期刊文献+
共找到106,735篇文章
< 1 2 250 >
每页显示 20 50 100
An Experimental Study of Network-based Language Learning in Less-developed Areas
1
作者 王正华 《海外英语》 2012年第12X期7-9,共3页
The advent of the Age of Information brings about bright prospects to Network-based Language Learning(NBLL).The thesis adopts the Engagement Theory as guided principles.The purpose is to use the novel NBLL model effec... The advent of the Age of Information brings about bright prospects to Network-based Language Learning(NBLL).The thesis adopts the Engagement Theory as guided principles.The purpose is to use the novel NBLL model effectively with the help of modern technology especially in less-developed areas.This thesis focuses on network-based experimental study.The research shows that the students under NBLL environment have cultivated the capabilities in information collection,computer operation,and information evaluation,as well as the abilities in problem solving,reasoning with criticism,and cooperating with others. 展开更多
关键词 the ENGAGEMENT theory network-based language LEARN
在线阅读 下载PDF
College English Teachers’ Beliefs on Network-based Language Learning
2
作者 樊海怡 《教师》 2018年第29期45-46,共2页
The advantages and disadvantages for learning English in the Network-based environment attract most researchers’concern nowadays.This study profiles college English teachers’beliefs about the networkbased language l... The advantages and disadvantages for learning English in the Network-based environment attract most researchers’concern nowadays.This study profiles college English teachers’beliefs about the networkbased language learning.The main finding is that teachers’beliefs about network-based language learning are heterogeneous and thus reflect a wide range in terms of the evolution of approaches and technology use. 展开更多
关键词 COLLEGE ENGLISH teachers’beliefs network-based language learning
在线阅读 下载PDF
A CASE STUDY OF NETWORK-BASED LANGUAGE TEACHING IN EFL WRITING
3
作者 王丽 王同顺 《Chinese Journal of Applied Linguistics》 2006年第5期25-32,127,共9页
The purpose of this paper is to survey the effectiveness of Network-based language teaching (NBLT) in EFL writing. One comparative experiment has been conducted between NBLT method of teaching writing and traditional ... The purpose of this paper is to survey the effectiveness of Network-based language teaching (NBLT) in EFL writing. One comparative experiment has been conducted between NBLT method of teaching writing and traditional face-to-face way of teaching writing. The post-test outcomes gathered from the two groups were analyzed using SPSS statistical software package, which demonstrated the advantages of students' writing competency in a networked teaching environment over that of students in a traditional teaching environment. These findings of the research have led the author to the conclusion that NBLT might be encouraged in future language teaching. 展开更多
关键词 network-based language teaching traditional teaching English writing
原文传递
Language Learning Strategies in a Network-based Environment
4
作者 王小萍 《海外英语》 2017年第22期9-13,15,共6页
With the swift development of network technology, research on how to integrate network technology into language learning has become a trend. This paper examines whether the application of language learning strategy(LL... With the swift development of network technology, research on how to integrate network technology into language learning has become a trend. This paper examines whether the application of language learning strategy(LLS) in the networkbased environment has incomparable superiority. Beginning with the literature review, it presents an analysis on similarities and differences between network-based language learning strategy(NBLLS) and non-NBLLS, and then expounds the characteristics,the influencing factors and teachers' role of NBLLS. Taking 25 participants in the group of non-NBLL and 34 in the NBLL group as the comparative survey study, the empirical result shows the new evidence that there is a little difference between the two groups in the use of LLS. The findings of this study have implications for the application of NBLLS. 展开更多
关键词 language learning strategy APPLICATION IMPLICATION network-based
在线阅读 下载PDF
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:4
5
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
二语写作研究的现状、反思与展望——基于Journal of Second Language Writing近十年载文分析
6
作者 孙云帆 孙玲 《西部学刊》 2025年第5期164-168,共5页
二语写作是二语习得研究领域的重要组成部分。运用CiteSpace软件对近十年发表在Journal of Second Language Writing的231篇实证研究论文进行可视化分析,研究发现:二语写作研究整体呈波动性上升趋势,研究规模较为稳定,研究关注度逐渐提... 二语写作是二语习得研究领域的重要组成部分。运用CiteSpace软件对近十年发表在Journal of Second Language Writing的231篇实证研究论文进行可视化分析,研究发现:二语写作研究整体呈波动性上升趋势,研究规模较为稳定,研究关注度逐渐提升;二语写作研究领域暂未形成明显的核心作者和机构的合作网络;研究主题主要聚焦二语写作教学方法的多元化、二语写作反馈的多焦点、二语写作评估与测试的科学化,以及学习者个体差异的多维影响等方面。基于此,提出未来该领域发展需加强学者、机构之间的相互合作;关注个体学习者写作过程的认知特征与情感因素,尤其重视青少年二语学习过程的研究;扩大二语写作纵向研究规模,推动研究的深入发展。 展开更多
关键词 二语写作研究 Journal of Second language Writing 可视化分析 现状 反思与展望
在线阅读 下载PDF
On large language models safety,security,and privacy:A survey 被引量:3
7
作者 Ran Zhang Hong-Wei Li +2 位作者 Xin-Yuan Qian Wen-Bo Jiang Han-Xiao Chen 《Journal of Electronic Science and Technology》 2025年第1期1-21,共21页
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De... The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats. 展开更多
关键词 Large language models Privacy issues Safety issues Security issues
在线阅读 下载PDF
When Software Security Meets Large Language Models:A Survey 被引量:2
8
作者 Xiaogang Zhu Wei Zhou +3 位作者 Qing-Long Han Wanlun Ma Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期317-334,共18页
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ... Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research. 展开更多
关键词 Large language models(LLMs) software analysis software security software testing
在线阅读 下载PDF
The Security of Using Large Language Models:A Survey With Emphasis on ChatGPT 被引量:2
9
作者 Wei Zhou Xiaogang Zhu +4 位作者 Qing-Long Han Lin Li Xiao Chen Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期1-26,共26页
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec... ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future directions.Through this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users. 展开更多
关键词 Artificial intelligence(AI) ChatGPT large language models(LLMs) SECURITY
在线阅读 下载PDF
Evaluating research quality with Large Language Models:An analysis of ChatGPT’s effectiveness with different settings and inputs 被引量:1
10
作者 Mike Thelwall 《Journal of Data and Information Science》 2025年第1期7-25,共19页
Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether ... Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether Large Language Models(LLMs)can play a role in this process.Design/methodology/approach:This article assesses which ChatGPT inputs(full text without tables,figures,and references;title and abstract;title only)produce better quality score estimates,and the extent to which scores are affected by ChatGPT models and system prompts.Findings:The optimal input is the article title and abstract,with average ChatGPT scores based on these(30 iterations on a dataset of 51 papers)correlating at 0.67 with human scores,the highest ever reported.ChatGPT 4o is slightly better than 3.5-turbo(0.66),and 4o-mini(0.66).Research limitations:The data is a convenience sample of the work of a single author,it only includes one field,and the scores are self-evaluations.Practical implications:The results suggest that article full texts might confuse LLM research quality evaluations,even though complex system instructions for the task are more effective than simple ones.Thus,whilst abstracts contain insufficient information for a thorough assessment of rigour,they may contain strong pointers about originality and significance.Finally,linear regression can be used to convert the model scores into the human scale scores,which is 31%more accurate than guessing.Originality/value:This is the first systematic comparison of the impact of different prompts,parameters and inputs for ChatGPT research quality evaluations. 展开更多
关键词 ChatGPT Large language Models LLMs SCIENTOMETRICS Research Assessment
在线阅读 下载PDF
Diffusion-based generative drug-like molecular editing with chemical natural language 被引量:1
11
作者 Jianmin Wang Peng Zhou +6 位作者 Zixu Wang Wei Long Yangyang Chen Kyoung Tai No Dongsheng Ouyang Jiashun Mao Xiangxiang Zeng 《Journal of Pharmaceutical Analysis》 2025年第6期1215-1225,共11页
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ... Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design. 展开更多
关键词 Diffusion model IUPAC Molecular generative model Chemical natural language Transformer
在线阅读 下载PDF
Assessing the possibility of using large language models in ocular surface diseases 被引量:1
12
作者 Qian Ling Zi-Song Xu +11 位作者 Yan-Mei Zeng Qi Hong Xian-Zhe Qian Jin-Yu Hu Chong-Gang Pei Hong Wei Jie Zou Cheng Chen Xiao-Yu Wang Xu Chen Zhen-Kai Wu Yi Shao 《International Journal of Ophthalmology(English edition)》 2025年第1期1-8,共8页
AIM:To assess the possibility of using different large language models(LLMs)in ocular surface diseases by selecting five different LLMS to test their accuracy in answering specialized questions related to ocular surfa... AIM:To assess the possibility of using different large language models(LLMs)in ocular surface diseases by selecting five different LLMS to test their accuracy in answering specialized questions related to ocular surface diseases:ChatGPT-4,ChatGPT-3.5,Claude 2,PaLM2,and SenseNova.METHODS:A group of experienced ophthalmology professors were asked to develop a 100-question singlechoice question on ocular surface diseases designed to assess the performance of LLMs and human participants in answering ophthalmology specialty exam questions.The exam includes questions on the following topics:keratitis disease(20 questions),keratoconus,keratomalaciac,corneal dystrophy,corneal degeneration,erosive corneal ulcers,and corneal lesions associated with systemic diseases(20 questions),conjunctivitis disease(20 questions),trachoma,pterygoid and conjunctival tumor diseases(20 questions),and dry eye disease(20 questions).Then the total score of each LLMs and compared their mean score,mean correlation,variance,and confidence were calculated.RESULTS:GPT-4 exhibited the highest performance in terms of LLMs.Comparing the average scores of the LLMs group with the four human groups,chief physician,attending physician,regular trainee,and graduate student,it was found that except for ChatGPT-4,the total score of the rest of the LLMs is lower than that of the graduate student group,which had the lowest score in the human group.Both ChatGPT-4 and PaLM2 were more likely to give exact and correct answers,giving very little chance of an incorrect answer.ChatGPT-4 showed higher credibility when answering questions,with a success rate of 59%,but gave the wrong answer to the question 28% of the time.CONCLUSION:GPT-4 model exhibits excellent performance in both answer relevance and confidence.PaLM2 shows a positive correlation(up to 0.8)in terms of answer accuracy during the exam.In terms of answer confidence,PaLM2 is second only to GPT4 and surpasses Claude 2,SenseNova,and GPT-3.5.Despite the fact that ocular surface disease is a highly specialized discipline,GPT-4 still exhibits superior performance,suggesting that its potential and ability to be applied in this field is enormous,perhaps with the potential to be a valuable resource for medical students and clinicians in the future. 展开更多
关键词 ChatGPT-4.0 ChatGPT-3.5 large language models ocular surface diseases
原文传递
Large Language Model Agent with VGI Data for Mapping 被引量:2
13
作者 SONG Jiayu ZHANG Yifan +1 位作者 WANG Zhiyun YU Wenhao 《Journal of Geodesy and Geoinformation Science》 2025年第2期57-73,共17页
In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach th... In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach that Integrates Large Language Models(LLMs)into a fully automated mapping workflow,utilizing VGI data.The process leverages Prompt Engineering,which involves designing and optimizing input instructions to ensure the LLM produces desired mapping outputs.By constructing precise and detailed prompts,LLM agents are able to accurately interpret mapping requirements,and autonomously extract,analyze,and process VGI geospatial data.They dynamically interact with mapping tools to automate the entire mapping process—from data acquisition to map generation.This approach significantly streamlines the creation of high-quality mapping outputs,reducing the time and resources typically required for such tasks.Moreover,the system lowers the barrier for non-expert users,enabling them to generate accurate maps without extensive technical expertise.Through various case studies,we demonstrate the LLM application across different mapping scenarios,highlighting its potential to enhance the efficiency,accuracy,and accessibility of map production.The results suggest that LLM-powered mapping systems can not only optimize VGI data processing but also expand the usability of ubiquitous mapping across diverse fields,including urban planning and infrastructure development. 展开更多
关键词 Volunteered Geographic Information(VGI) Geospatial Artificial Intelligence(GeoAI) AGENT large language model
在线阅读 下载PDF
GPT2-ICC:A data-driven approach for accurate ion channel identification using pre-trained large language models 被引量:1
14
作者 Zihan Zhou Yang Yu +9 位作者 Chengji Yang Leyan Cao Shaoying Zhang Junnan Li Yingnan Zhang Huayun Han Guoliang Shi Qiansen Zhang Juwen Shen Huaiyu Yang 《Journal of Pharmaceutical Analysis》 2025年第8期1800-1809,共10页
Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces.Here we have developed a deep learning algorithm,GPT2 Ion Channel Class... Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces.Here we have developed a deep learning algorithm,GPT2 Ion Channel Classifier(GPT2-ICC),which effectively distinguishing ion channels from a test set containing approximately 239 times more non-ion-channel proteins.GPT2-ICC integrates representation learning with a large language model(LLM)-based classifier,enabling highly accurate identification of potential ion channels.Several potential ion channels were predicated from the unannotated human proteome,further demonstrating GPT2-ICC’s generalization ability.This study marks a significant advancement in artificial-intelligence-driven ion channel research,highlighting the adaptability and effectiveness of combining representation learning with LLMs to address the challenges of imbalanced protein sequence data.Moreover,it provides a valuable computational tool for uncovering previously uncharacterized ion channels. 展开更多
关键词 Ion channel Artificial intelligence Representation learning GPT2 Protein language model
在线阅读 下载PDF
HyPepTox-Fuse:An interpretable hybrid framework for accurate peptide toxicity prediction fusing protein language model-based embeddings with conventional descriptors 被引量:1
15
作者 Duong Thanh Tran Nhat Truong Pham +2 位作者 Nguyen Doan Hieu Nguyen Leyi Wei Balachandran Manavalan 《Journal of Pharmaceutical Analysis》 2025年第8期1873-1886,共14页
Peptide-based therapeutics hold great promise for the treatment of various diseases;however,their clinical application is often hindered by toxicity challenges.The accurate prediction of peptide toxicity is crucial fo... Peptide-based therapeutics hold great promise for the treatment of various diseases;however,their clinical application is often hindered by toxicity challenges.The accurate prediction of peptide toxicity is crucial for designing safe peptide-based therapeutics.While traditional experimental approaches are time-consuming and expensive,computational methods have emerged as viable alternatives,including similarity-based and machine learning(ML)-/deep learning(DL)-based methods.However,existing methods often struggle with robustness and generalizability.To address these challenges,we propose HyPepTox-Fuse,a novel framework that fuses protein language model(PLM)-based embeddings with conventional descriptors.HyPepTox-Fuse integrates ensemble PLM-based embeddings to achieve richer peptide representations by leveraging a cross-modal multi-head attention mechanism and Transformer architecture.A robust feature ranking and selection pipeline further refines conventional descriptors,thus enhancing prediction performance.Our framework outperforms state-of-the-art methods in cross-validation and independent evaluations,offering a scalable and reliable tool for peptide toxicity prediction.Moreover,we conducted a case study to validate the robustness and generalizability of HyPepTox-Fuse,highlighting its effectiveness in enhancing model performance.Furthermore,the HyPepTox-Fuse server is freely accessible at https://balalab-skku.org/HyPepTox-Fuse/and the source code is publicly available at https://github.com/cbbl-skku-org/HyPepTox-Fuse/.The study thus presents an intuitive platform for predicting peptide toxicity and supports reproducibility through openly available datasets. 展开更多
关键词 Peptide toxicity Hybrid framework Multi-head attention Transformer Deep learning Machine learning Protein language model
暂未订购
Evaluating large language models as patient education tools for inflammatory bowel disease:A comparative study 被引量:1
16
作者 Yan Zhang Xiao-Han Wan +6 位作者 Qing-Zhou Kong Han Liu Jun Liu Jing Guo Xiao-Yun Yang Xiu-Li Zuo Yan-Qing Li 《World Journal of Gastroenterology》 2025年第6期34-43,共10页
BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patie... BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patient information needs.However,LLM use to deliver accurate and comprehensible IBD-related medical information has yet to be thoroughly investigated.AIM To assess the utility of three LLMs(ChatGPT-4.0,Claude-3-Opus,and Gemini-1.5-Pro)as a reference point for patients with IBD.METHODS In this comparative study,two gastroenterology experts generated 15 IBD-related questions that reflected common patient concerns.These questions were used to evaluate the performance of the three LLMs.The answers provided by each model were independently assessed by three IBD-related medical experts using a Likert scale focusing on accuracy,comprehensibility,and correlation.Simultaneously,three patients were invited to evaluate the comprehensibility of their answers.Finally,a readability assessment was performed.RESULTS Overall,each of the LLMs achieved satisfactory levels of accuracy,comprehensibility,and completeness when answering IBD-related questions,although their performance varies.All of the investigated models demonstrated strengths in providing basic disease information such as IBD definition as well as its common symptoms and diagnostic methods.Nevertheless,when dealing with more complex medical advice,such as medication side effects,dietary adjustments,and complication risks,the quality of answers was inconsistent between the LLMs.Notably,Claude-3-Opus generated answers with better readability than the other two models.CONCLUSION LLMs have the potential as educational tools for patients with IBD;however,there are discrepancies between the models.Further optimization and the development of specialized models are necessary to ensure the accuracy and safety of the information provided. 展开更多
关键词 Inflammatory bowel disease Large language models Patient education Medical information accuracy Readability assessment
暂未订购
Optimizing Fine-Tuning in Quantized Language Models:An In-Depth Analysis of Key Variables
17
作者 Ao Shen Zhiquan Lai +1 位作者 Dongsheng Li Xiaoyu Hu 《Computers, Materials & Continua》 SCIE EI 2025年第1期307-325,共19页
Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci... Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments. 展开更多
关键词 Large-scale language Model Parameter-Efficient Fine-Tuning parameter quantization key variable trainable parameters experimental analysis
在线阅读 下载PDF
Large language model for interview-based depression diagnosis:an empirical study
18
作者 Pengbo Hu Hong Li +2 位作者 Xingyu Li Chunxiao Li Yi Zhou 《中国科学技术大学学报》 北大核心 2025年第7期50-57,49,I0002,共10页
The automatic diagnosis of depression plays a crucial role in preventing the deterioration of depression symptoms.The interview-based method is the most wildly adopted technique in depression diagnosis.However,the siz... The automatic diagnosis of depression plays a crucial role in preventing the deterioration of depression symptoms.The interview-based method is the most wildly adopted technique in depression diagnosis.However,the size of the collected conversation data is limited,and the sample distributions from different participants usually differ drastically.These factors present a great challenge in building a decent deep learning model for automatic depression diagnosis.Recently,large language models have demonstrated impressive capabilities and achieved human-level performance in various tasks under zero-shot and few-shot scenarios.This sheds new light on the development of AI solutions for domainspecific tasks with limited data.In this paper,we propose a two-stage approach that exploits the current most capable and cost-effective language model,ChatGPT,to make a depression diagnosis on interview-based data.Specifically,in the first stage,we use ChatGPT to summarize the raw dialogue sample,thereby facilitating the extraction of depression-related information.In the second stage,we use ChatGPT to classify the summarised data to predict the depressed state of the sample.Our method can achieve approximately 76%accuracy with a text-only modality on the DAIC-WOZ dataset.In addition,our method outperforms the performance of the state-of-the-art model by 6.2%in the D4 dataset.Our work highlights the potential of using large language models for diagnosis-based depression diagnosis. 展开更多
关键词 depression diagnosis language model deep learning
暂未订购
Cognitive Biases in Artificial Intelligence:Susceptibility of a Large Language Model to Framing Effect and Confirmation Bias
19
作者 Li Hao Wang You Yang Xueling 《心理科学》 北大核心 2025年第4期892-906,共15页
The rapid advancement of Artificial Intelligence(AI)and Large Language Models(LLMs)has led to their increasing integration into various domains,from text generation and translation to question-answering.However,a crit... The rapid advancement of Artificial Intelligence(AI)and Large Language Models(LLMs)has led to their increasing integration into various domains,from text generation and translation to question-answering.However,a critical question remains:do these sophisticated models,much like humans,exhibit susceptibility to cognitive biases?Understanding the presence and nature of such biases in AI is paramount for assessing their reliability,enhancing their performance,and predicting their societal impact.This research specifically investigates the susceptibility of Google’s Gemini 1.5 Pro and DeepSeek,two prominent LLMs,to framing effects and confirmation bias.The study meticulously designed a series of experimental trials,systematically manipulating information proportions and presentation orders to evaluate these biases.In the framing effect experiment,a genetic testing decision-making scenario was constructed.The proportion of positive and negative information(e.g.,20%,50%,or 80%positive)and their presentation order were varied.The models’inclination towards undergoing genetic testing was recorded.For the confirmation bias experiment,two reports-one positive and one negative-about“RoboTaxi”autonomous vehicles were provided.The proportion of erroneous information within these reports(10%,30%,and 50%)and their presentation order were systematically altered,and the models’support for each report was assessed.The findings demonstrate that both Gemini 1.5 Pro and DeepSeek are susceptible to framing effects.In the genetic testing scenario,their decision-making was primarily influenced by the proportion of positive and negative information presented.When the proportion of positive information was higher,both models showed a greater inclination to recommend or proceed with genetic testing.Conversely,a higher proportion of negative information led to greater caution or a tendency not to recommend the testing.Importantly,the order in which this information was presented did not significantly influence their decisions in the framing effect scenarios.Regarding confirmation bias,the two models exhibited distinct behaviors.Gemini 1.5 Pro did not show an overall preference for either positive or negative reports.However,its judgments were significantly influenced by the order of information presentation,demonstrating a“recency effect,”meaning it tended to support the report presented later.The proportion of erroneous information within the reports had no significant impact on Gemini 1.5 Pro’s decisions.In contrast,DeepSeek exhibited an overall confirmation bias,showing a clear preference for positive reports.Similar to Gemini 1.5 Pro,DeepSeek’s decisions were also significantly affected by the order of information presentation,while the proportion of misinformation had no significant effect.These results reveal human-like cognitive vulnerabilities in advanced LLMs,highlighting critical challenges to their reliability and objectivity in decision-making processes.Gemini 1.5 Pro’s sensitivity to presentation order and DeepSeek’s general preference for positive information,coupled with its sensitivity to order,underscore the need for careful evaluation of potential cognitive biases during the development and application of AI.The study suggests that effective measures are necessary to mitigate these biases and prevent potential negative societal impacts.Future research should include a broader range of models for comparative analysis and explore more complex interactive scenarios to further understand and address these phenomena.The findings contribute significantly to understanding the limitations and capabilities of current AI systems,guiding their responsible development,and anticipating their potential societal implications. 展开更多
关键词 artificial intelligence large language models cognitive bias confirmation bias framing effect
原文传递
Exploration of augmented prompting methods for information extraction using large language models
20
作者 Yishuo Fu Benfeng Xu +2 位作者 Mingxuan Du Quan Wang Zhendong Mao 《中国科学技术大学学报》 北大核心 2025年第7期15-24,14,I0001,共12页
Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the con... Information extraction(IE)aims to automatically identify and extract information about specific interests from raw texts.Despite the abundance of solutions based on fine-tuning pretrained language models,IE in the context of fewshot and zero-shot scenarios remains highly challenging due to the scarcity of training data.Large language models(LLMs),on the other hand,can generalize well to unseen tasks with few-shot demonstrations or even zero-shot instructions and have demonstrated impressive ability for a wide range of natural language understanding or generation tasks.Nevertheless,it is unclear,whether such effectiveness can be replicated in the task of IE,where the target tasks involve specialized schema and quite abstractive entity or relation concepts.In this paper,we first examine the validity of LLMs in executing IE tasks with an established prompting strategy and further propose multiple types of augmented prompting methods,including the structured fundamental prompt(SFP),the structured interactive reasoning prompt(SIRP),and the voting-enabled structured interactive reasoning prompt(VESIRP).The experimental results demonstrate that while directly promotes inferior performance,the proposed augmented prompt methods significantly improve the extraction accuracy,achieving comparable or even better performance(e.g.,zero-shot FewNERD,FewNERD-INTRA)than state-of-theart methods that require large-scale training samples.This study represents a systematic exploration of employing instruction-following LLM for the task of IE.It not only establishes a performance benchmark for this novel paradigm but,more importantly,validates a practical technical pathway through the proposed prompt enhancement method,offering a viable solution for efficient IE in low-resource settings. 展开更多
关键词 prompt learning natural language processing few-shot information extraction zero-shot information extraction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部