To improve the decoding performance of quantum error-correcting codes in asymmetric noise channels,a neural network-based decoding algorithm for bias-tailored quantum codes is proposed.The algorithm consists of a bias...To improve the decoding performance of quantum error-correcting codes in asymmetric noise channels,a neural network-based decoding algorithm for bias-tailored quantum codes is proposed.The algorithm consists of a biased noise model,a neural belief propagation decoder,a convolutional optimization layer,and a multi-objective loss function.The biased noise model simulates asymmetric error generation,providing a training dataset for decoding.The neural network,leveraging dynamic weight learning and a multi-objective loss function,mitigates error degeneracy.Additionally,the convolutional optimization layer enhances early-stage convergence efficiency.Numerical results show that for bias-tailored quantum codes,our decoder performs much better than the belief propagation(BP)with ordered statistics decoding(BP+OSD).Our decoder achieves an order of magnitude improvement in the error suppression compared to higher-order BP+OSD.Furthermore,the decoding threshold of our decoder for surface codes reaches a high threshold of 20%.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62371240,61802175,62401266,and 12201300)the National Key R&D Program of China(Grant No.2022YFB3103800)+2 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20241452)the Fundamental Research Funds for the Central Universities(Grant No.30923011014)the fund of Laboratory for Advanced Computing and Intelligence Engineering(Grant No.2023-LYJJ-01-009)。
文摘To improve the decoding performance of quantum error-correcting codes in asymmetric noise channels,a neural network-based decoding algorithm for bias-tailored quantum codes is proposed.The algorithm consists of a biased noise model,a neural belief propagation decoder,a convolutional optimization layer,and a multi-objective loss function.The biased noise model simulates asymmetric error generation,providing a training dataset for decoding.The neural network,leveraging dynamic weight learning and a multi-objective loss function,mitigates error degeneracy.Additionally,the convolutional optimization layer enhances early-stage convergence efficiency.Numerical results show that for bias-tailored quantum codes,our decoder performs much better than the belief propagation(BP)with ordered statistics decoding(BP+OSD).Our decoder achieves an order of magnitude improvement in the error suppression compared to higher-order BP+OSD.Furthermore,the decoding threshold of our decoder for surface codes reaches a high threshold of 20%.