In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal)...In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal) isproposed and a laboratory study is conducted to design and evaluate te fog-sealed chip seal. First, the evaluation indices and methods of te chip seal on steel bridge deck pavement were proposed. Secondly, the worst pavement conditions during te maintenance time were simulated by te small traffic load simulation system MMLS3 and the short-term aging test for minimizing the failure probability of chip seal. Finally, the design parameters of fog-sealed chip seal were determined by the experimental analysis and the performance of the designed fog-sealed chip seal was evaluated in thelaboratory. Results indicate that the proposed simulation method of pavement conditions is effective and the maximal load repetitions on the EAPslab specimen are approximately 925 300 times. Moreover, the designed fog-sealedchip sealcan provide a dense surface with sufficient skid resistance,aggregate-asphalt aahesive performance and interlayer shearing resistance.展开更多
Epoxy asphalt concrete has been one of the mainstream technology of steel deck pavement in China. But little specification about evaluation system for its distress condition has been researched and maintenance was sti...Epoxy asphalt concrete has been one of the mainstream technology of steel deck pavement in China. But little specification about evaluation system for its distress condition has been researched and maintenance was still unsystematic. The section weight coefficient of different distress is proposed by analyzing the applicability of the “Highway Performance Assessment Standards”. Indexes mainly including SDPCI PDR and PCR are presented to evaluate its distress condition. The evaluation system and maintenance plan decision tree were recommended which can assist scientific maintenance of epoxy asphalt steel deck pavement.展开更多
The objective of this paper was to develop a comprehensive evaluation method and index to evaluate the performance of sealants and fillers for cracks in asphalt concrete pavements using the method of principal compone...The objective of this paper was to develop a comprehensive evaluation method and index to evaluate the performance of sealants and fillers for cracks in asphalt concrete pavements using the method of principal component analysis. The performance experiments including cone penetration, softening point, flow, resilience and tension at low temperature respectively were conducted by reference of ASTM D5329 for eight sealants and fillers often used in China. There by a principal component model was developed and weight of every index was calculated. The experimental results show that there are significantly different performances for sealants and fillers often used in China. Principal component analysis is an objective method that evaluates and selects the performance of sealants and fillers for cracks in asphalt concrete pavements.展开更多
Traditional cement concrete has the disadvantages of low tensile strength,poor toughness,and rapid development of cracks while cracking,which causes a significantly negative influence on the safety and durability of c...Traditional cement concrete has the disadvantages of low tensile strength,poor toughness,and rapid development of cracks while cracking,which causes a significantly negative influence on the safety and durability of concrete road pavement.This paper presents a state-of-the-art review of toughness improvement mechanisms and evaluation methods of cement concrete for road pavement.The review indicates that(i)The performance of concrete material depends on its material composition and internal structure.Aggregate size,cement properties and admixtures are the main factors of concrete toughness.(ii)The incorporation of rubber or fiber in pavement concrete improves the toughness of concrete materials.However,these additions must be maintained within a reasonable range.The amount of rubber and fiber are encouraged not more than 30%of the volume of fine aggregate and 2%of the volume of concrete,respectively.(iii)The toughness of pavement concrete material includes the toughness regarding bending,impact and fracture.The toughness of cement concrete for highway and municipal pavement is generally evaluated by bending and fracture toughness,while the toughness of airfield pavement concrete is more focused on impact toughness.(iv)The toughening measures of cement concrete for road pavement are mainly mixed with rubber or fiber,while these two materials have their defects,and the application of hightoughness cement concrete in the actual road still faces many challenges.For example,the synergistic effect of rubber and fiber,the development and application of new flexible admixtures,and the formulation of the toughness index of pavement cement concrete materials need further research.展开更多
Maputo Airport was initially constructed to serve mixed traffic of light and medium aircrafts. With its opening to heavier aircrafts such as B727, DC10, Airbus 340, etc. , structural improvements have become necessary...Maputo Airport was initially constructed to serve mixed traffic of light and medium aircrafts. With its opening to heavier aircrafts such as B727, DC10, Airbus 340, etc. , structural improvements have become necessary. For this purpose, structural evaluation were described and performed using falling weight deflectometer. Results show that while subgrade response to loads appears more consistent with depth, surface layer of the pavement is significantly influenced by the layer thickness as well as mechanical properties of pavement materials. Load magnitude also affects pavement performance. But loading conditions show an equivalent or even greater influence on pavement performance.展开更多
Evaluation of pavement performance is one of the most important issues in a pavement-management system.By employing the concept of entropy,the matter-element model for evaluating pavement is established,and the weight...Evaluation of pavement performance is one of the most important issues in a pavement-management system.By employing the concept of entropy,the matter-element model for evaluating pavement is established,and the weights of the evaluation indices are obtained from sur-veying data.By calculating the degree of dependence of the matter-element model,the pavement performance evaluation can be obtained by this method.The results show that the matter-element model based on entropy right has good performance for evaluating the pavement condition in permafrost region.展开更多
The use of hot recycled asphalt mixture(HRAM)allows for a reduction in the depletion of non-renewable resources and presents environmental benefits.However,concerns arise regarding the performance of HRAM due to the l...The use of hot recycled asphalt mixture(HRAM)allows for a reduction in the depletion of non-renewable resources and presents environmental benefits.However,concerns arise regarding the performance of HRAM due to the lower degree of blending(DOB)of virgin and aged asphalt(V&A asphalt).This paper aims to provide an up-to-date review on the DOB of V&A asphalt in HRAM.Initially,the paper introduces the DOB of V&A asphalt,followed by an analysis of the blending theory,evaluation methods,and influencing factors of DOB.Subsequently,the effect of DOB on the performance of HRAM is investigated,and molecular dynamic simulation is utilized to analyze the blend of V&A asphalt.Finally,methods for improving DOB are summarized.It was found that the use of high-resolution microscopy with tracer methods such as SEM/EDS was an effective way to characterize DOB.Furthermore,the chemical composition and colloid structure between virgin and aged asphalt are crucial to DOB.Additionally,improving DOB by utilizing the coupling effect of time and temperature during transportation,paving,and compaction stages is promising.Future research should focus on standardizing test methods,refining field simulation models,and developing intelligent construction technologies to achieve more efficient and durable blending.This review provides theoretical guidance and practical references for improving the DOB of V&A asphalt and promoting sustainable pavement construction.展开更多
Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evalua...Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evaluation.Artificial intelligence(AI)has achieved many breakthroughs in almost every aspect of modern technology over the past decade,and undoubtedly offers a more robust approach to automated pavement condition survey.This article aims to provide a comprehensive review on data collection systems,data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey.In particular,the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles.The AI-driven hardware devices including right-of-way(ROW)cameras,ground penetrating radar(GPR)devices,light detection and ranging(LiDAR)devices,and advanced laser imaging systems,etc.These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement.In addition,this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses,measuring pavement roughness,identifying pavement rutting,analyzing skid resistance and evaluating structural strength of pavements.Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies,remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.展开更多
Various technical studies have shown that impact-stiffness modulus values, defined as the ratio of the FWD (falling-weight deflectometer) impact load to its consequent central deflection, can be used to evaluate the...Various technical studies have shown that impact-stiffness modulus values, defined as the ratio of the FWD (falling-weight deflectometer) impact load to its consequent central deflection, can be used to evaluate the PCN (pavement classification number) of a particular flexible or rigid airport pavement, fn a previous study, use was made of the old dynamic stiffness modulus procedure developed by the USCOE (US Army Corps of Engineers), this procedure was correlated with various FWD measurements conducted on several runways and taxiways in Israel, together with in-situ borings and the use of the new COMFAA-3.0 software. The results, obtained only for flexible pavements, were checked against the relevant results of full-scale trafficking tests conducted by the FAA (Federal Administration Aviation) at its National Airport Pavement Test Facility. The present study analyzes new FWD measurements and in-situ borings conducted on additional rigid and all-asphaltic runways and taxiways in Israel in order to formulate an updated correlative equation for these types of pavements. The paper concludes with an updated recommendation for the use of impact-stiffness modulus outputs from FWD measurements in order to determine the PCN of any type of pavement directly on the basis of local experience.展开更多
Road surface condition evaluation involves the collection of data over pavement surface for different types of distresses.The exercise consumes a lot of resources if the whole road section length is surveyed and may b...Road surface condition evaluation involves the collection of data over pavement surface for different types of distresses.The exercise consumes a lot of resources if the whole road section length is surveyed and may be prone to errors as a result of surveyors'fatigue.It is therefore important to develop a representative sample to be used when evaluating road condition manually.This study aimed at determining an adequate sample size for section level as well as a way forward for network level condition evaluation of highways in Nepal.Again the study was conducted to quantify the effects of altering the sample unit size for performing a distress survey according to the PCI(pavement condition index)and SDI(surface distress index)method separately for asphalt surfaced roads.The effect of reducing/increasing sample unit size was investigated adopting visual examination through field survey by eight teams in July,2015,along the section of Banepa-Bardibas highway.The PCI was then calculated for each sample unit using standard deduct curves and PCI calculation methodology as per SHRP(Strategic Highway Research Program)recommendations and the computation of SDI was done as per DoR(Department of Roads)guidelines.The results show that 13%sample unit are needed for SDI and 21%for PCI computation,however,the results are out of the significant level.This is higher than DoR and SHRP guidelines.Again no strong relationship is observed between SDI and PCI values.展开更多
基金The National Natural Science Foundation of China(No.51378122)
文摘In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal) isproposed and a laboratory study is conducted to design and evaluate te fog-sealed chip seal. First, the evaluation indices and methods of te chip seal on steel bridge deck pavement were proposed. Secondly, the worst pavement conditions during te maintenance time were simulated by te small traffic load simulation system MMLS3 and the short-term aging test for minimizing the failure probability of chip seal. Finally, the design parameters of fog-sealed chip seal were determined by the experimental analysis and the performance of the designed fog-sealed chip seal was evaluated in thelaboratory. Results indicate that the proposed simulation method of pavement conditions is effective and the maximal load repetitions on the EAPslab specimen are approximately 925 300 times. Moreover, the designed fog-sealedchip sealcan provide a dense surface with sufficient skid resistance,aggregate-asphalt aahesive performance and interlayer shearing resistance.
基金Sponsored by the Major Science and Technology Special Traffic and Transportation in Jiangsu Province(Grant No.2014Y02)the Jiangsu Natural Science Foundation(Grant Nos.BK20180113 and BK20181112)
文摘Epoxy asphalt concrete has been one of the mainstream technology of steel deck pavement in China. But little specification about evaluation system for its distress condition has been researched and maintenance was still unsystematic. The section weight coefficient of different distress is proposed by analyzing the applicability of the “Highway Performance Assessment Standards”. Indexes mainly including SDPCI PDR and PCR are presented to evaluate its distress condition. The evaluation system and maintenance plan decision tree were recommended which can assist scientific maintenance of epoxy asphalt steel deck pavement.
基金Funded by the National Natural Science Foundation of China(Nos.51408287 and 51668038)the Rolls Supported by Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R29)+2 种基金the Distinguished Young Scholars Fund of Gansu Province(1606RJDA318)the Natural Science Foundation of Gansu Province(1506RJZA064)the Excellent Program of Lanzhou Jiaotong University(201606)
文摘The objective of this paper was to develop a comprehensive evaluation method and index to evaluate the performance of sealants and fillers for cracks in asphalt concrete pavements using the method of principal component analysis. The performance experiments including cone penetration, softening point, flow, resilience and tension at low temperature respectively were conducted by reference of ASTM D5329 for eight sealants and fillers often used in China. There by a principal component model was developed and weight of every index was calculated. The experimental results show that there are significantly different performances for sealants and fillers often used in China. Principal component analysis is an objective method that evaluates and selects the performance of sealants and fillers for cracks in asphalt concrete pavements.
基金This research is financially supported by the Research Program of China Railway Siyuan Survey and Design Group Co.,Ltd.(Grant number 2021K066).
文摘Traditional cement concrete has the disadvantages of low tensile strength,poor toughness,and rapid development of cracks while cracking,which causes a significantly negative influence on the safety and durability of concrete road pavement.This paper presents a state-of-the-art review of toughness improvement mechanisms and evaluation methods of cement concrete for road pavement.The review indicates that(i)The performance of concrete material depends on its material composition and internal structure.Aggregate size,cement properties and admixtures are the main factors of concrete toughness.(ii)The incorporation of rubber or fiber in pavement concrete improves the toughness of concrete materials.However,these additions must be maintained within a reasonable range.The amount of rubber and fiber are encouraged not more than 30%of the volume of fine aggregate and 2%of the volume of concrete,respectively.(iii)The toughness of pavement concrete material includes the toughness regarding bending,impact and fracture.The toughness of cement concrete for highway and municipal pavement is generally evaluated by bending and fracture toughness,while the toughness of airfield pavement concrete is more focused on impact toughness.(iv)The toughening measures of cement concrete for road pavement are mainly mixed with rubber or fiber,while these two materials have their defects,and the application of hightoughness cement concrete in the actual road still faces many challenges.For example,the synergistic effect of rubber and fiber,the development and application of new flexible admixtures,and the formulation of the toughness index of pavement cement concrete materials need further research.
文摘Maputo Airport was initially constructed to serve mixed traffic of light and medium aircrafts. With its opening to heavier aircrafts such as B727, DC10, Airbus 340, etc. , structural improvements have become necessary. For this purpose, structural evaluation were described and performed using falling weight deflectometer. Results show that while subgrade response to loads appears more consistent with depth, surface layer of the pavement is significantly influenced by the layer thickness as well as mechanical properties of pavement materials. Load magnitude also affects pavement performance. But loading conditions show an equivalent or even greater influence on pavement performance.
文摘Evaluation of pavement performance is one of the most important issues in a pavement-management system.By employing the concept of entropy,the matter-element model for evaluating pavement is established,and the weights of the evaluation indices are obtained from sur-veying data.By calculating the degree of dependence of the matter-element model,the pavement performance evaluation can be obtained by this method.The results show that the matter-element model based on entropy right has good performance for evaluating the pavement condition in permafrost region.
基金supported in part by the key project supported by the Joint Funds of the National Natural Science Foundation of China(grant No.U2433210)Shaanxi Province Postdoctoral Science Foundation(2024BSHSDZZ225)+1 种基金Natural Science Basic Research Program of Shaanxi Province(2025JC-YBQN-595)the Fundamental Research Funds for the Central Universities,CHD(300102215102).
文摘The use of hot recycled asphalt mixture(HRAM)allows for a reduction in the depletion of non-renewable resources and presents environmental benefits.However,concerns arise regarding the performance of HRAM due to the lower degree of blending(DOB)of virgin and aged asphalt(V&A asphalt).This paper aims to provide an up-to-date review on the DOB of V&A asphalt in HRAM.Initially,the paper introduces the DOB of V&A asphalt,followed by an analysis of the blending theory,evaluation methods,and influencing factors of DOB.Subsequently,the effect of DOB on the performance of HRAM is investigated,and molecular dynamic simulation is utilized to analyze the blend of V&A asphalt.Finally,methods for improving DOB are summarized.It was found that the use of high-resolution microscopy with tracer methods such as SEM/EDS was an effective way to characterize DOB.Furthermore,the chemical composition and colloid structure between virgin and aged asphalt are crucial to DOB.Additionally,improving DOB by utilizing the coupling effect of time and temperature during transportation,paving,and compaction stages is promising.Future research should focus on standardizing test methods,refining field simulation models,and developing intelligent construction technologies to achieve more efficient and durable blending.This review provides theoretical guidance and practical references for improving the DOB of V&A asphalt and promoting sustainable pavement construction.
基金the National Natural Science Foundation of China(grant no.51208419).
文摘Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evaluation.Artificial intelligence(AI)has achieved many breakthroughs in almost every aspect of modern technology over the past decade,and undoubtedly offers a more robust approach to automated pavement condition survey.This article aims to provide a comprehensive review on data collection systems,data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey.In particular,the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles.The AI-driven hardware devices including right-of-way(ROW)cameras,ground penetrating radar(GPR)devices,light detection and ranging(LiDAR)devices,and advanced laser imaging systems,etc.These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement.In addition,this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses,measuring pavement roughness,identifying pavement rutting,analyzing skid resistance and evaluating structural strength of pavements.Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies,remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.
文摘Various technical studies have shown that impact-stiffness modulus values, defined as the ratio of the FWD (falling-weight deflectometer) impact load to its consequent central deflection, can be used to evaluate the PCN (pavement classification number) of a particular flexible or rigid airport pavement, fn a previous study, use was made of the old dynamic stiffness modulus procedure developed by the USCOE (US Army Corps of Engineers), this procedure was correlated with various FWD measurements conducted on several runways and taxiways in Israel, together with in-situ borings and the use of the new COMFAA-3.0 software. The results, obtained only for flexible pavements, were checked against the relevant results of full-scale trafficking tests conducted by the FAA (Federal Administration Aviation) at its National Airport Pavement Test Facility. The present study analyzes new FWD measurements and in-situ borings conducted on additional rigid and all-asphaltic runways and taxiways in Israel in order to formulate an updated correlative equation for these types of pavements. The paper concludes with an updated recommendation for the use of impact-stiffness modulus outputs from FWD measurements in order to determine the PCN of any type of pavement directly on the basis of local experience.
文摘Road surface condition evaluation involves the collection of data over pavement surface for different types of distresses.The exercise consumes a lot of resources if the whole road section length is surveyed and may be prone to errors as a result of surveyors'fatigue.It is therefore important to develop a representative sample to be used when evaluating road condition manually.This study aimed at determining an adequate sample size for section level as well as a way forward for network level condition evaluation of highways in Nepal.Again the study was conducted to quantify the effects of altering the sample unit size for performing a distress survey according to the PCI(pavement condition index)and SDI(surface distress index)method separately for asphalt surfaced roads.The effect of reducing/increasing sample unit size was investigated adopting visual examination through field survey by eight teams in July,2015,along the section of Banepa-Bardibas highway.The PCI was then calculated for each sample unit using standard deduct curves and PCI calculation methodology as per SHRP(Strategic Highway Research Program)recommendations and the computation of SDI was done as per DoR(Department of Roads)guidelines.The results show that 13%sample unit are needed for SDI and 21%for PCI computation,however,the results are out of the significant level.This is higher than DoR and SHRP guidelines.Again no strong relationship is observed between SDI and PCI values.