期刊文献+
共找到825,026篇文章
< 1 2 250 >
每页显示 20 50 100
DIGNN-A:Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph
1
作者 Jizhao Liu Minghao Guo 《Computers, Materials & Continua》 SCIE EI 2025年第1期817-842,共26页
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr... The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics. 展开更多
关键词 Intrusion detection graph neural networks attention mechanisms line graphs dynamic graph neural networks
在线阅读 下载PDF
Estimation of peer pressure in dynamic homogeneous social networks
2
作者 Jie Liu Pengyi Wang +1 位作者 Jiayang Zhao Yu Dong 《中国科学技术大学学报》 北大核心 2025年第5期36-49,35,I0001,I0002,共17页
Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision p... Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision payoff functions hinge on individual covariates and the choices of their friends.However,peer pressure would be misidentified and induce a non-negligible bias when incomplete covariates are involved in the game model.For this reason,we develop a generalized constant peer effects model based on homogeneity structure in dynamic social networks.The new model can effectively avoid bias through homogeneity pursuit and can be applied to a wider range of scenarios.To estimate peer pressure in the model,we first present two algorithms based on the initialize expand merge method and the polynomial-time twostage method to estimate homogeneity parameters.Then we apply the nested pseudo-likelihood method and obtain consistent estimators of peer pressure.Simulation evaluations show that our proposed methodology can achieve desirable and effective results in terms of the community misclassification rate and parameter estimation error.We also illustrate the advantages of our model in the empirical analysis when compared with a benchmark model. 展开更多
关键词 dynamic network game theory HOMOGENEITY peer pressure social interaction
在线阅读 下载PDF
Graph neural networks unveil universal dynamics in directed percolation
3
作者 Ji-Hui Han Cheng-Yi Zhang +3 位作者 Gao-Gao Dong Yue-Feng Shi Long-Feng Zhao Yi-Jiang Zou 《Chinese Physics B》 2025年第8期540-545,共6页
Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investig... Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investigate non-equilibrium phase transitions,specifically focusing on the directed percolation process.By converting lattices with varying dimensions and connectivity schemes into graph structures and embedding the temporal evolution of the percolation process into node features,our approach enables unified analysis across diverse systems.The framework utilizes a multi-layer graph attention mechanism combined with global pooling to autonomously extract critical features from local dynamics to global phase transition signatures.The model successfully predicts percolation thresholds without relying on lattice geometry,demonstrating its robustness and versatility.Our approach not only offers new insights into phase transition studies but also provides a powerful tool for analyzing complex dynamical systems across various domains. 展开更多
关键词 graph neural networks non-equilibrium phase transition directed percolation model nonlinear dynamics
原文传递
Dynamic Route Optimization for Multi-Vehicle Systems with Diverse Needs in Road Networks Based on Preference Games
4
作者 Jixiang Wang Jing Wei +2 位作者 Siqi Chen Haiyang Yu Yilong Ren 《Computers, Materials & Continua》 2025年第6期4167-4192,共26页
The real-time path optimization for heterogeneous vehicle fleets in large-scale road networks presents significant challenges due to conflicting traffic demands and imbalanced resource allocation.While existing vehicl... The real-time path optimization for heterogeneous vehicle fleets in large-scale road networks presents significant challenges due to conflicting traffic demands and imbalanced resource allocation.While existing vehicleto-infrastructure coordination frameworks partially address congestion mitigation,they often neglect priority-aware optimization and exhibit algorithmic bias toward dominant vehicle classes—critical limitations in mixed-priority scenarios involving emergency vehicles.To bridge this gap,this study proposes a preference game-theoretic coordination framework with adaptive strategy transfer protocol,explicitly balancing system-wide efficiency(measured by network throughput)with priority vehicle rights protection(quantified via time-sensitive utility functions).The approach innovatively combines(1)a multi-vehicle dynamic routing model with quantifiable preference weights,and(2)a distributed Nash equilibrium solver updated using replicator sub-dynamic models.The framework was evaluated on an urban road network containing 25 intersections with mixed priority ratios(10%–30%of vehicles with priority access demand),and the framework showed consistent benefits on four benchmarks(Social routing algorithm,Shortest path algorithm,The comprehensive path optimisation model,The emergency vehicle timing collaborative evolution path optimization method)showed consistent benefits.Results showthat across different traffic demand configurations,the proposed method reduces the average vehicle traveling time by at least 365 s,increases the road network throughput by 48.61%,and effectively balances the road loads.This approach successfully meets the diverse traffic demands of various vehicle types while optimizing road resource allocations.The proposed coordination paradigm advances theoretical foundations for fairness-aware traffic optimization while offering implementable strategies for next-generation cooperative vehicle-road systems,particularly in smart city deployments requiring mixed-priority mobility guarantees. 展开更多
关键词 Preference game vehicle road coordination large-scale road network different needs dynamic route selection
在线阅读 下载PDF
Delay bounded routing with the maximum belief degree for dynamic uncertain networks
5
作者 MA Ji KANG Rui +3 位作者 LI Ruiying ZHANG Qingyuan LIU Liang WANG Xuewang 《Journal of Systems Engineering and Electronics》 2025年第1期127-138,共12页
Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a netwo... Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds. 展开更多
关键词 dynamic uncertain network uncertainty theory epistemic uncertainty delay bounded routing maximum belief degree
在线阅读 下载PDF
Three-Level Intrusion Detection Model for Wireless Sensor Networks Based on Dynamic Trust Evaluation
6
作者 Xiaogang Yuan Huan Pei Yanlin Wu 《Computers, Materials & Continua》 2025年第9期5555-5575,共21页
In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stabili... In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stability,data transmission reliability,and overall performance.To effectively address this issue and significantly improve intrusion detection speed,accuracy,and resistance to malicious attacks,this research designs a Three-level Intrusion Detection Model based on Dynamic Trust Evaluation(TIDM-DTE).This study conducts a detailed analysis of how different attack types impact node trust and establishes node models for data trust,communication trust,and energy consumption trust by focusing on characteristics such as continuous packet loss and energy consumption changes.By dynamically predicting node trust values using the grey Markov model,the model accurately and sensitively reflects changes in node trust levels during attacks.Additionally,DBSCAN(Density-Based Spatial Clustering of Applications with Noise)data noise monitoring technology is employed to quickly identify attacked nodes,while a trust recovery mechanism restores the trust of temporarily faulty nodes to reduce False Alarm Rate.Simulation results demonstrate that TIDM-DTE achieves high detection rates,fast detection speed,and low False Alarm Rate when identifying various network attacks,including selective forwarding attacks,Sybil attacks,switch attacks,and black hole attacks.TIDM-DTE significantly enhances network security,ensures secure and reliable data transmission,moderately improves network energy efficiency,reduces unnecessary energy consumption,and provides strong support for the stable operation of WSNs.Meanwhile,the research findings offer new ideas and methods for WSN security protection,possessing important theoretical significance and practical application value. 展开更多
关键词 Wireless sensor networks intrusion detection dynamic trust evaluation data noise detection trust recovery mechanism
在线阅读 下载PDF
A Dynamic Self Organizing TDMA MAC for Long-Range Ad Hoc Networks
7
作者 Ding Lianghui Sheng Wenfeng +2 位作者 Tian Feng Sun Baichang Yang Feng 《China Communications》 2025年第9期212-225,共14页
Research on wide area ad hoc networks is of great significance due to its application prospect in long-range networks such as aeronautical and maritime networks,etc.The design of MAC protocols is one of the most impor... Research on wide area ad hoc networks is of great significance due to its application prospect in long-range networks such as aeronautical and maritime networks,etc.The design of MAC protocols is one of the most important parts impacting the whole network performance.In this paper,we propose a dis-tributed TDMA-based MAC protocol called Dynamic Self Organizing TDMA(DSO-TDMA)for wide area ad hoc networks.DSO-TDMA includes three main features:(1)In a distributed way,nodes in the network select transmitting slots according to the congestion situation of the local air interface.(2)In a selforganization way,nodes dynamically adjust the resource occupancy ratio according to the queue length of neighbouring nodes within two-hop range.(3)In a piggyback way,the control information is transmitted together with the payload to reduce the overhead.We design the whole mechanisms,implement them in NS-3 and evaluate the performance of DSO-TDMA compared with another dynamic TDMA MAC protocol,EHR-TDMA.Results show that the end-to-end throughput of DSO-TDMA is at most 51.4%higher than that of EHR-TDMA,and the average access delay of DSO-TDMA is at most 66.05%lower than that of EHR-TDMA. 展开更多
关键词 dynamic TDMA media access control wide area broadband ad hoc networks
在线阅读 下载PDF
Accelerated proton transport modulates dynamic hydrogen bonding networks in eutectic gel electrolytes for low-temperature aqueous Zn-metal batteries
8
作者 Baonian Zhu Yuefeng Yan +8 位作者 Jingzhe Hong Yuhao Xia Meixiu Song Xiaoshuang Wang Yanan Liu Bo Zhong Dongdong Liu Tao Zhang Xiaoxiao Huang 《Journal of Energy Chemistry》 2025年第10期325-336,共12页
Aqueous Zn-metal batteries(AZMBs)performance is hampered by freezing water at low temperatures,which hampers their multi-scenario application.Hydrogen bonds(HBs)play a pivotal role in water freezing,and proton transpo... Aqueous Zn-metal batteries(AZMBs)performance is hampered by freezing water at low temperatures,which hampers their multi-scenario application.Hydrogen bonds(HBs)play a pivotal role in water freezing,and proton transport is indispensable for the establishment of HBs.Here,the accelerated proton transport modulates the dynamic hydrogen bonding network of a Zn(BF4)2/EMIMBF4impregnated polyacrylamide/poly(vinyl alcohol)/xanthan gum dual network eutectic gel electrolyte(PPX-ILZSE)for lowtemperature AZMBs.The PPX-ILZSE forms more HBs,shorter HBs lifetimes,higher tetrahedral entropy,and faster desolvation processes,as demonstrated by experimental and theoretical calculations.This enhanced dynamic proton transport promotes rapid cycling of HBs formation-failure,and for polyaniline cathode(PANI)abundant redox sites of proton,confers excellent low temperature electrochemical performance to the Zn//PANI full cell.Specific capacities for 1000 and 5000 cycles at 1 and 5 A g^(-1)were149.8 and 128.4 m A h g^(-1)at room temperature,respectively.Furthermore,specific capacities of 131.1 mA hg^(-1)(92.4%capacity retention)and 0.0066%capacity decay per lap were achieved for 3000and 3500 laps at-30 and 40℃,respectively,at 0.5 A g^(-1).Furthermore,in-situ protective layer of ZnOHF nano-arrays on the Zn anode surface to eliminate dendrite growth and accelerate Zn-ions adsorption and charge transfer. 展开更多
关键词 Aqueous Zn-metal battery Anti-freezing eutectic gel electrolyte Proton transport dynamic hydrogen bonding network Polyaniline cathode
在线阅读 下载PDF
Performance Evaluation of Dynamic Adaptive Routing(DAR)for Unmanned Aerial Vehicle(UAV)Networks
9
作者 Khadija Slimani Samira Khoulji +1 位作者 Hamed Taherdoost Mohamed Larbi Kerkeb 《Computers, Materials & Continua》 2025年第11期4115-4132,共18页
Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitor... Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitoring.Frequent topology changes,high mobility,and limited energy availability pose significant challenges to maintaining stable and high-performance routing.Traditional routing protocols,such as Ad hoc On-Demand Distance Vector(AODV),Load-Balanced Optimized Predictive Ad hoc Routing(LB-OPAR),and Destination-Sequenced Distance Vector(DSDV),often experience performance degradation under such conditions.To address these limitations,this study evaluates the effectiveness of Dynamic Adaptive Routing(DAR),a protocol designed to adapt routing decisions in real time based on network dynamics and resource constraints.The research utilizes the Network Simulator 3(NS-3)platform to conduct controlled simulations,measuring key performance indicators such as latency,Packet Delivery Ratio(PDR),energy consumption,and throughput.Comparative analysis reveals that DAR consistently outperforms conventional protocols,achieving a 20%-30% reduction in latency,a 25% decrease in energy consumption,and marked improvements in throughput and PDR.These results highlight DAR’s ability to maintain high communication reliability while optimizing resource usage in challenging operational scenarios.By providing empirical evidence of DAR’s advantages in highly dynamic UAV network environments,this study contributes to advancing adaptive routing strategies.The findings not only validate DAR’s robustness and scalability but also lay the groundwork for integrating artificial intelligence-driven decision-making and real-world UAV deployment.Future work will explore cross-layer optimization,multi-UAV coordination,and experimental validation in field trials,aiming to further enhance communication resilience and energy efficiency in next-generation aerial networks. 展开更多
关键词 dynamic adaptive routing(DAR) UAV networks NS-3 simulation packet delivery ratio(PDR) energy efficiency
在线阅读 下载PDF
Dynamic Task Offloading and Resource Allocation for Air-Ground Integrated Networks Based on MADDPG
10
作者 Jianbin Xue Peipei Mao +2 位作者 Luyao Wang Qingda Yu Changwang Fan 《Journal of Beijing Institute of Technology》 2025年第3期243-267,共25页
With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for ... With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for communication and computation to build air-ground integrated networks(AGINs)offers a promising solution for seamless network coverage of remote internet of things(IoT)devices in the future.To address the performance demands of future mobile devices(MDs),we proposed an MEC-assisted AGIN system.The goal is to minimize the long-term computational overhead of MDs by jointly optimizing transmission power,flight trajecto-ries,resource allocation,and offloading ratios,while utilizing non-orthogonal multiple access(NOMA)to improve device connectivity of large-scale MDs and spectral efficiency.We first designed an adaptive clustering scheme based on K-Means to cluster MDs and established commu-nication links,improving efficiency and load balancing.Then,considering system dynamics,we introduced a partial computation offloading algorithm based on multi-agent deep deterministic pol-icy gradient(MADDPG),modeling the multi-UAV computation offloading problem as a Markov decision process(MDP).This algorithm optimizes resource allocation through centralized training and distributed execution,reducing computational overhead.Simulation results show that the pro-posed algorithm not only converges stably but also outperforms other benchmark algorithms in han-dling complex scenarios with multiple devices. 展开更多
关键词 air-ground integrated network(AGIN) resource allocation dynamic task offloading multi-agent deep deterministic policy gradient(MADDPG) non-orthogonal multiple access(NOMA)
暂未订购
State-Incomplete Intelligent Dynamic Multipath Routing Algorithm in LEO Satellite Networks
11
作者 Peng Liang Wang Xiaoxiang 《China Communications》 2025年第2期1-11,共11页
The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has bec... The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has become an essential supplement to the terrestrial network.However,the dynamic changes and uneven distribution of satellite network traffic inevitably bring challenges to multipath routing.Even worse,the harsh space environment often leads to incomplete collection of network state data for routing decision-making,which further complicates this challenge.To address this problem,this paper proposes a state-incomplete intelligent dynamic multipath routing algorithm(SIDMRA)to maximize network efficiency even with incomplete state data as input.Specifically,we model the multipath routing problem as a markov decision process(MDP)and then combine the deep deterministic policy gradient(DDPG)and the K shortest paths(KSP)algorithm to solve the optimal multipath routing policy.We use the temporal correlation of the satellite network state to fit the incomplete state data and then use the message passing neuron network(MPNN)for data enhancement.Simulation results show that the proposed algorithm outperforms baseline algorithms regarding average end-to-end delay and packet loss rate and performs stably under certain missing rates of state data. 展开更多
关键词 deep deterministic policy gradient LEO satellite network message passing neuron network multipath routing
在线阅读 下载PDF
Optimal Synchronization of Higher-Order Dynamical Networks
12
作者 Guanrong CHEN 《Artificial Intelligence Science and Engineering》 2025年第1期31-36,共6页
This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Fu... This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Furthermore,it briefly reviews the notion of higher-order network topologies and shows their promising potential in application to evaluating the optimality of network synchronizability. 展开更多
关键词 complex network SYNCHRONIZATION optimal synchronizability SIMPLEX higher-order topology
在线阅读 下载PDF
CC-OLIA:A dynamic congestion control algorithm for multipath QUIC in mobile networks
13
作者 Haoyu Wang Yang Liu +5 位作者 Zijun Li Yu Zhang Wenjing Gong Tao Jiang Ting Bi Jiaxi Zhou 《Digital Communications and Networks》 2025年第4期1180-1190,共11页
High-quality services in today’s mobile networks require stable delivery of bandwidth-intensive network content.Multipath QUIC(MPQUIC),as a multipath protocol that extends QUIC,can utilize multiple paths to support s... High-quality services in today’s mobile networks require stable delivery of bandwidth-intensive network content.Multipath QUIC(MPQUIC),as a multipath protocol that extends QUIC,can utilize multiple paths to support stable and efficient transmission.The standard coupled congestion control algorithm in MPQUIC synchronizes these paths to manage congestion,meeting fairness requirements and improving transmission efficiency.However,current algorithms’Congestion Window(CWND)reduction approach significantly decreases CWND upon packet loss,which lowers effective throughput,regardless of the congestion origin.Furthermore,the uncoupled Slow-Start(SS)in MPQUIC leads to independent exponential CWND growth on each path,potentially causing buffer overflow.To address these issues,we propose the CC-OLIA,which incorporates Packet Loss Classifcation(PLC)and Coupled Slow-Start(CSS).The PLC distinguishes between congestion-induced and random packet losses,adjusting CWND reduction accordingly to maintain throughput.Concurrently,the CSS module coordinates CWND growth during the SS,preventing abrupt increases.Implementation on MININET shows that CC-OLIA not only maintains fair performance but also enhances transmission efficiency across diverse network conditions. 展开更多
关键词 MPQUIC Mobile network Congestion control Packet loss Slow start
在线阅读 下载PDF
Dynamic Reliability Assessment Approach for Deepwater Subsea Wellhead Systems via Hybrid Bayesian Networks
14
作者 LI Jia-yi CHANG Yuan-jiang +2 位作者 LIU Xiu-quan XU Liang-bin CHEN Guo-ming 《China Ocean Engineering》 2025年第1期100-110,共11页
The deepwater subsea wellhead(SW)system is the foundation for the construction of oil and gas wells and the crucial channel for operation.During riser connection operation,the SW system is subjected to cyclic dynamic ... The deepwater subsea wellhead(SW)system is the foundation for the construction of oil and gas wells and the crucial channel for operation.During riser connection operation,the SW system is subjected to cyclic dynamic loads which cause fatigue damage to the SW system,and continuously accumulated fatigue damage leads to fatigue failure of the SW system,rupture,and even blowout accidents.This paper proposes a hybrid Bayesian network(HBN)-based dynamic reliability assessment approach for deepwater SW systems during their service life.In the proposed approach,the relationship between the accumulation of fatigue damage and the fatigue failure probability of the SW system is predicted,only considering normal conditions.The HBN model,which includes the accumulation of fatigue damage under normal conditions and the other factors affecting the fatigue of the SW system,is subsequently developed.When predictive and diagnostic analysis techniques are adopted,the dynamic reliability of the SW system is achieved,and the most influential factors are determined.Finally,corresponding safety control measures are proposed to improve the reliability of the SW system effectively.The results illustrate that the fatigue failure speed increases rapidly when the accumulation fatigue damage is larger than 0.45 under normal conditions and that the reliability of the SW system is larger than 94%within the design life. 展开更多
关键词 deepwater subsea wellhead system RELIABILITY accumulation fatigue damage hybrid Bayesian network
在线阅读 下载PDF
Dynamic Multi-Target Jamming Channel Allocation and Power Decision-Making in Wireless Communication Networks:A Multi-Agent Deep Reinforcement Learning Approach
15
作者 Peng Xiang Xu Hua +4 位作者 Qi Zisen Wang Dan Zhang Yue Rao Ning Gu Wanyi 《China Communications》 2025年第5期71-91,共21页
This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD... This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods. 展开更多
关键词 jamming resource allocation JCAPD MADRL wireless communication countermeasure wireless communication networks
在线阅读 下载PDF
Dynamic Collaborative Data Download in Heterogeneous Satellite Networks
16
作者 Wu Qi Li Xintong Zhu Lidong 《China Communications》 2025年第2期26-46,共21页
Low-earth-orbit(LEO)satellite network has become a critical component of the satelliteterrestrial integrated network(STIN)due to its superior signal quality and minimal communication latency.However,the highly dynamic... Low-earth-orbit(LEO)satellite network has become a critical component of the satelliteterrestrial integrated network(STIN)due to its superior signal quality and minimal communication latency.However,the highly dynamic nature of LEO satellites leads to limited and rapidly varying contact time between them and Earth stations(ESs),making it difficult to timely download massive communication and remote sensing data within the limited time window.To address this challenge in heterogeneous satellite networks with coexisting geostationary-earth-orbit(GEO)and LEO satellites,this paper proposes a dynamic collaborative inter-satellite data download strategy to optimize the long-term weighted energy consumption and data downloads within the constraints of on-board power,backlog stability and time-varying contact.Specifically,the Lyapunov optimization theory is applied to transform the long-term stochastic optimization problem,subject to time-varying contact time and on-board power constraints,into multiple deterministic single time slot problems,based on which online distributed algorithms are developed to enable each satellite to independently obtain the transmit power allocation and data processing decisions in closed-form.Finally,the simulation results demonstrate the superiority of the proposed scheme over benchmarks,e.g.,achieving asymptotic optimality of the weighted energy consumption and data downloads,while maintaining stability of the on-board backlog. 展开更多
关键词 backlog stability data download heterogeneous satellite networks Lyapunov optimization power allocation
在线阅读 下载PDF
Dynamic Clustering Method for Underwater Wireless Sensor Networks based on Deep Reinforcement Learning
17
作者 Kohyar Bolvary Zadeh Dashtestani Reza Javidan Reza Akbari 《哈尔滨工程大学学报(英文版)》 2025年第4期864-876,共13页
Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of t... Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of the major challenges that these systems confront is topology control via clustering,which reduces the overload of wireless communications within a network and ensures low energy consumption and good scalability.This study aimed to present a clustering technique in which the clustering process and cluster head(CH)selection are performed based on the Markov decision process and deep reinforcement learning(DRL).DRL algorithm selects the CH by maximizing the defined reward function.Subsequently,the sensed data are collected by the CHs and then sent to the autonomous underwater vehicles.In the final phase,the consumed energy by each sensor is calculated,and its residual energy is updated.Then,the autonomous underwater vehicle performs all clustering and CH selection operations.This procedure persists until the point of cessation when the sensor’s power has been reduced to such an extent that no node can become a CH.Through analysis of the findings from this investigation and their comparison with alternative frameworks,the implementation of this method can be used to control the cluster size and the number of CHs,which ultimately augments the energy usage of nodes and prolongs the lifespan of the network.Our simulation results illustrate that the suggested methodology surpasses the conventional low-energy adaptive clustering hierarchy,the distance-and energy-constrained K-means clustering scheme,and the vector-based forward protocol and is viable for deployment in an actual operational environment. 展开更多
关键词 Underwater wireless sensor network CLUSTERING Cluster head selection Deep reinforcement learning
暂未订购
Adaptive multi-agent reinforcement learning for dynamic pricing and distributed energy management in virtual power plant networks
18
作者 Jian-Dong Yao Wen-Bin Hao +3 位作者 Zhi-Gao Meng Bo Xie Jian-Hua Chen Jia-Qi Wei 《Journal of Electronic Science and Technology》 2025年第1期35-59,共25页
This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards grea... This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards greater decentralization and renewable integration,traditional optimization methods struggle to address the inherent complexities and uncertainties.Our proposed MARL framework enables adaptive,decentralized decision-making for both the distribution system operator and individual VPPs,optimizing economic efficiency while maintaining grid stability.We formulate the problem as a Markov decision process and develop a custom MARL algorithm that leverages actor-critic architectures and experience replay.Extensive simulations across diverse scenarios demonstrate that our approach consistently outperforms baseline methods,including Stackelberg game models and model predictive control,achieving an 18.73%reduction in costs and a 22.46%increase in VPP profits.The MARL framework shows particular strength in scenarios with high renewable energy penetration,where it improves system performance by 11.95%compared with traditional methods.Furthermore,our approach demonstrates superior adaptability to unexpected events and mis-predictions,highlighting its potential for real-world implementation. 展开更多
关键词 Distributed energy management dynamic pricing Multi-agent reinforcement learning Renewable energy integration Virtual power plants
在线阅读 下载PDF
Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks
19
作者 Xiongding Liu Xiaodan Zhao +1 位作者 Xiaojing Zhong Wu Wei 《Chinese Physics B》 2025年第6期262-274,共13页
This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading d... This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19. 展开更多
关键词 epidemic spreading SEIQR model stability and sensitivity analysis heterogeneous complex networks optimal control
原文传递
High dynamic mobile topology-based clustering algorithm for UAV swarm networks
20
作者 CHEN Siji JIANG Bo +2 位作者 XU Hong PANG Tao GAO Mingke 《Journal of Systems Engineering and Electronics》 2025年第4期1103-1112,共10页
Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication lin... Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication links.However,when UAV swarm perform tasks in narrow spaces,they often encounter various spatial obstacles,building shielding materials,and high-speed node movements,which result in intermittent network communication links and cannot support the smooth comple-tion of tasks.In this paper,a high mobility and dynamic topol-ogy of the UAV swarm is particularly considered and the high dynamic mobile topology-based clustering(HDMTC)algorithm is proposed.Simulation and real flight verification results verify that the proposed HDMTC algorithm achieves higher stability of net-work,longer link expiration time(LET),and longer node lifetime,all of which improve the communication performance for UAV swarm networks. 展开更多
关键词 unmanned aerial vehichle(UAV)swarm network UAV clustering MOBILITY virtual tube.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部