期刊文献+
共找到841,519篇文章
< 1 2 250 >
每页显示 20 50 100
DIGNN-A:Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph
1
作者 Jizhao Liu Minghao Guo 《Computers, Materials & Continua》 SCIE EI 2025年第1期817-842,共26页
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr... The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics. 展开更多
关键词 Intrusion detection graph neural networks attention mechanisms line graphs dynamic graph neural networks
在线阅读 下载PDF
Space-based self-organizing real-time wireless networks for satellite cluster
2
作者 Lei YANG Huaguo YANG +1 位作者 Zhenglong YIN Quan CHEN 《Chinese Journal of Aeronautics》 2025年第8期419-432,共14页
The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nod... The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster. 展开更多
关键词 SATELLITE Real time Self-organized network time synchronization Motion compensation
原文传递
Finite time hybrid synchronization of heterogeneous duplex complex networks via time-varying intermittent control
3
作者 Cheng-Jun Xie Xiang-Qing Lu 《Chinese Physics B》 2025年第4期354-363,共10页
This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid s... This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results. 展开更多
关键词 finite time synchronization time-varying intermittent control duplex heterogeneous networks complex networks
原文传递
Modified Fixed-Time Synchronization Criteria of Complex Networks with Time-Varying Delays via Continuous or Discontinuous Control
4
作者 WU Huan WU Ailong ZHANG Jin'e 《Wuhan University Journal of Natural Sciences》 2025年第2期150-158,共9页
This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of ... This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies. 展开更多
关键词 complex networks settling time fixed-time synchronization controllers time-varying delays
原文传递
Cross-Domain Time Synchronization in Software-Defined Time-Sensitive Networking
5
作者 Zhang Xiaodong Shou Guochu +2 位作者 Li Hongxing Liu Yaqiong Hu Yihong 《China Communications》 2025年第9期289-306,共18页
The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in... The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in heterogeneous deployments.When multiple TSN networks interconnect over non-TSN networks,all devices in the network need to be syn-chronized by sharing a uniform time reference.How-ever,most non-TSN networks are best-effort.Path delay asymmetry and random noise accumulation can introduce unpredictable time errors during end-to-end time synchronization.These factors can degrade syn-chronization performance.Therefore,cross-domain time synchronization becomes a challenging issue for multiple TSN networks interconnected by non-TSN networks.This paper presents a cross-domain time synchronization scheme that follows the software-defined TSN(SD-TSN)paradigm.It utilizes a com-bined control plane constructed by a coordinate con-troller and a domain controller for centralized control and management of cross-domain time synchroniza-tion.The general operation flow of the cross-domain time synchronization process is designed.The mecha-nism of cross-domain time synchronization is revealed by introducing a synchronization model and an error compensation method.A TSN cross-domain proto-type testbed is constructed for verification.Results show that the scheme can achieve end-to-end high-precision time synchronization with accuracy and sta-bility. 展开更多
关键词 cross-domain time synchronization de-terministic communications error compensation software-defined networking(SDN) time-sensitive networking(TSN)
在线阅读 下载PDF
Adaptive Time Synchronization in Time Sensitive-Wireless Sensor Networks Based on Stochastic Gradient Algorithms Framework
6
作者 Ramadan Abdul-Rashid Mohd Amiruddin Abd Rahman +1 位作者 Kar Tim Chan Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 2025年第3期2585-2616,共32页
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different... This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications. 展开更多
关键词 Wireless sensor network time synchronization stochastic gradient algorithm MULTI-HOP
在线阅读 下载PDF
A Correntropy-Based Echo State Network With Application to Time Series Prediction
7
作者 Xiufang Chen Zhenming Su +1 位作者 Long Jin Shuai Li 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期425-435,共11页
As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheles... As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheless,the traditional ESN and the majority of its variants are devised in the light of the second-order statistical information of data(e.g.,variance and covariance),while more information is neglected.In the context of information theoretic learning,correntropy demonstrates the capacity to grab more information from data.Therefore,under the guidelines of the maximum correntropy criterion,this paper proposes a correntropy-based echo state network(CESN)in which the first-order and higher-order information of data is captured,promoting robustness to noise.Furthermore,an incremental learning algorithm for the CESN is presented,which has the expertise to update the CESN when new data arrives,eliminating the need to retrain the network from scratch.Finally,experiments on benchmark problems and comparisons with existing works are provided to verify the effectiveness and superiority of the proposed CESN. 展开更多
关键词 Correntropy echo state network(ESN) noise time series prediction
在线阅读 下载PDF
Time-Varying Formation Tracking Control of Heterogeneous Multi-Agent Systems With Intermittent Communications and Directed Switching Networks
8
作者 Yuhan Wang Zhuping Wang +1 位作者 Hao Zhang Huaicheng Yan 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期294-296,共3页
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so... Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems. 展开更多
关键词 switched systems time varying formation tracking directed switching networks heterogeneous multi agent systems intermittent communications exponential stability
在线阅读 下载PDF
Real-Time 7-Core SDM Transmission System Using Commercial 400 Gbit/s OTN Transceivers and Network Management System
9
作者 CUI Jian GU Ninglun +2 位作者 CHANG Cheng SHI Hu YAN Baoluo 《ZTE Communications》 2025年第3期81-88,共8页
Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core cros... Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core crosstalk.In this paper,we demonstrate a realtime high-speed SDM transmission system over a field-deployed 7-core MCF cable using commercial 400 Gbit/s backbone optical transport network(OTN)transceivers and a network management system.The transceivers employ a high noise-tolerant quadrature phase shift keying(QPSK)modulation format with a 130 Gbaud rate,enabled by optoelectronic multi-chip module(OE-MCM)packaging.The network management system can effectively manage and monitor the performance of the 7-core SDM OTN system and promptly report failure events through alarms.Our field trial demonstrates the compatibility of uncoupled MCF with high-speed OTN transmission equipment and network management systems,supporting its future deployment in next-generation high-speed terrestrial cable transmission networks. 展开更多
关键词 multi-core fiber real-time transmission optical transport network field trial network management system
在线阅读 下载PDF
Aspect-Level Sentiment Analysis of Bi-Graph Convolutional Networks Based on Enhanced Syntactic Structural Information
10
作者 Junpeng Hu Yegang Li 《Journal of Computer and Communications》 2025年第1期72-89,共18页
Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dep... Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter. 展开更多
关键词 Aspect-Level Sentiment Analysis Sentiment Knowledge Multi-Head Attention Mechanism Graph Convolutional networks
在线阅读 下载PDF
GNSS time series analysis of the crustal movement network of China:Detecting the optimal order of the polynomial term and its effect on the deterministic model
11
作者 Shuguang Wu Hua Ouyang +3 位作者 Houpu Li Zhao Li Haiyang Li Yuefan He 《Geodesy and Geodynamics》 2025年第4期378-386,共9页
GNSS time series analysis provides an effective method for research on the earth's surface deformation,and it can be divided into two parts,deterministic models and stochastic models.The former part can be achieve... GNSS time series analysis provides an effective method for research on the earth's surface deformation,and it can be divided into two parts,deterministic models and stochastic models.The former part can be achieved by several parameters,such as polynomial terms,periodic terms,offsets,and post-seismic models.The latter contains some stochastic noises,which can be affected by detecting the former parameters.If there are not enough parameters assumed,modeling errors will occur and adversely affect the analysis results.In this study,we propose a processing strategy in which the commonly-used 1-order of the polynomial term can be replaced with different orders for better fitting GNSS time series of the Crustal Movement Network of China(CMONOC)stations.Initially,we use the Bayesian Information Criterion(BIC)to identify the best order within the range of 1-4 during the fitting process using the white noise plus power-law noise(WN+PL)model.Then,we compare the 1-order and the optimal order on the effect of deterministic models in GNSS time series,including the velocity and its uncertainty,amplitudes,and initial phases of the annual signals.The results indicate that the first-order polynomial in the GNSS time series is not the primary factor.The root mean square(RMS)reduction rates of almost all station components are positive,which means the new fitting of optimal-order polynomial helps to reduce the RMS of residual series.Most stations maintain the velocity difference(VD)within ±1 mm/yr,with percentages of 85.6%,81.9%and 63.4%in the North,East,and Up components,respectively.As for annual signals,the numbers of amplitude difference(AD)remained at ±0.2 mm are 242,239,and 200 in three components,accounting for 99.6%,98.4%,and 82.3%,respectively.This finding reminds us that the detection of the optimal-order polynomial is necessary when we aim to acquire an accurate understanding of the crustal movement features. 展开更多
关键词 GNSS time series analysis CMONOC Optimal polynomial order Deterministic model
原文传递
Multi-Scale Time Series Segmentation Network Based on Eddy Current Testing for Detecting Surface Metal Defects
12
作者 Xiaorui Li Xiaojuan Ban +6 位作者 Haoran Qiao Zhaolin Yuan Hong-Ning Dai Chao Yao Yu Guo Mohammad S.Obaidat George Q.Huang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期528-538,共11页
In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh enviro... In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score. 展开更多
关键词 Eddy current testing nondestructive testing semantic segmentation time series analysis
在线阅读 下载PDF
WaveLiteDehaze-Network:A Low-Parameter Wavelet-Based Method for Real-Time Dehazing
13
作者 Ali Murtaza Uswah Khairuddin +3 位作者 Ahmad’Athif Mohd Faudzi Kazuhiko Hamamoto Yang Fang Zaid Omar 《CAAI Transactions on Intelligence Technology》 2025年第4期1033-1048,共16页
Although the image dehazing problem has received considerable attention over recent years,the existing models often prioritise performance at the expense of complexity,making them unsuitable for real-world application... Although the image dehazing problem has received considerable attention over recent years,the existing models often prioritise performance at the expense of complexity,making them unsuitable for real-world applications,which require algorithms to be deployed on resource constrained-devices.To address this challenge,we propose WaveLiteDehaze-Network(WLD-Net),an end-to-end dehazing model that delivers performance comparable to complex models while operating in real time and using significantly fewer parameters.This approach capitalises on the insight that haze predominantly affects low-frequency infor-mation.By exclusively processing the image in the frequency domain using discrete wavelet transform(DWT),we segregate the image into high and low frequencies and process them separately.This allows us to preserve high-frequency details and recover low-frequency components affected by haze,distinguishing our method from existing approaches that use spatial domain processing as the backbone,with DWT serving as an auxiliary component.DWT is applied at multiple levels for better in-formation retention while also accelerating computation by downsampling feature maps.Subsequently,a learning-based fusion mechanism reintegrates the processed frequencies to reconstruct the dehazed image.Experiments show that WLD-Net out-performs other low-parameter models on real-world hazy images and rivals much larger models,achieving the highest PSNR and SSIM scores on the O-Haze dataset.Qualitatively,the proposed method demonstrates its effectiveness in handling a diverse range of haze types,delivering visually pleasing results and robust performance,while also generalising well across different scenarios.With only 0.385 million parameters(more than 100 times smaller than comparable dehazing methods),WLD-Net processes 1024×1024 images in just 0.045 s,highlighting its applicability across various real-world scenarios.The code is available at https://github.com/AliMurtaza29/WLD-Net. 展开更多
关键词 discrete wavelet transform real time image processing single image dehazing
在线阅读 下载PDF
Composite anti-disturbance predictive control of unmanned systems with time-delay using multi-dimensional Taylor network
14
作者 Chenlong LI Wenshuo LI Zejun ZHANG 《Chinese Journal of Aeronautics》 2025年第7期589-600,共12页
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di... A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach. 展开更多
关键词 Multi-dimensional Taylor network Composite anti-disturbance Predictive control Unmanned systems Multi-source disturbances time-DELAY
原文传递
Real-Time Proportional-Integral-Derivative(PID)Tuning Based on Back Propagation(BP)Neural Network for Intelligent Vehicle Motion Control
15
作者 Liang Zhou Qiyao Hu +1 位作者 Xianlin Peng Qianlong Liu 《Computers, Materials & Continua》 2025年第5期2375-2401,共27页
Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applic... Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance. 展开更多
关键词 PID control backpropagation neural network hybrid control nonlinear dynamic processes edge intelligence
在线阅读 下载PDF
APFed: Adaptive personalized federated learning for intrusion detection in maritime meteorological sensor networks
16
作者 Xin Su Guifu Zhang 《Digital Communications and Networks》 2025年第2期401-411,共11页
With the rapid development of advanced networking and computing technologies such as the Internet of Things, network function virtualization, and 5G infrastructure, new development opportunities are emerging for Marit... With the rapid development of advanced networking and computing technologies such as the Internet of Things, network function virtualization, and 5G infrastructure, new development opportunities are emerging for Maritime Meteorological Sensor Networks(MMSNs). However, the increasing number of intelligent devices joining the MMSN poses a growing threat to network security. Current Artificial Intelligence(AI) intrusion detection techniques turn intrusion detection into a classification problem, where AI excels. These techniques assume sufficient high-quality instances for model construction, which is often unsatisfactory for real-world operation with limited attack instances and constantly evolving characteristics. This paper proposes an Adaptive Personalized Federated learning(APFed) framework that allows multiple MMSN owners to engage in collaborative training. By employing an adaptive personalized update and a shared global classifier, the adverse effects of imbalanced, Non-Independent and Identically Distributed(Non-IID) data are mitigated, enabling the intrusion detection model to possess personalized capabilities and good global generalization. In addition, a lightweight intrusion detection model is proposed to detect various attacks with an effective adaptation to the MMSN environment. Finally, extensive experiments on a classical network dataset show that the attack classification accuracy is improved by about 5% compared to most baselines in the global scenarios. 展开更多
关键词 Intrusion detection Maritime meteorological sensor network Federated learning Personalized model Deep learning
在线阅读 下载PDF
TGICP:A Text-Gated Interaction Network with Inter-Sample Commonality Perception for Multimodal Sentiment Analysis
17
作者 Erlin Tian Shuai Zhao +3 位作者 Min Huang Yushan Pan Yihong Wang Zuhe Li 《Computers, Materials & Continua》 2025年第10期1427-1456,共30页
With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extract... With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extracting high-quality emotional features and achieving effective interaction between different modalities remain two major obstacles in multimodal sentiment analysis.To address these challenges,this paper proposes a Text-Gated Interaction Network with Inter-Sample Commonality Perception(TGICP).Specifically,we utilize a Inter-sample Commonality Perception(ICP)module to extract common features from similar samples within the same modality,and use these common features to enhance the original features of each modality,thereby obtaining a richer and more complete multimodal sentiment representation.Subsequently,in the cross-modal interaction stage,we design a Text-Gated Interaction(TGI)module,which is text-driven.By calculating the mutual information difference between the text modality and nonverbal modalities,the TGI module dynamically adjusts the influence of emotional information from the text modality on nonverbal modalities.This helps to reduce modality information asymmetry while enabling full cross-modal interaction.Experimental results show that the proposed model achieves outstanding performance on both the CMU-MOSI and CMU-MOSEI baseline multimodal sentiment analysis datasets,validating its effectiveness in emotion recognition tasks. 展开更多
关键词 Multi-modal sentiment analysis multi-modal fusion graph convolutional networks inter-sample commonality perception gated interaction
在线阅读 下载PDF
An Efficient Clustering Algorithm for Enhancing the Lifetime and Energy Efficiency of Wireless Sensor Networks
18
作者 Peng Zhou Wei Chen Bingyu Cao 《Computers, Materials & Continua》 2025年第9期5337-5360,共24页
Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as ... Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as inaccurate node clustering,low energy efficiency,and shortened network lifespan in practical deployments,which significantly limit their large-scale application.To address these issues,this paper proposes an Adaptive Chaotic Ant Colony Optimization algorithm(AC-ACO),aiming to optimize the energy utilization and system lifespan of WSNs.AC-ACO combines the path-planning capability of Ant Colony Optimization(ACO)with the dynamic characteristics of chaotic mapping and introduces an adaptive mechanism to enhance the algorithm’s flexibility and adaptability.By dynamically adjusting the pheromone evaporation factor and heuristic weights,efficient node clustering is achieved.Additionally,a chaotic mapping initialization strategy is employed to enhance population diversity and avoid premature convergence.To validate the algorithm’s performance,this paper compares AC-ACO with clustering methods such as Low-Energy Adaptive Clustering Hierarchy(LEACH),ACO,Particle Swarm Optimization(PSO),and Genetic Algorithm(GA).Simulation results demonstrate that AC-ACO outperforms the compared algorithms in key metrics such as energy consumption optimization,network lifetime extension,and communication delay reduction,providing an efficient solution for improving energy efficiency and ensuring long-term stable operation of wireless sensor networks. 展开更多
关键词 Internet of Things wireless sensor networks ant colony optimization clustering algorithm energy efficiency
在线阅读 下载PDF
Multi-Timescale Optimization Scheduling of Distribution Networks Based on the Uncertainty Intervals in Source-Load Forecasting
19
作者 Huanan Yu Chunhe Ye +3 位作者 Shiqiang Li He Wang Jing Bian Jinling Li 《Energy Engineering》 2025年第6期2417-2448,共32页
With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation ... With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load.Accounting for these issues,this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks.First,the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts,based on which,the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed.Subsequently,a multi-timescale optimization framework was constructed,incorporating the generation and load forecast uncertainties.This framework included optimization models for dayahead scheduling,intra-day optimization,and real-time adjustments,aiming to meet flexibility needs across different timescales and improve the economic efficiency of the grid.Furthermore,an improved soft actor-critic algorithm was introduced to enhance the uncertainty exploration capability.Utilizing a centralized training and decentralized execution framework,a multi-agent SAC network model was developed to improve the decision-making efficiency of the agents.Finally,the effectiveness and superiority of the proposed method were validated using a modified IEEE-33 bus test system. 展开更多
关键词 Renewable energy distribution networks source-load uncertainty interval flexible scheduling soft actor-critic algorithm optimization model
在线阅读 下载PDF
Real-Time Prediction of Elbow Motion Through sEMG-Based Hybrid BP-LSTM Network
20
作者 MA Yiyuan CHEN Huaiyuan CHEN Weidong 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期452-460,共9页
In the face of the large number of people with motor function disabilities,rehabilitation robots have attracted more and more attention.In order to promote the active participation of the user's motion intention i... In the face of the large number of people with motor function disabilities,rehabilitation robots have attracted more and more attention.In order to promote the active participation of the user's motion intention in the assisted rehabilitation process of the robots,it is crucial to establish the human motion prediction model.In this paper,a hybrid prediction model built on long short-term memory(LSTM)neural network using surface electromyography(sEMG)is applied to predict the elbow motion of the users in advance.This model includes two sub-models:a back-propagation neural network and an LSTM network.The former extracts a preliminary prediction of the elbow motion,and the latter corrects this prediction to increase accuracy.The proposed model takes time series data as input,which includes the sEMG signals measured by electrodes and the continuous angles from inertial measurement units.The offline and online tests were carried out to verify the established hybrid model.Finally,average root mean square errors of 3.52°and 4.18°were reached respectively for offline and online tests,and the correlation coefficients for both were above 0.98. 展开更多
关键词 motion prediction surface electromyography(sEMG) long short-term memory(LSTM) back-propagation neural network
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部