With the rapid deployment of high speed railway(HSR) worldwide,both safety operation and comfort experience can be desired to evolve into a future era of intelligent transportation system.To eliminate boredom and prov...With the rapid deployment of high speed railway(HSR) worldwide,both safety operation and comfort experience can be desired to evolve into a future era of intelligent transportation system.To eliminate boredom and provide entertainment for passengers,an intranet for internal communications among passengers named as onboard social network system(SNS) is needed.In this paper,the latest progress in HSR network architectures and technology building blocks are discussed to enable the implementation of the SNS.Meanwhile,based on the device-to-device(D2 D) communication technology for proximal information interaction,SNS can be efficiently facilitated.A dynamic resource allocation algorithm is proposed to maximize the total utility of the onboard SNS,which is solved with the matching theory method.Simulation results verify the convergence and efficiency of the proposed algorithm.展开更多
基金supported by the National Key Research and Development Program Under Grant 2016YFB 1200102-04Natural Science Foundation of China under Grant U1334202+3 种基金supported in part by the National S&T Major Project 2016ZX03001021-003the Fundamental Research Funds for the Central Universities under Grant 2016RC056in part by the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,under Contract RCS2017ZT009in part by the China Postdoctoral Science Foundation under Grant 2017M610040
文摘With the rapid deployment of high speed railway(HSR) worldwide,both safety operation and comfort experience can be desired to evolve into a future era of intelligent transportation system.To eliminate boredom and provide entertainment for passengers,an intranet for internal communications among passengers named as onboard social network system(SNS) is needed.In this paper,the latest progress in HSR network architectures and technology building blocks are discussed to enable the implementation of the SNS.Meanwhile,based on the device-to-device(D2 D) communication technology for proximal information interaction,SNS can be efficiently facilitated.A dynamic resource allocation algorithm is proposed to maximize the total utility of the onboard SNS,which is solved with the matching theory method.Simulation results verify the convergence and efficiency of the proposed algorithm.