The classical supply chain network(SCN)design problem is extended,where the candidate facilities are subject to failure and the products are prone to elapsed time deteriorion.First,the reliable SCN design problem is d...The classical supply chain network(SCN)design problem is extended,where the candidate facilities are subject to failure and the products are prone to elapsed time deteriorion.First,the reliable SCN design problem is defined by introducing the probability that a facility may be prone to inactivity based on the analysis of perishable product characteristics.The perishable product SCN design problem is formulated as a 0-1 integer programming model.The objective is to minimize the weighted sum of the operating cost(the fixed plus transportation cost)and the expected failure cost.And then,the perishable product SCN design model is discussed and solved using the genetic algorithm(GA).The results show how to generate the tradeoff curve between the operating costs and the expected failure costs.And these tradeoff curves demonstrate empirically that substantial improvements in reliability are often possible with minimal increase in the operating costs.展开更多
Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and ...Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.展开更多
First,the state space tree method for finding communication network overall re-liability is presented.It directly generates one disjoint tree multilevel polynomial of a networkgraph.Its advantages are smaller computat...First,the state space tree method for finding communication network overall re-liability is presented.It directly generates one disjoint tree multilevel polynomial of a networkgraph.Its advantages are smaller computational effort(its computing time complexity is O(en_l),where e is the number of edges and n_l is the number of leaves)and shorter resulting expression.Second,based on it an exact decomposition algorithm for finding communication network overallreliability is presented by applying the hypergraph theory.If we use it to carry out the m-timedecomposition of a network graph,the communication network scale which can be analyzed by acomputer can be extended to m-fold.展开更多
Surveying control network optimization design is related to standards, such as precision, reliability, sensitivity and the cost, and these standards are related closely to each other. A new method for surveying contro...Surveying control network optimization design is related to standards, such as precision, reliability, sensitivity and the cost, and these standards are related closely to each other. A new method for surveying control network simulation optimization design is proposed. This method is based on the inner reliability index of the observation values.展开更多
To satisfy the needs of modem pre-cision agriculture, a Precision Agriculture Sensing System (PASS) is designed, which is based on wireless multimedia sensor network. Both hardware and software of PASS are tai-lored...To satisfy the needs of modem pre-cision agriculture, a Precision Agriculture Sensing System (PASS) is designed, which is based on wireless multimedia sensor network. Both hardware and software of PASS are tai-lored for sensing in wide farmland without human supervision. A dedicated single-chip sensor node platform is designed specially for wireless multi-media sensor network. To guarantee the bulky data transmission, a bit-map index reliable data transmission mecha-nism is proposed. And a battery-array switch-ing system is design to power the sensor node to elongate the lifetime. The effectiveness and performance of PASS have been evaluated through comprehensive experiments and large-scale real-life deployment.展开更多
With the continuous development of network communication technology and computer technology, parallel computer network applications becoming more widely, its reliability has attracted more attention on researcher. Thi...With the continuous development of network communication technology and computer technology, parallel computer network applications becoming more widely, its reliability has attracted more attention on researcher. This paper gives a introduction to a simple computer network, given the reliability of the design criteria for computer network analysis, and finally through the examples to illustrate the computer network hardware and software reliability.展开更多
An optimized quantum network design is demonstrated by realizing a state-multiplexing quantum light source via a dual-excitation configuration technique.This approach optimizes the usage of the finite wavelength spect...An optimized quantum network design is demonstrated by realizing a state-multiplexing quantum light source via a dual-excitation configuration technique.This approach optimizes the usage of the finite wavelength spectrum,facilitating the efficient expansion of entanglement-based fully-connected quantum networks across multiple users.展开更多
From the viewpoint of service level agreements, the transmission accuracy rate is one of critical performance indicators to assess internet quality for system managers and customers. Under the assumption that each arc...From the viewpoint of service level agreements, the transmission accuracy rate is one of critical performance indicators to assess internet quality for system managers and customers. Under the assumption that each arc's capacity is deterministic, the quickest path problem is to find a path sending a specific of data such that the transmission time is minimized. However, in many real-life networks such as computer networks, each arc has stochastic capacity, lead time and accuracy rate. Such a network is named a multi-state computer network. Under both assured accuracy rate and time constraints, we extend the quickest path problem to compute the probability that d units of data can be sent through multiple minimal paths simultaneously. Such a probability named system reliability is a performance indicator to provide to managers for understanding the ability of system and improvement. An efficient algorithm is proposed to evaluate the system reliability in terms of the approach of minimal paths.展开更多
Reliability is a desirable performance indicator of many real-world systems to measure the quality level. One general method for evaluating multi-state reliability is using d-minimal paths (d-MPs). However, being an...Reliability is a desirable performance indicator of many real-world systems to measure the quality level. One general method for evaluating multi-state reliability is using d-minimal paths (d-MPs). However, being an NP-hard problem, searching for all d-MPs is a rather challenging task. This paper proposes an improved algorithm to solve the d-MP problem. To reduce the search space of d-MPs, a concept of lower capacity bound is introduced into the d-MP problem, and an effective technique is developed to fred lower capacity bounds. Meanwhile, the fast enumeration method which is a recent improvement to the traditional enunaeration method is employed to solve d-MPs. In addition, by introducing the operation of transforming undirected edges into directed edges, the proposed algorithm is applicable to solving both directed networks and undirected networks. Through numerical experiments, it is found that the proposed algorithm holds a distinct advantage over the existing methods in solving all d-MPs.展开更多
Reliability optimal design is an integrated approach widely adopted in engineering. The fuze components are designed by a BP neural network combined with an optimal design approach based on their multi-failure modes. ...Reliability optimal design is an integrated approach widely adopted in engineering. The fuze components are designed by a BP neural network combined with an optimal design approach based on their multi-failure modes. Their reliability probabilities in multi-failure modes are transformed into deterministic design parameters. The designed results by an example of optimizing the fuze spring under a certain reliability show that the integrated approach is practical and efficient.展开更多
This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.B...This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.By utilizing Lyapunov's direct method,the observer is proved to be optimal with respect to a performance function,including the magnitude of the observer gain and the convergence time.The observer gain is obtained by using approximation of Hamilton-Jacobi-Bellman(HJB)equation.The approximation is determined via an online trained neural network(NN).Next a class of affine nonlinear systems is considered which is subject to unknown disturbances in addition to fault signals.In this case,for each fault the original system is transformed to a new form in which the proposed optimal observer can be applied for state estimation and fault detection and isolation(FDI).Simulation results of a singlelink flexible joint robot(SLFJR)electric drive system show the effectiveness of the proposed methodology.展开更多
Potential failures of electronic instrument are very common in the engineering practice.In this paper,potential failure state model is analyzed based on dynamic characteristics of electronic instrument at work and a c...Potential failures of electronic instrument are very common in the engineering practice.In this paper,potential failure state model is analyzed based on dynamic characteristics of electronic instrument at work and a comprehensive method of judging multi-state reliability is put forward.Then,a multi-state electronic instrument reliability analysis model is built based on Bayesian Networks(BN).Considering the failure-potential failure-normal work states,the model is built to estimate reliability of the system and the conditional probability of the elements.Finally,the model is proved corrective and effective by examples.展开更多
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘The classical supply chain network(SCN)design problem is extended,where the candidate facilities are subject to failure and the products are prone to elapsed time deteriorion.First,the reliable SCN design problem is defined by introducing the probability that a facility may be prone to inactivity based on the analysis of perishable product characteristics.The perishable product SCN design problem is formulated as a 0-1 integer programming model.The objective is to minimize the weighted sum of the operating cost(the fixed plus transportation cost)and the expected failure cost.And then,the perishable product SCN design model is discussed and solved using the genetic algorithm(GA).The results show how to generate the tradeoff curve between the operating costs and the expected failure costs.And these tradeoff curves demonstrate empirically that substantial improvements in reliability are often possible with minimal increase in the operating costs.
基金supported by the National Natural Science Foundation of China (70971132)
文摘Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.
文摘First,the state space tree method for finding communication network overall re-liability is presented.It directly generates one disjoint tree multilevel polynomial of a networkgraph.Its advantages are smaller computational effort(its computing time complexity is O(en_l),where e is the number of edges and n_l is the number of leaves)and shorter resulting expression.Second,based on it an exact decomposition algorithm for finding communication network overallreliability is presented by applying the hypergraph theory.If we use it to carry out the m-timedecomposition of a network graph,the communication network scale which can be analyzed by acomputer can be extended to m-fold.
文摘Surveying control network optimization design is related to standards, such as precision, reliability, sensitivity and the cost, and these standards are related closely to each other. A new method for surveying control network simulation optimization design is proposed. This method is based on the inner reliability index of the observation values.
基金supported in part by the Special Scientific Research Funds for Commonweal Section under Grant No. 200903010the Science and Technology Project of Jiangxi Province under Grants No. 20112BBF60050, No. 20121BBF60058
文摘To satisfy the needs of modem pre-cision agriculture, a Precision Agriculture Sensing System (PASS) is designed, which is based on wireless multimedia sensor network. Both hardware and software of PASS are tai-lored for sensing in wide farmland without human supervision. A dedicated single-chip sensor node platform is designed specially for wireless multi-media sensor network. To guarantee the bulky data transmission, a bit-map index reliable data transmission mecha-nism is proposed. And a battery-array switch-ing system is design to power the sensor node to elongate the lifetime. The effectiveness and performance of PASS have been evaluated through comprehensive experiments and large-scale real-life deployment.
文摘With the continuous development of network communication technology and computer technology, parallel computer network applications becoming more widely, its reliability has attracted more attention on researcher. This paper gives a introduction to a simple computer network, given the reliability of the design criteria for computer network analysis, and finally through the examples to illustrate the computer network hardware and software reliability.
基金Supported by National High Technology Research and Development Program of China(863 Program)(2012AA06A404)National Natural Science Foundation of China(61004074,61134001,21076179)+1 种基金National Key Technology Support Program of China(2009BAG12A 08)Fundamental Research Funds for the Central Universities(2010QNA5001)
文摘An optimized quantum network design is demonstrated by realizing a state-multiplexing quantum light source via a dual-excitation configuration technique.This approach optimizes the usage of the finite wavelength spectrum,facilitating the efficient expansion of entanglement-based fully-connected quantum networks across multiple users.
基金supported in part by the National Science Council,Taiwan,China,under Grant No.NSC 101-2628-E-011-005-MY3
文摘From the viewpoint of service level agreements, the transmission accuracy rate is one of critical performance indicators to assess internet quality for system managers and customers. Under the assumption that each arc's capacity is deterministic, the quickest path problem is to find a path sending a specific of data such that the transmission time is minimized. However, in many real-life networks such as computer networks, each arc has stochastic capacity, lead time and accuracy rate. Such a network is named a multi-state computer network. Under both assured accuracy rate and time constraints, we extend the quickest path problem to compute the probability that d units of data can be sent through multiple minimal paths simultaneously. Such a probability named system reliability is a performance indicator to provide to managers for understanding the ability of system and improvement. An efficient algorithm is proposed to evaluate the system reliability in terms of the approach of minimal paths.
文摘Reliability is a desirable performance indicator of many real-world systems to measure the quality level. One general method for evaluating multi-state reliability is using d-minimal paths (d-MPs). However, being an NP-hard problem, searching for all d-MPs is a rather challenging task. This paper proposes an improved algorithm to solve the d-MP problem. To reduce the search space of d-MPs, a concept of lower capacity bound is introduced into the d-MP problem, and an effective technique is developed to fred lower capacity bounds. Meanwhile, the fast enumeration method which is a recent improvement to the traditional enunaeration method is employed to solve d-MPs. In addition, by introducing the operation of transforming undirected edges into directed edges, the proposed algorithm is applicable to solving both directed networks and undirected networks. Through numerical experiments, it is found that the proposed algorithm holds a distinct advantage over the existing methods in solving all d-MPs.
文摘Reliability optimal design is an integrated approach widely adopted in engineering. The fuze components are designed by a BP neural network combined with an optimal design approach based on their multi-failure modes. Their reliability probabilities in multi-failure modes are transformed into deterministic design parameters. The designed results by an example of optimizing the fuze spring under a certain reliability show that the integrated approach is practical and efficient.
文摘This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.By utilizing Lyapunov's direct method,the observer is proved to be optimal with respect to a performance function,including the magnitude of the observer gain and the convergence time.The observer gain is obtained by using approximation of Hamilton-Jacobi-Bellman(HJB)equation.The approximation is determined via an online trained neural network(NN).Next a class of affine nonlinear systems is considered which is subject to unknown disturbances in addition to fault signals.In this case,for each fault the original system is transformed to a new form in which the proposed optimal observer can be applied for state estimation and fault detection and isolation(FDI).Simulation results of a singlelink flexible joint robot(SLFJR)electric drive system show the effectiveness of the proposed methodology.
基金supported by the Natural Science Foundation of China(No.60971092)
文摘Potential failures of electronic instrument are very common in the engineering practice.In this paper,potential failure state model is analyzed based on dynamic characteristics of electronic instrument at work and a comprehensive method of judging multi-state reliability is put forward.Then,a multi-state electronic instrument reliability analysis model is built based on Bayesian Networks(BN).Considering the failure-potential failure-normal work states,the model is built to estimate reliability of the system and the conditional probability of the elements.Finally,the model is proved corrective and effective by examples.