In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many br...In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many branches of the signal processing including digital communications, data compression,information encryption, etc. Recently, due to its promising application potentials in the networked systems(NSs), the analysis and synthesis issues of the NSs under various encoding-decoding schemes have stirred some research attention. However, because of the network-enhanced complexity caused by the limited network resources, it poses new challenges to the design of suitable encoding-decoding procedures to meet certain control or filtering performance for the NSs. In this survey paper, our aim is to present a comprehensive review of the encoding-decodingbased control and filtering problems for different types of NSs.First, some basic introduction with respect to the coding-decoding mechanism is presented in terms of its engineering insights,specific properties and theoretical formulations. Then, the recent representative research progress in the design of the encodingdecoding protocols for various control and filtering problems is discussed. Some possible further research topics are finally outlined for the encoding-decoding-based NSs.展开更多
This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli...This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli distribution are employed to model the randomly occurring communication delays which could be different for different state variables. A discrete switching function that is different from those in the existing literature is first proposed. Then, expressed as the feasibility of a linear matrix inequality (LMI) with an equality constraint, sufficient conditions are derived in order to ensure the globally mean-square asymptotic stability of the system dynamics on the sliding surface. A discrete-time SMC controller is then synthesized to guarantee the discrete-time sliding mode reaching condition with the specified sliding surface. Finally, a simulation example is given to show the effectiveness of the proposed method.展开更多
This paper is concerned with the robustness analysis and distributed output feedback control of a networked system with uncertain time-varying communication delays.This system consists of a collection of linear time-i...This paper is concerned with the robustness analysis and distributed output feedback control of a networked system with uncertain time-varying communication delays.This system consists of a collection of linear time-invariant subsystems that are spatially interconnected via an arbitrary directed network.Using a dissipation inequality that incorporates dynamic hard lQCs(integral quadratic constraints)for the delay uncertainties,we derive some sufficient robustness conditions in the form of coupled linear matrix inequalities,in which the couplld parts reflect the interconnection structure of the system.We then provide a procedure to construct a distributed controller to ensure the robust stability of the closed-loop system and to achieve a prescribed lzgain performance.The effectiveness of the proposed approach is demonstrated by some numerical examples.展开更多
In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(...In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(especially networked systems). For networked systems, event-based transmission scheme is capable of improving the efficiency in resource utilization and prolonging the lifetime of the network components compared with the widely adopted periodic transmission scheme. As such, it would be interesting to 1) examining how the event-triggering mechanisms affect the control or filtering performance for networked systems, and 2) developing some suitable approaches for the controller and filter design problems. In this paper, a bibliographical review is presented on event-based control and filtering problems for various networked systems. First, the event-driven communication scheme is introduced in detail according to its engineering background, characteristic, and representative research frameworks. Then, different event-based control and filtering(or state estimation) problems are categorized and then discussed. Finally, we conclude the paper by outlining future research challenges for event-based networked systems.展开更多
This paper addresses the problem of fault detection(FD)for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are available...This paper addresses the problem of fault detection(FD)for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are available for communication at an instant and the packet dropout process,respectively.Performance indexes H∞and H_are introduced to describe the robustness of residual against external disturbances and sensitivity of residual to faults,respectively.By using a mode-dependent fault detection filter(FDF)as residual generator,the addressed FD problem is converted into an auxiliary filter design problem with the above index constraints.A sufficient condition for the existence of the FDF is derived in terms of certain linear matrix inequalities(LMIs).When these LMIs are feasible,the explicit expression of the desired FDF can also be characterized.A numerical example is exploited to show the usefulness of the proposed results.展开更多
For leader-following networked systems with the topology switching and the aperiodic silence,limited-energy output formation tracking problems are investigated.Firstly,a new output formation tracking control protocol ...For leader-following networked systems with the topology switching and the aperiodic silence,limited-energy output formation tracking problems are investigated.Firstly,a new output formation tracking control protocol is proposed,which contains two components associated with the communication interactions between the leader and tracking intelligent agents and the communication interactions among tracking intelligent agents,respectively,and the aperiodic silence,the topology switching and the energy constraint index is introduced properly.Then,a two-step transformation method is presented to separate the whole dynamics of a networked system into the relative dynamics between the leader and tracking intelligent agents and the dynamics of the leader,and sufficient conditions for limited-energy output formation tracking for networked systems with limited energy and aperiodic silence are presented,which are extended into networked systems without the aperiodic silence.Especially,a partition checking algorithm is presented to check limitedenergy output formation tracking design criteria.Finally,a numerical example is illustrated to demonstrate the validness of theoretical results.展开更多
The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet d...The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and network- induced non-uniformly distributed time-varying delay in both from sensor to controller (S/C) and from controller to actuator (C/A). Based on the obtained NCS model, employing an observer-based fault detection filter as the residual generator, the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities, which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate. Especially, a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found, which is typically resulted from the limited bandwidth of communication networks. The effectiveness of the proposed method is demonstrated by a simulation example.展开更多
This paper considers the problem of control of networked systems via output feedback. The controller consists of two parts: a state observer that estimates plant state from the output when it is available via the comm...This paper considers the problem of control of networked systems via output feedback. The controller consists of two parts: a state observer that estimates plant state from the output when it is available via the communication network, and a model of the plant that is used to generate a control signal when the plant output is not available from the network. Necessary and sufficient conditions for the exponential stability of the closed loop system are derived in terms of the networked dwell time and the system parameters. The results suggest simple procedures for designing the output feedback controller proposed. Numerical simulations show the feasibility and efficiency of the proposed methods.展开更多
This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems,...This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems, the model-based networked predictive control strategy can compensate for communication delay and data loss in an active way. The designed model-based predictive controller can also guarantee the stability of the closed-loop networked system. The simulation re- suits demonstrate the feasibility and efficacy of the proposed model-based predictive controller design scheme.展开更多
Dear Editor,This letter investigates the output tracking control issue of networked control systems(NCSs)with communication constraints and denial-of-service(DoS)attacks in the sensor-to-controller channel,both of whi...Dear Editor,This letter investigates the output tracking control issue of networked control systems(NCSs)with communication constraints and denial-of-service(DoS)attacks in the sensor-to-controller channel,both of which would induce random network delays.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional m...This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional methods by considering both denial-of-service(DoS)and false data injection(FDI)attacks simultaneously.Additionally,the stability conditions for the system under these hybrid attacks are established.It is technically challenging to design the control strategy by predicting attacker actions based on Stcakelberg game to ensure the system stability under hybrid attacks.Another technical difficulty lies in establishing the conditions for mean-square asymptotic stability due to the complexity of the attack scenarios Finally,simulations on an unstable batch reactor system under hybrid attacks demonstrate the effectiveness of the proposed strategy.展开更多
This paper addresses the ultimate boundedness control problem for a class of networked nonlinear systems with the round-robin(RR)protocol and uniform quantisation.The communication between sensor nodes and the control...This paper addresses the ultimate boundedness control problem for a class of networked nonlinear systems with the round-robin(RR)protocol and uniform quantisation.The communication between sensor nodes and the controller is implemented via a constrained communication channel.The quantised output of the system is transmitted to the remote controller through a communication channel subject to a transmission delay.For the purpose of alleviating possible data collision,the well-known RR communication protocol is deployed to schedule the data transmissions.On the other hand,the uniform quantisation effects of the network are characterised by a round function(i.e.the nearest integer function).The purpose of the addressed problem is to design an observer-based controller for the networked nonlinear systems such that,in the presence of RR protocol and uniform quantisation effects,the closed-loop system is ultimately bounded.The controller is designed based on mean square stability analysis and Lyapunov-like method.A set of sufficient conditions for the ultimate boundedness of the closed-loop system are established and,on the basis of which,the desired controller gains are obtained by solving a set of linear matrix inequalities.The effectiveness of the proposed method is verified by numerical examples.展开更多
Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the p...Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.展开更多
To handle input and output time delays that commonly exist in many networked control systems(NCSs), a new robust continuous sliding mode control(CSMC) scheme is proposed for the output tracking in uncertain single inp...To handle input and output time delays that commonly exist in many networked control systems(NCSs), a new robust continuous sliding mode control(CSMC) scheme is proposed for the output tracking in uncertain single input-single-output(SISO) networked control systems. This scheme consists of three consecutive steps. First, although the network-induced delay in those systems can be effectively handled by using Pade approximation(PA), the unmatched disturbance cames out as another difficulty in the control design. Second, to actively estimate this unmatched disturbance, a generalized proportional integral observer(GPIO) technique is utilized based on only one measured state. Third, by constructing a new sliding manifold with the aid of the estimated unmatched disturbance and states, a GPIO-based CSMC is synthesized, which is employed to cope with not only matched and unmatched disturbances, but also networkinduced delays. The stability of the entire closed-loop system under the proposed GPIO-based CSMC is detailedly analyzed.The promising tracking efficiency and feasibility of the proposed control methodology are verified through simulations and experiments on Quanser's servo module for motion control under various test conditions.展开更多
Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the...Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.展开更多
In this paper,we explore the relationship between dual decomposition and the consensusbased method for distributed optimisation.The relationship is developed by examining the similarities between the two approaches an...In this paper,we explore the relationship between dual decomposition and the consensusbased method for distributed optimisation.The relationship is developed by examining the similarities between the two approaches and their relationship to gradient-based constrained optimisation.By formulating each algorithm in continuous-time,it is seen that both approaches use a gradient method for optimisation with one using a proportional control term and the other using an integral control term to drive the system to the constraint set.Therefore,a significant contribution of this paper is to combine these methods to develop a continuous-time proportional-integral distributed optimisation method.Furthermore,we establish convergence using Lyapunov stability techniques and utilising properties from the network structure of the multi-agent system.展开更多
To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of to...To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of tools for supporting the sharing of knowledge and promoting NM collaboration. A 5-tuple based semantic information retrieval model is proposed, which includes the interoperation on the semantic layer, and a test process is given for this model. The recall ratio and the precision ratio of manufacturing knowledge retrieval are proved to be greatly improved by evaluation. Thus, a practical and reliable approach based on the semantic web is provided for solving the correlated concrete problems in regional networked manufacturing.展开更多
The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is...The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.展开更多
End-to-end delay measurement has been an essential element in the deployment of real-time services in networked systems. Traditional methods of delay measurement based on time domain analysis, however, are not efficie...End-to-end delay measurement has been an essential element in the deployment of real-time services in networked systems. Traditional methods of delay measurement based on time domain analysis, however, are not efficient as the network scale and the complexity increase. We propose a novel theoretical framework to analyze the end-to-end delay distributions of networked systems from the frequency domain. We use a signal flow graph to model the delay distribution of a networked system and prove that the end-to-end delay distribution is indeed the inverse Laplace transform of the transfer function of the signal flow graph. ~vo efficient methods, Cramer's rule-based method and the Mason gain rule-based method, are adopted to obtain the transfer function. By analyzing the time responses of the transfer function, we obtain the end-to-end delay distribution. Based on our framework, we propose an efficient method using the dominant poles of the transfer function to work out the bottleneck links of the network. Moreover, we use the framework to study the network protocol performance. Theoretical analysis and extensive evaluations show the effectiveness of the proposed approach.展开更多
基金supported in part by the Royal Society of the UK,the Nationa Natural Science,Foundation of China(61329301,61374039)the Program for Capability Construction of Shanghai Provincial Universities(15550502500)the Alexander von Humboldt Foundation of Germany
文摘In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many branches of the signal processing including digital communications, data compression,information encryption, etc. Recently, due to its promising application potentials in the networked systems(NSs), the analysis and synthesis issues of the NSs under various encoding-decoding schemes have stirred some research attention. However, because of the network-enhanced complexity caused by the limited network resources, it poses new challenges to the design of suitable encoding-decoding procedures to meet certain control or filtering performance for the NSs. In this survey paper, our aim is to present a comprehensive review of the encoding-decodingbased control and filtering problems for different types of NSs.First, some basic introduction with respect to the coding-decoding mechanism is presented in terms of its engineering insights,specific properties and theoretical formulations. Then, the recent representative research progress in the design of the encodingdecoding protocols for various control and filtering problems is discussed. Some possible further research topics are finally outlined for the encoding-decoding-based NSs.
基金supported by the Engineering and Physical Sciences Research Council(EPSRC)of the UK(No.GR/S27658/01)the Royal Society of the UK and the Alexander von Humboldt Foundation of Germany
文摘This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli distribution are employed to model the randomly occurring communication delays which could be different for different state variables. A discrete switching function that is different from those in the existing literature is first proposed. Then, expressed as the feasibility of a linear matrix inequality (LMI) with an equality constraint, sufficient conditions are derived in order to ensure the globally mean-square asymptotic stability of the system dynamics on the sliding surface. A discrete-time SMC controller is then synthesized to guarantee the discrete-time sliding mode reaching condition with the specified sliding surface. Finally, a simulation example is given to show the effectiveness of the proposed method.
基金This work was supported by the National Natural Science Foundation of China(Nos.61573209,61733008).
文摘This paper is concerned with the robustness analysis and distributed output feedback control of a networked system with uncertain time-varying communication delays.This system consists of a collection of linear time-invariant subsystems that are spatially interconnected via an arbitrary directed network.Using a dissipation inequality that incorporates dynamic hard lQCs(integral quadratic constraints)for the delay uncertainties,we derive some sufficient robustness conditions in the form of coupled linear matrix inequalities,in which the couplld parts reflect the interconnection structure of the system.We then provide a procedure to construct a distributed controller to ensure the robust stability of the closed-loop system and to achieve a prescribed lzgain performance.The effectiveness of the proposed approach is demonstrated by some numerical examples.
基金supported by National Natural Science Foundation of China(No.61329301)the Royal Society of the UK+2 种基金the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe China Postdoctoral Science Foundation(No.2016M600547)the Alexander von Humboldt Foundation of Germany
文摘In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(especially networked systems). For networked systems, event-based transmission scheme is capable of improving the efficiency in resource utilization and prolonging the lifetime of the network components compared with the widely adopted periodic transmission scheme. As such, it would be interesting to 1) examining how the event-triggering mechanisms affect the control or filtering performance for networked systems, and 2) developing some suitable approaches for the controller and filter design problems. In this paper, a bibliographical review is presented on event-based control and filtering problems for various networked systems. First, the event-driven communication scheme is introduced in detail according to its engineering background, characteristic, and representative research frameworks. Then, different event-based control and filtering(or state estimation) problems are categorized and then discussed. Finally, we conclude the paper by outlining future research challenges for event-based networked systems.
基金supported by the National Natural Science Foundation of China(6057408860874053)
文摘This paper addresses the problem of fault detection(FD)for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are available for communication at an instant and the packet dropout process,respectively.Performance indexes H∞and H_are introduced to describe the robustness of residual against external disturbances and sensitivity of residual to faults,respectively.By using a mode-dependent fault detection filter(FDF)as residual generator,the addressed FD problem is converted into an auxiliary filter design problem with the above index constraints.A sufficient condition for the existence of the FDF is derived in terms of certain linear matrix inequalities(LMIs).When these LMIs are feasible,the explicit expression of the desired FDF can also be characterized.A numerical example is exploited to show the usefulness of the proposed results.
基金supported by the National Natural Science Foundation of China(Nos.62176263,62103434,62003363,61867005,61703411)the Science and Technology Nova Plan of Beijing,China(No.Z201100006820122)+4 种基金the Shaanxi Natural Science Foundation for Distinguished Young Scholars,China(No.2021JC-35)the Shaanxi Natural Science Foundation for Youths,China(No.2021JQ-375)China Postdoctoral Science Special Foundation(No.2021T140790)China Postdoctoral Research Foundation of China(No.271004)the Gansu Provincial First-Class Discipline Program of Northwest Minzu University,China(No.11080305)。
文摘For leader-following networked systems with the topology switching and the aperiodic silence,limited-energy output formation tracking problems are investigated.Firstly,a new output formation tracking control protocol is proposed,which contains two components associated with the communication interactions between the leader and tracking intelligent agents and the communication interactions among tracking intelligent agents,respectively,and the aperiodic silence,the topology switching and the energy constraint index is introduced properly.Then,a two-step transformation method is presented to separate the whole dynamics of a networked system into the relative dynamics between the leader and tracking intelligent agents and the dynamics of the leader,and sufficient conditions for limited-energy output formation tracking for networked systems with limited energy and aperiodic silence are presented,which are extended into networked systems without the aperiodic silence.Especially,a partition checking algorithm is presented to check limitedenergy output formation tracking design criteria.Finally,a numerical example is illustrated to demonstrate the validness of theoretical results.
基金supported by the National Natural Science Foundation of China (60874053 60574088)
文摘The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and network- induced non-uniformly distributed time-varying delay in both from sensor to controller (S/C) and from controller to actuator (C/A). Based on the obtained NCS model, employing an observer-based fault detection filter as the residual generator, the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities, which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate. Especially, a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found, which is typically resulted from the limited bandwidth of communication networks. The effectiveness of the proposed method is demonstrated by a simulation example.
基金This work is supported by the National Natural Science Foundation of China (No. 69925307, No. 10372002, No. 60274001, and No. 60304014)the National Key Basic Research and Development Program (No. 2002CB312200)the China Postdoctoral Program Foundation.
文摘This paper considers the problem of control of networked systems via output feedback. The controller consists of two parts: a state observer that estimates plant state from the output when it is available via the communication network, and a model of the plant that is used to generate a control signal when the plant output is not available from the network. Necessary and sufficient conditions for the exponential stability of the closed loop system are derived in terms of the networked dwell time and the system parameters. The results suggest simple procedures for designing the output feedback controller proposed. Numerical simulations show the feasibility and efficiency of the proposed methods.
基金Project supported by the Key Program for the National Natural Science Foundation of China(Grant No.61333003)the General Program for the National Natural Science Foundation of China(Grant No.61273104)
文摘This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems, the model-based networked predictive control strategy can compensate for communication delay and data loss in an active way. The designed model-based predictive controller can also guarantee the stability of the closed-loop networked system. The simulation re- suits demonstrate the feasibility and efficacy of the proposed model-based predictive controller design scheme.
基金supported by the National Natural Science Foundation of China(62173002,62403010,52301408)the Beijing Natural Science Foundation(4222045)+1 种基金the Yuxiu Innovation Project of North China University of Technology(2024NC UTYXCX111)the China Postdoctoral Science Foundation(2024M750192)。
文摘Dear Editor,This letter investigates the output tracking control issue of networked control systems(NCSs)with communication constraints and denial-of-service(DoS)attacks in the sensor-to-controller channel,both of which would induce random network delays.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
基金supported in part by Shanghai Rising-Star Program,China under grant 22QA1409400in part by National Natural Science Foundation of China under grant 62473287 and 62088101in part by Shanghai Municipal Science and Technology Major Project under grant 2021SHZDZX0100.
文摘This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional methods by considering both denial-of-service(DoS)and false data injection(FDI)attacks simultaneously.Additionally,the stability conditions for the system under these hybrid attacks are established.It is technically challenging to design the control strategy by predicting attacker actions based on Stcakelberg game to ensure the system stability under hybrid attacks.Another technical difficulty lies in establishing the conditions for mean-square asymptotic stability due to the complexity of the attack scenarios Finally,simulations on an unstable batch reactor system under hybrid attacks demonstrate the effectiveness of the proposed strategy.
基金supported in part by the National Natural Science Foundation of China under Grants 62173079 and U1808205the Science and Technology Program of Gansu Province under Grant 21ZD4GA028.
文摘This paper addresses the ultimate boundedness control problem for a class of networked nonlinear systems with the round-robin(RR)protocol and uniform quantisation.The communication between sensor nodes and the controller is implemented via a constrained communication channel.The quantised output of the system is transmitted to the remote controller through a communication channel subject to a transmission delay.For the purpose of alleviating possible data collision,the well-known RR communication protocol is deployed to schedule the data transmissions.On the other hand,the uniform quantisation effects of the network are characterised by a round function(i.e.the nearest integer function).The purpose of the addressed problem is to design an observer-based controller for the networked nonlinear systems such that,in the presence of RR protocol and uniform quantisation effects,the closed-loop system is ultimately bounded.The controller is designed based on mean square stability analysis and Lyapunov-like method.A set of sufficient conditions for the ultimate boundedness of the closed-loop system are established and,on the basis of which,the desired controller gains are obtained by solving a set of linear matrix inequalities.The effectiveness of the proposed method is verified by numerical examples.
文摘Dear Editor,This letter focuses on the distributed cooperative regulation problem for a class of networked re-entrant manufacturing systems(RMSs).The networked system is structured with a three-tier architecture:the production line,the manufacturing layer and the workshop layer.The dynamics of re-entrant production lines are governed by hyperbolic partial differential equations(PDEs)based on the law of mass conservation.
基金supported in part by the Australian Research Council Discovery Project(DP190101557)
文摘To handle input and output time delays that commonly exist in many networked control systems(NCSs), a new robust continuous sliding mode control(CSMC) scheme is proposed for the output tracking in uncertain single input-single-output(SISO) networked control systems. This scheme consists of three consecutive steps. First, although the network-induced delay in those systems can be effectively handled by using Pade approximation(PA), the unmatched disturbance cames out as another difficulty in the control design. Second, to actively estimate this unmatched disturbance, a generalized proportional integral observer(GPIO) technique is utilized based on only one measured state. Third, by constructing a new sliding manifold with the aid of the estimated unmatched disturbance and states, a GPIO-based CSMC is synthesized, which is employed to cope with not only matched and unmatched disturbances, but also networkinduced delays. The stability of the entire closed-loop system under the proposed GPIO-based CSMC is detailedly analyzed.The promising tracking efficiency and feasibility of the proposed control methodology are verified through simulations and experiments on Quanser's servo module for motion control under various test conditions.
基金supported by the Liaoning Revitalization Talents Program(XLYC2203148)
文摘Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.
基金The work by M.Egerstedt was funded by The Air Force Office of Scientific Research through[grant number 2012-00305-01].
文摘In this paper,we explore the relationship between dual decomposition and the consensusbased method for distributed optimisation.The relationship is developed by examining the similarities between the two approaches and their relationship to gradient-based constrained optimisation.By formulating each algorithm in continuous-time,it is seen that both approaches use a gradient method for optimisation with one using a proportional control term and the other using an integral control term to drive the system to the constraint set.Therefore,a significant contribution of this paper is to combine these methods to develop a continuous-time proportional-integral distributed optimisation method.Furthermore,we establish convergence using Lyapunov stability techniques and utilising properties from the network structure of the multi-agent system.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2003AA1Z2560,2002AA414060)the Key Science and Technology Program of Shaanxi Province (No2006K04-G10)
文摘To deal with a lack of semantic interoperability of traditional knowledge retrieval approaches, a semantic-based networked manufacturing (NM) knowledge retrieval architecture is proposed, which offers a series of tools for supporting the sharing of knowledge and promoting NM collaboration. A 5-tuple based semantic information retrieval model is proposed, which includes the interoperation on the semantic layer, and a test process is given for this model. The recall ratio and the precision ratio of manufacturing knowledge retrieval are proved to be greatly improved by evaluation. Thus, a practical and reliable approach based on the semantic web is provided for solving the correlated concrete problems in regional networked manufacturing.
文摘The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.
基金supported by the National Natural Science Foundation of China(Nos.61273079 and 61502352)the Key Laboratory of Wireless Sensor Network&Communication of Chinese Academy of Sciences(No.WSNC2014001)+2 种基金the Open Research Project of the State Key Lab of Industrial Control Technology,Zhejiang University(Nos.ICT1541 and ICT1555)the Natural Science Foundation of Hubei Province,China(No.2015CFB203)the Natural Science Foundation of Jiangsu Province,China(No.BK20150383)
文摘End-to-end delay measurement has been an essential element in the deployment of real-time services in networked systems. Traditional methods of delay measurement based on time domain analysis, however, are not efficient as the network scale and the complexity increase. We propose a novel theoretical framework to analyze the end-to-end delay distributions of networked systems from the frequency domain. We use a signal flow graph to model the delay distribution of a networked system and prove that the end-to-end delay distribution is indeed the inverse Laplace transform of the transfer function of the signal flow graph. ~vo efficient methods, Cramer's rule-based method and the Mason gain rule-based method, are adopted to obtain the transfer function. By analyzing the time responses of the transfer function, we obtain the end-to-end delay distribution. Based on our framework, we propose an efficient method using the dominant poles of the transfer function to work out the bottleneck links of the network. Moreover, we use the framework to study the network protocol performance. Theoretical analysis and extensive evaluations show the effectiveness of the proposed approach.