期刊文献+
共找到321篇文章
< 1 2 17 >
每页显示 20 50 100
Kolmogorov-Arnold networks modeling of wall pressure wavenumber-frequency spectra under turbulent boundary layers
1
作者 Zhiteng Zhou Yi Liu +1 位作者 Shizhao Wang Guowei He 《Theoretical & Applied Mechanics Letters》 2025年第2期115-121,共7页
The empirical models for wavenumber-frequency spectra of wall pressure are broadly used in the fast prediction of aerodynamic and hydrodynamic noise.However,it needs to fit the parameter using massive data and is only... The empirical models for wavenumber-frequency spectra of wall pressure are broadly used in the fast prediction of aerodynamic and hydrodynamic noise.However,it needs to fit the parameter using massive data and is only used for limited cases.In this letter,we propose Kolmogorov-Arnold networks(KAN)base models for wavenumber-frequency spectra of pressure fluctuations under turbulent boundary layers.The results are compared with DNS results.In turbulent channel flows,it is found that the KAN base model leads to a smooth wavenumber-frequency spectrum with sparse samples.In the turbulent flow over an axisymmetric body of revolution,the KAN base model captures the wavenumber-frequency spectra near the convective peak. 展开更多
关键词 Wavenumber-frequency spectra Kolmogorov-Arnold networks modeling Turbulent boundary layers
在线阅读 下载PDF
Brain networks modeling for studying the mechanism underlying the development of Alzheimer’s disease 被引量:3
2
作者 Shuai-Zong Si Xiao Liu +2 位作者 Jin-Fa Wang Bin Wang Hai Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第10期1805-1813,共9页
Alzheimer’s disease is a primary age-related neurodegenerative disorder that can result in impaired cognitive and memory functions.Although connections between changes in brain networks of Alzheimer’s disease patien... Alzheimer’s disease is a primary age-related neurodegenerative disorder that can result in impaired cognitive and memory functions.Although connections between changes in brain networks of Alzheimer’s disease patients have been established,the mechanisms that drive these alterations remain incompletely understood.This study,which was conducted in 2018 at Northeastern University in China,included data from 97 participants of the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset covering genetics,imaging,and clinical data.All participants were divided into two groups:normal control(n=52;20 males and 32 females;mean age 73.90±4.72 years)and Alzheimer’s disease(n=45,23 males and 22 females;mean age 74.85±5.66).To uncover the wiring mechanisms that shaped changes in the topology of human brain networks of Alzheimer’s disease patients,we proposed a local naive Bayes brain network model based on graph theory.Our results showed that the proposed model provided an excellent fit to observe networks in all properties examined,including clustering coefficient,modularity,characteristic path length,network efficiency,betweenness,and degree distribution compared with empirical methods.This proposed model simulated the wiring changes in human brain networks between controls and Alzheimer’s disease patients.Our results demonstrate its utility in understanding relationships between brain tissue structure and cognitive or behavioral functions.The ADNI was performed in accordance with the Good Clinical Practice guidelines,US 21 CFR Part 50-Protection of Human Subjects,and Part 56-Institutional Review Boards(IRBs)/Research Good Clinical Practice guidelines Institutional Review Boards(IRBs)/Research Ethics Boards(REBs). 展开更多
关键词 nerve regeneration Alzheimer’s disease graph theory functional magnetic resonance imaging network model link prediction naive Bayes topological structures anatomical distance global efficiency local efficiency neural regeneration
暂未订购
Integrating artificial neural networks and geostatistics for optimum 3D geological block modeling in mineral reserve estimation:A case study 被引量:4
3
作者 Jalloh Abu Bakarr Kyuro Sasaki +1 位作者 Jalloh Yaguba Barrie Abubakarr Karim 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期581-585,共5页
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr... In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design. 展开更多
关键词 Artificial Neural Network model with Geostatistics(ANNMG) 3D geological block modeling Mine design KRIGING
在线阅读 下载PDF
Step-wise synthesis of work exchange networks involving heat integration based on the transshipment model 被引量:7
4
作者 Yu Zhuang Linlin Liu +1 位作者 Qilei Liu Jian Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1052-1060,共9页
Due to the deterioration of serious energy dilemma,energy-conservation and emission–reduction have been the strategic target in the past decades,thus people have identified the vital importance of higher energy effic... Due to the deterioration of serious energy dilemma,energy-conservation and emission–reduction have been the strategic target in the past decades,thus people have identified the vital importance of higher energy efficiency and the influence of lower carbon development.Since work exchange network is a significant part of energy recovery system,its optima design will have dramatically significant effect on energy consumption reduction in chemical process system.With an extension of the developed transshipment model in isothermal process,a novel step-wise methodology for synthesis of direct work exchange network(WEN)in adiabatic process involving heat integration is first proposed in this paper,where a nonlinear programming(NLP)model is formulated by regarding the minimum utility consumption as objective function and optimizing the initial WEN in accordance with the presented matching rules to get the optimized WEN configuration at first.Furthermore,we focus on the work exchange network synthesis with heat integration to attain the minimal total annual cost(TAC)with the introduction of heat-exchange equipment that is achieved by the following strategies in sequence:introducing heat-exchange equipment directly,adjusting the work quantity of the adjacent utility compressors or expanders,and approximating upper/lower pressure limits consequently to obtain considerable cost savings of expanders or compressors and work utility.Finally,a case taken from the literature is studied to illustrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 Work exchange network Transshipment model Adiabatic process Trade-off between work and heat Economic analysis
在线阅读 下载PDF
Stability analysis of discrete-time BAM neural networks based on standard neural network models 被引量:1
5
作者 张森林 刘妹琴 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第7期689-696,共8页
To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which inte... To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks. 展开更多
关键词 Standard neural network model (SNNM) Bidirectional associative memory (BAM) Linear matrix inequality (LMI) STABILITY Generalized eigenvalue problem (GEVP)
在线阅读 下载PDF
An Implicit Coupled 1D/2D Model for Unsteady Subcritical Flow in Channel Networks and Embayment
6
作者 GENG Yan-fen WANG Zhi-li 《China Ocean Engineering》 SCIE EI CSCD 2020年第1期110-118,共9页
In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method a... In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method and targeted long narrow reaches of the river networks, while the 2D model targeted broad channels and embayment and solved the 2D shallow-water equations using a semi-implicit scheme applied to an unstructured grid of triangular cells. The 1D and 2D models were solved simultaneously by building a matrix for the free surface elevation at every 1D junction and 2D cell center. Velocities were then computed explicitly based on the results at the previous time step and the updated water level. The originality of the scheme arose from a novel coupling method. The results showed that the coupled 1D/2D model produced identical results as the full 2D model in classical to benchmark problems with considerable savings in computational effort. Application of the model to the Pearl River Estuary in southern China showed that complex patterns of tidal wave propagation could be efficiently modeled. 展开更多
关键词 1D river network model 2D unstructured model full coupling model Pearl River Delta
在线阅读 下载PDF
Model for Generating Scale-Free Artificial Social Networks Using Small-World Networks
7
作者 Farhan Amin Gyu Sang Choi 《Computers, Materials & Continua》 SCIE EI 2022年第12期6367-6391,共25页
The Internet of Things(IoT)has the potential to be applied to social networks due to innovative characteristics and sophisticated solutions that challenge traditional uses.Social network analysis(SNA)is a good example... The Internet of Things(IoT)has the potential to be applied to social networks due to innovative characteristics and sophisticated solutions that challenge traditional uses.Social network analysis(SNA)is a good example that has recently gained a lot of scientific attention.It has its roots in social and economic research,as well as the evaluation of network science,such as graph theory.Scientists in this area have subverted predefined theories,offering revolutionary ones regarding interconnected networks,and they have highlighted the mystery of six degrees of separation with confirmation of the small-world phenomenon.The motivation of this study is to understand and capture the clustering properties of large networks and social networks.We present a network growth model in this paper and build a scale-free artificial social network with controllable clustering coefficients.The random walk technique is paired with a triangle generating scheme in our proposed model.As a result,the clustering controlmechanism and preferential attachment(PA)have been realized.This research builds on the present random walk model.We took numerous measurements for validation,including degree behavior and the measure of clustering decay in terms of node degree,among other things.Finally,we conclude that our suggested random walk model is more efficient and accurate than previous state-of-the-art methods,and hence it could be a viable alternative for societal evolution. 展开更多
关键词 Social networks small-world networks network generation models graph theory random walk network design social network analysis
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
8
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Local model networks based mixed-sensitivity H-infinity control of CE-150 helicopters
9
作者 Mohamed Redouane KAFI Hicham CHAOUI +1 位作者 Suruz MIAH Abderrazak DEBILOU 《Control Theory and Technology》 EI CSCD 2017年第1期34-44,共11页
In this paper, a local model network H-infinity control is proposed for CE-150 helicopter stabilization. The proposed strategy capitalizes on recent developments on H-infinity control and its promising results in robu... In this paper, a local model network H-infinity control is proposed for CE-150 helicopter stabilization. The proposed strategy capitalizes on recent developments on H-infinity control and its promising results in robust stabilization of plants under unstructured uncertainties. CE-150 helicopters are known for their varying operating conditions along with external disturbances. Therefore, local model networks are introduced for their adaptive feature and since they provide a powerful combination of fuzzy logic and conventional linear control techniques to control nonlinear systems without the added computational burden of soft-computing techniques. Using the fact that the system can be linearized at different operating points, a mixed sensitivity H-infinity controller is designed for the linearized system, and combined within a network to make transitions between them. The proposed control structure ensures robustness, decoupling of the system dynamics while achieving good performance. A comparison is carried-out against the well-known proportional-integral-derivative (PID) control technique. Results are presented to illustrate the controller's performance in various operating conditions. 展开更多
关键词 H-infinity control HELICOPTER local model network robust stabilization
原文传递
Synthetical Control of AGC/LPC System Based on Neural Networks Internal Model Control
10
作者 Hu He, Xiaodong Luan, Yikang Sun Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第1期75-77,共3页
One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neu... One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neural networks. Simulation results prove that this method is effective. 展开更多
关键词 hot strip rolling AGC LOOPER neural networks internal model control GA
在线阅读 下载PDF
Neural-networks-based Modelling and a Fuzzy Neural Networks Controller of MCFC
11
作者 沈承 Cao +2 位作者 Guangyi Zhu Xinjian 《High Technology Letters》 EI CAS 2002年第2期76-82,共7页
Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial... Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial basis function (RBF) neural networks identification technology is applied to set up the temperature nonlinear model of MCFC stack, and the identification structure, algorithm and modeling training process are given in detail. A fuzzy controller of MCFC stack is designed. In order to improve its online control ability, a neural network trained by the I/O data of a fuzzy controller is designed. The neural networks can memorize and expand the inference rules of the fuzzy controller and substitute for the fuzzy controller to control MCFC stack online. A detailed design of the controller is given. The validity of MCFC stack modelling based on neural networks and the superior performance of the fuzzy neural networks controller are proved by Simulations. 展开更多
关键词 Molten Carbonate Fuel Cells (MCFC) Radial Basis Function (RBF) fuzzy neural networks control modelling
在线阅读 下载PDF
A Dynamic Evolution Model of Airline Networks
12
作者 谢泽浚 张璐嫚 +1 位作者 邓盛锋 李炜 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期137-140,共4页
Empirical data show that most of the degree distribution of airline networks assume a double power law. In this work, firstly, we assume cities as sites, flight between two cities as an edge between two sites, and bui... Empirical data show that most of the degree distribution of airline networks assume a double power law. In this work, firstly, we assume cities as sites, flight between two cities as an edge between two sites, and build a dynamic evolution model for airline networks by improving the BA model, in which the conception of attractiveness plays a decisive role in the course of evolution of the networks. To this end, we discuss whether the attractiveness depends on the site label s or not separately, finally we obtain analytic degree distribution. As a result, if the attractiveness of a site is independent of the degree distribution of sites, which will follow the double power law, otherwise, it will be scale-free. Moreover, degree distribution depends on the parameters of the models, and some parameters aye more sensitive than others. 展开更多
关键词 A Dynamic Evolution model of Airline networks AS
原文传递
Algorithmic approach to discrete fracture network flow modeling in consideration of realistic connections in large-scale fracture networks
13
作者 Qihua Zhang Shan Dong +2 位作者 Yaoqi Liu Junjie Huang Feng Xiong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3798-3811,共14页
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne... Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications. 展开更多
关键词 Discrete fracture network(DFN)flow model Geometric algorithm Fracture flow Water-sealing effect
在线阅读 下载PDF
A Novel Interference Modeling Scheme in Cognitive Networks
14
作者 李剑 李生红 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期540-547,共8页
In this paper,we propose a mathematical model of aggregate co-channel interference over Rayleigh fading in cognitive networks.Unlike the statistical models in the literature that aim at finding the bound or approximat... In this paper,we propose a mathematical model of aggregate co-channel interference over Rayleigh fading in cognitive networks.Unlike the statistical models in the literature that aim at finding the bound or approximation of the interference,the proposed model gives an accurate expression of probability density function(PDF),cumulative distribution function(CDF) and mean and variance of the interference,which takes into account a number of factors,such as spectrum sensing scheme,and spatial distribution of the secondary users(SUs).In particular,we focus on a more general spatial structure where there are two roles of primary users(PUs)and the interfering SUs distributed in the two-dimensional space.The framework developed in this paper is easy to be applied in power control,error evaluation and other applications. 展开更多
关键词 interference modeling cognitive networks
原文传递
Phase Transitions of Majority-Vote Model on Modular Networks
15
作者 黄凤 陈含爽 申传胜 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期178-181,共4页
We investigate the phase transitions behavior of the majority-vote model with noise on a topology that consists of two coupled random networks. A parameter p is used to measure the degree of modularity, defined as the... We investigate the phase transitions behavior of the majority-vote model with noise on a topology that consists of two coupled random networks. A parameter p is used to measure the degree of modularity, defined as the ratio of intermodular to intramodular connectivity. For the networks of strong modularity (small p), as the level of noise f increases, the system undergoes successively two transitions at two distinct critical noises, fc1 and fc2. The first transition is a discontinuous jump from a coexistence state of parallel and antiparallel order to a state that only parallel order survives, and the second one is continuous that separates the ordered state from a disordered state. As the network modularity worsens, fc1 becomes smaller and fc1 does not change, such that the antiparallel ordered state will vanish if p is larger than a critical value of pc. We propose a mean-field theory to explain the simulation results. 展开更多
关键词 Phase Transitions of Majority-Vote model on Modular networks
原文传递
Genome-scale metabolic network model-guided genetic modification of Escherichia coli for pyruvate accumulation
16
作者 LI Xuefei GUO Chaohao +4 位作者 TONG Wenyue YANG Sen LIU Xiaoyun LI Jingchen KANG Ming 《微生物学报》 北大核心 2025年第10期4374-4391,共18页
[Objective]To construct an Escherichia coli mutant strain that accumulates pyruvate by genetic modification guided by the genome-scale metabolic network model.[Methods]Using a genome-scale metabolic network model as a... [Objective]To construct an Escherichia coli mutant strain that accumulates pyruvate by genetic modification guided by the genome-scale metabolic network model.[Methods]Using a genome-scale metabolic network model as a guide,we simulated pyruvate production of E.coli,screened key genes in metabolic pathways,and developed gene editing procedures accordingly.We knocked out the acetate kinase gene ackA,phosphate acetyltransferase gene pta,alcohol dehydrogenase adhE,glycogen synthase gene glgA,glycogen phosphorylase gene glgP,phosphoribosyl pyrophosphate(PRPP)synthase gene prs,ribose 1,5-bisphosphate phosphokinase gene phnN,and transporter encoding gene proP.Furthermore,we knocked in the transporter encoding gene ompC,flavonoid toxin gene fldA,and D-serine ammonia lyase gene dsdA.[Results]A shake flask process with the genetically edited mutant strain MG1655-6-2 under anaerobic conditions produced pyruvate at a titer of 10.46 g/L and a yield of 0.69 g/g.Metabolomic analysis revealed a significant increase in the pyruvate level in the fermentation broth,accompanied by notable decreases in the levels of certain related metabolic byproducts.Through 5 L fed-batch fermentation and an adaptive laboratory evolution,the strain finally achieved a pyruvate titer of 45.86 g/L.[Conclusion]This study illustrated the efficacy of a gene editing strategy predicted by a genome-scale metabolic network model in enhancing pyruvate accumulation in E.coli under anaerobic conditions and provided novel insights for microbial metabolic engineering. 展开更多
关键词 Escherichia coli PYRUVATE genome-scale metabolic network model CRISPR-Cas9 adaptive laboratory evolution
原文传递
In situ loading of a pore network model for quantitative characterization and visualization of gas seepage in coal rocks
17
作者 Huazhe Jiao Xi Chen +4 位作者 Tiegang Zhang Quilligan Michael Yixuan Yang Xiaolin Yang Tongyi Yang 《Deep Underground Science and Engineering》 2025年第3期437-451,共15页
The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal ... The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal reservoirs.In any case,the traditional techniques of coal rock fracture observation are unable to precisely define the flow of CBM.In this study,coal samples were subjected to an in situ loading scanning test in order to create a pore network model(PNM)and determine the pore and fracture dynamic evolution law of the samples in the loading path.On this basis,the structural characteristic parameters of the samples were extracted from the PNM and the impact on the permeability performance of CBM was assessed.The findings demonstrate that the coal samples'internal porosity increases by 2.039%under uniaxial loading,the average throat pore radius increases by 205.5 to 36.1μm,and the loading has an impact on the distribution and morphology of the pores in the coal rock.The PNM was loaded into the finite element program COMSOL for seepage modeling,and the M3 stage showed isolated pore connectivity to produce microscopic fissures,which could serve as seepage channels.In order to confirm the viability of the PNM and COMSOL docking technology,the streamline distribution law of pressure and velocity fields during the coal sample loading process was examined.The absolute permeability of the coal samples was also obtained in order for comparison with the measured results.The macroscopic CBM flow mechanism in complex lowpermeability coal rocks can be revealed through three-dimensional reconstruction of the microscopic fracture structure and seepage simulation.This study lays the groundwork for the fine description and evaluation of coal reservoirs as well as the precise prediction of gas production in CBM wells. 展开更多
关键词 coalbed methane fractal dimension FRACTURE pore network model SEEPAGE
原文传递
Hierarchy Bayesian model based services awareness of high-speed optical access networks
18
作者 白晖峰 《Optoelectronics Letters》 EI 2018年第2期114-118,共5页
As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve t... As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit(ONU) and to perform complex services awareness from the whole view of system in optical line terminal(OLT). Simulation results show that the proposed scheme is able to achieve better quality of services(Qo S), in terms of packet loss rate and time delay. 展开更多
关键词 As Simulation OLT Hierarchy Bayesian model based services awareness of high-speed optical access networks
原文传递
A non-affine constitutive model for the extremely large deformation of hydrogel polymer network based on network modeling method
19
作者 Jincheng Lei Yuan Gao +1 位作者 Danyang Wang Zishun Liu 《Acta Mechanica Sinica》 2025年第7期69-80,共12页
Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polym... Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polymer network inside is ambiguous.In this work,we construct periodic random network(PRN)models for the effective polymer network in hydrogels and investigate the non-affine deformation of polymer chains intrinsically originates from the structural randomness from bottom up.The non-affine deformation in PRN models is manifested as the actual stretch of polymer chains randomly deviated from the chain stretch predicted by affine assumption,and quantified by a non-affine ratio of each polymer chain.It is found that the non-affine ratios of polymer chains are closely related to bulk deformation state,chain orientation,and initial chain elongation.By fitting the non-affine ratio of polymer chains in all PRN models,we propose a non-affine constitutive model for the hydrogel polymer network based on micro-sphere model.The stress-strain curves of the proposed constitutive models under uniaxial tension condition agree with the simulation results of different PRN models of hydrogels very well. 展开更多
关键词 Non-affine deformation Periodic random network model Large deformation Constitutive model
原文传递
Establishment and Effect Evaluation of Prediction Models of Ozone Concentration in Baoding City
20
作者 Xiangru KONG Jiajia ZHANG +2 位作者 Luntao YAO Tianning YANG Rongfang YANG 《Meteorological and Environmental Research》 2025年第3期44-50,共7页
Firstly,based on the data of air quality and the meteorological data in Baoding City from 2017 to 2021,the correlations of meteorological elements and pollutants with O_(3)concentration were explored to determine the ... Firstly,based on the data of air quality and the meteorological data in Baoding City from 2017 to 2021,the correlations of meteorological elements and pollutants with O_(3)concentration were explored to determine the forecast factors of forecast models.Secondly,the O_(3)-8h concentration in Baoding City in 2021 was predicted based on the constructed models of multiple linear regression(MLR),backward propagation neural network(BPNN),and auto regressive integrated moving average(ARIMA),and the predicted values were compared with the observed values to test their prediction effects.The results show that overall,the MLR,BPNN and ARIMA models were able to forecast the changing trend of O_(3)-8h concentration in Baoding in 2021,but the BPNN model gave better forecast results than the ARIMA and MLR models,especially for the prediction of the high values of O_(3)-8h concentration,and the correlation coefficients between the predicted values and the observed values were all higher than 0.9 during June-September.The mean error(ME),mean absolute error(MAE),and root mean square error(RMSE)of the predicted values and the observed values of daily O_(3)-8h concentration based on the BPNN model were 0.45,19.11 and 24.41μg/m 3,respectively,which were significantly better than those of the MLR and ARIMA models.The prediction effects of the MLR,BPNN and ARIMA models were the best at the pollution level,followed by the excellent level,and it was the worst at the good level.In comparison,the prediction effect of BPNN model was better than that of the MLR and ARIMA models as a whole,especially for the pollution and excellent levels.The TS scores of the BPNN model were all above 66%,and the PC values were above 86%.The BPNN model can forecast the changing trend of O_(3)concentration more accurately,and has a good practical application value,but at the same time,the predicted high values of O_(3)concentration should be appropriately increased according to error characteristics of the model. 展开更多
关键词 Ozone(O_(3)) Multiple linear regression model Back propagation neural network model Auto regressive integrated moving average model TS
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部