales in a concatenated manner.The CNN achieved recognition of the four table tennis strokes.Experimental data were obtained from20 research participants who wore sensors on the back of their hands while performing the four table tennis strokes in a laboratory environment.The data were collected to verify the performance of the proposed models for wearable devices.Finally,the sensor and multi-scale CNN designed in this study achieved accuracy and F1 scores of 99.58%and 99.16%,respectively,for the four strokes.The accuracy for five-fold cross validation was 99.87%.This result also shows that the multi-scale convolutional neural network has better robustness after fivefold cross validation.展开更多
Destructive wildfires are becoming an annual event,similar to climate change,resulting in catastrophes that wreak havoc on both humans and the envir-onment.The result,however,is disastrous,causing irreversible damage t...Destructive wildfires are becoming an annual event,similar to climate change,resulting in catastrophes that wreak havoc on both humans and the envir-onment.The result,however,is disastrous,causing irreversible damage to the ecosystem.The location of the incident and the hotspot can sometimes have an impact on earlyfire detection systems.With the advancement of intelligent sen-sor-based control technologies,the multi-sensor data fusion technique integrates data from multiple sensor nodes.The primary objective to avoid wildfire is to identify the exact location of wildfire occurrence,allowingfire units to respond as soon as possible.Thus to predict the occurrence offire in forests,a fast and effective intelligent control system is proposed.The proposed algorithm with decision tree classification determines whetherfire detection parameters are in the acceptable range and further utilizes a fuzzy-based optimization to optimize the complex environment.The experimental results of the proposed model have a detection rate of 98.3.Thus,providing real-time monitoring of certain environ-mental variables for continuous situational awareness and instant responsiveness.展开更多
In the applications of water regime monitoring, incompleteness, and inaccuracy of sensor data may directly affect the reliability of acquired monitoring information. Based on the spatial and temporal correlation of wa...In the applications of water regime monitoring, incompleteness, and inaccuracy of sensor data may directly affect the reliability of acquired monitoring information. Based on the spatial and temporal correlation of water regime monitoring information, this paper addresses this issue and proposes an information fusion method to implement data rectification. An improved Back Propagation (BP) neural network is used to perform data fusion on the hardware platform of a stantion unit, which takes Field-Programmable Gate Array (FPGA) as the core component. In order to verify the effectiveness, five measurements including water level, discharge and velocity are selected from three different points in a water regime monitoring station. The simulation results show that this method can recitify random errors as well as gross errors significantly.展开更多
The multi-sensor multi-target localization and data fusion problem is discussed, and a new data fusion method called joint probability density matrix (JPDM) has been proposed, which can associate with and fuse measu...The multi-sensor multi-target localization and data fusion problem is discussed, and a new data fusion method called joint probability density matrix (JPDM) has been proposed, which can associate with and fuse measurements from spatially distributed heterogeneous sensors to produce good estimates of the targets. Based on probabilistic grids representation, the uncertainty regions of all the measurements are numerically combined in a general framework. The NP-hard multi-sensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion methods, the JPDM method does not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.展开更多
In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp...In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.展开更多
由于航空发动机工作环境复杂,故障数据稀缺,且单一传感器难以全面表征中介轴承状态,导致现有诊断方法准确率较低。为此,提出了一种基于多传感器信息融合(multi-sensor information fusion,MSIF)和二维卷积神经网络(2-dimensional convol...由于航空发动机工作环境复杂,故障数据稀缺,且单一传感器难以全面表征中介轴承状态,导致现有诊断方法准确率较低。为此,提出了一种基于多传感器信息融合(multi-sensor information fusion,MSIF)和二维卷积神经网络(2-dimensional convolutional neural network,2DCNN)的航空发动机中介轴承故障诊断方法。该方法将多个传感器的时域和频域特征融合为一张RGB图像,从而更加全面地表征中介轴承状态。然后,将生成的RGB图像输入2DCNN模型完成故障诊断。在真实航空发动机试验台的轴承故障数据上的测试中,当训练集与测试集比例为1∶9的小样本条件时,部分传感器组合的诊断准确率即可达99%;比例为7∶3时所有传感器组合的准确率均达100%。此外,所提方法的诊断准确率与基础研究相比,至少提高了13%;且超越了进行对比的5种先进方法。结果表明,该方法不仅实现了航空发动机中介轴承故障的快速精准识别,还在小样本条件下展现出了卓越的诊断性能。展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.U21A20464,62066005Innovation Project of Guangxi Graduate Education under Grant No.YCSW2024313.
文摘Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.
基金Supported in part by Science & Technology Department of Shanghai (05dz15004)
文摘In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.
基金Supported by National Natural Science Foundation of China (60874063) and Innovation and Scientific Research Foundation of Graduate Student of Heilongjiang Province (YJSCX2012-263HLJ)
基金Supported by National Natural Science Foundation of China (60874063), and Innovation and Scientific Research Foundation of Graduate Student of Heilongjiang Province (YJSCX2012-263HLJ)
文摘The contents of sensor registration in the multi-sensor data fusion system are introduced, and some existing methods are analyzed. Then, one approach to sensor registration based on BP neural network is proposed. Here the measurements from radar are transformed from the polar coordinate system to the Cartesian coordinate through a BP neural network. With this approach, the systematic errors are removed as well as the coordinate is transformed. The efficiency of this method is demonstrated by simulation, and the result show that this approach could remove the systematic errors effectively and the DAR are closer to real position than DBR.
基金Supported by the National Natural Science Foundation of China (No.60772139)
文摘Decision fusion rules for Wireless Sensor Networks (WSNs) under Nakagami fading channels are investigated in this paper. Considering the application limitation of Likelihood Ratio Test fusion rule based on information of Channel Statistics using Series expansion (LRT-CSS),and the detection performance limitation of the Censoring based Mixed Fusion rule (CMF),a new LRT fusion rule based on information of channel statistics has been presented using Laplace approximation (LRT-CSL). Theoretical analysis and simulations show that the proposed fusion rule provides better detection performance than the Censoring based Mixed Fusion (CMF) and LRT-CSS fusion rules. Furthermore,compared with LRT-CSS fusion rule,the proposed fusion rule expands the application range of likelihood ratio test fusion rule.
基金project BK2001073 supported by Jiangsu Province Natural Science Foundation
文摘The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.
基金supported by the Science and Technology Innovation 2030-Key Project of“New Generation Artificial Intelligence”of China(No.2020AAA0108200)the National Natural Science Foundation of China(Nos.61873011,61922008,61973013,61803014)+2 种基金the Innovation Zone Project of China(No.18-163-00-TS-001-001-34)the Defense Industrial Technology Development Program of China(No.JCKY2019601C106)the Special Research Project of Chinese Civil Aircraft,China。
文摘The problem of distributed fusion and random observation loss for mobile sensor networks is investigated herein.In view of the fact that the measured values,sampling frequency and noise of various sensors are different,the observation model of a heterogeneous network is constructed.A binary random variable is introduced to describe the drop of observation component and the topology switching problem caused by complete observation loss is also considered.A cubature information filtering algorithm is adopted to design local filters for each observer to suppress the negative effects of measurement noise.To derive a consistent and accurate estimation result,a novel weighted average consensus-based filtering approach is put forward.For the sensor that suffers from observation loss,its local prediction information vector is fused with the information contribution vectors of the neighbors to obtain the local estimation.Then the consensus weight matrix is designed for consensus-based distributed collaborative information fusion.The boundness of the estimation errors is proved by employing the stochastic stability theory.In the end,two numerical examples are offered to assert the validity of the presented method.
文摘According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.
基金Supported of Project of Fok Ying Tong Education Foundation(No.104030)Supported of Key Project of National Natural Science of Foundation of China(No.70531020)+2 种基金Supported of Project of New Century Excellent Talent(No.NCET-06-0382)Supported of Key Project of Education Ministry of China(No.306023)Supported of Project of Doctoral Education(20070247075)
文摘We present a novel paradigm of sensor placement concerning data precision and estimation.Multiple abstract sensors are used to measure a quantity of a moving target in the scenario of a wireless sensor network.These sensors can cooperate with each other to obtain a precise estimate of the quantity in a real-time manner.We consider a problem on planning a minimum-cost scheme of sensor placement with desired data precision and resource consumption.Measured data is modeled as a Gaussian random variable with a changeable variance.A gird model is used to approximate the problem.We solve the problem with a heuristic algorithm using branch-and-bound method and tabu search.Our experiments demonstrate that the algorithm is correct in a certain tolerance,and it is also efficient and scalable.
文摘Noise (from different sources), data dimension, and fading can have dramatic effects on the performance of wireless sensor networks and the decisions made at the fusion center. Any of these parameters alone or their combined result can affect the final outcome of a wireless sensor network. As such, total elimination of these parameters could also be damaging to the final outcome, as it may result in removing useful information that can benefit the decision making process. Several efforts have been made to find the optimal balance between which parameters, where, and how to remove them. For the most part, experts in the field agree that it is more beneficial to remove noise and/or compress data at the node level. We have developed computationally low power, low bandwidth, and low cost filters that will remove the noise and compress the data so that a decision can be made at the node level. This wavelet-based method is guaranteed to converge to a stationary point for both uncorrelated and correlated sensor data. This is mainly stressed so that the low power, low bandwidth, and low computational overhead of the wireless sensor network node constraints are met while fused datasets can still be used to make reliable decisions.
基金supporting of the Ministry of Science and Technology MOST(Grant No.MOST 108–2221-E-150–022-MY3,MOST 110–2634-F-019–002)the National Taiwan Ocean University,China.
文摘A system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study.The wearable device consisted of a six-axis sensor,Raspberry Pi 3,and a power bank.Multiple kernel sizes were used in convolutional neural network(CNN)to evaluate their performance for extracting features.Moreover,a multiscale CNN with two kernel sizes was used to perform feature fusion at different scales in a concatenated manner.The CNN achieved recognition of the four table tennis strokes.Experimental data were obtained from20 research participants who wore sensors on the back of their hands while performing the four table tennis strokes in a laboratory environment.The data were collected to verify the performance of the proposed models for wearable devices.Finally,the sensor and multi-scale CNN designed in this study achieved accuracy and F1 scores of 99.58%and 99.16%,respectively,for the four strokes.The accuracy for five-fold cross validation was 99.87%.This result also shows that the multi-scale convolutional neural network has better robustness after fivefold cross validation.
文摘Destructive wildfires are becoming an annual event,similar to climate change,resulting in catastrophes that wreak havoc on both humans and the envir-onment.The result,however,is disastrous,causing irreversible damage to the ecosystem.The location of the incident and the hotspot can sometimes have an impact on earlyfire detection systems.With the advancement of intelligent sen-sor-based control technologies,the multi-sensor data fusion technique integrates data from multiple sensor nodes.The primary objective to avoid wildfire is to identify the exact location of wildfire occurrence,allowingfire units to respond as soon as possible.Thus to predict the occurrence offire in forests,a fast and effective intelligent control system is proposed.The proposed algorithm with decision tree classification determines whetherfire detection parameters are in the acceptable range and further utilizes a fuzzy-based optimization to optimize the complex environment.The experimental results of the proposed model have a detection rate of 98.3.Thus,providing real-time monitoring of certain environ-mental variables for continuous situational awareness and instant responsiveness.
基金Supported by the National Natural Science Foundation of China (No. 60774092, No. 60901003)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20070294027)
文摘In the applications of water regime monitoring, incompleteness, and inaccuracy of sensor data may directly affect the reliability of acquired monitoring information. Based on the spatial and temporal correlation of water regime monitoring information, this paper addresses this issue and proposes an information fusion method to implement data rectification. An improved Back Propagation (BP) neural network is used to perform data fusion on the hardware platform of a stantion unit, which takes Field-Programmable Gate Array (FPGA) as the core component. In order to verify the effectiveness, five measurements including water level, discharge and velocity are selected from three different points in a water regime monitoring station. The simulation results show that this method can recitify random errors as well as gross errors significantly.
基金Supported by the National Natural Science Foundation of China (No. 60736006 and 60875019)
文摘The multi-sensor multi-target localization and data fusion problem is discussed, and a new data fusion method called joint probability density matrix (JPDM) has been proposed, which can associate with and fuse measurements from spatially distributed heterogeneous sensors to produce good estimates of the targets. Based on probabilistic grids representation, the uncertainty regions of all the measurements are numerically combined in a general framework. The NP-hard multi-sensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion methods, the JPDM method does not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.
基金supported by the National Natural Science Foundation of China(62273176)the Aeronautical Science Foundation of China(20200007018001)the China Scholarship Council(202306830096).
文摘In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.