期刊文献+
共找到3,465篇文章
< 1 2 174 >
每页显示 20 50 100
Radar Quantitative Precipitation Estimation Based on the Gated Recurrent Unit Neural Network and Echo-Top Data 被引量:4
1
作者 Haibo ZOU Shanshan WU Miaoxia TIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第6期1043-1057,共15页
The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). I... The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). In this study, we propose a new method, GRU_Z-ET, by introducing Z and ET as two independent variables into the GRU neural network to conduct the quantitative single-polarization radar precipitation estimation. The performance of GRU_Z-ET is compared with that of the other three methods in three heavy rainfall cases in China during 2018, namely, the traditional Z-R relationship(Z=300R1.4), the optimal Z-R relationship(Z=79R1.68) and the GRU neural network with only Z as the independent input variable(GRU_Z). The results indicate that the GRU_Z-ET performs the best, while the traditional Z-R relationship performs the worst. The performances of the rest two methods are similar.To further evaluate the performance of the GRU_Z-ET, 200 rainfall events with 21882 total samples during May–July of 2018 are used for statistical analysis. Results demonstrate that the spatial correlation coefficients, threat scores and probability of detection between the observed and estimated precipitation are the largest for the GRU_Z-ET and the smallest for the traditional Z-R relationship, and the root mean square error is just the opposite. In addition, these statistics of GRU_Z are similar to those of optimal Z-R relationship. Thus, it can be concluded that the performance of the GRU_ZET is the best in the four methods for the quantitative precipitation estimation. 展开更多
关键词 quantitative precipitation estimation Gated Recurrent unit neural network Z-R relationship echo-top height
在线阅读 下载PDF
Impact of utilization of hepatitis C positive organs in liver transplant:Analysis of united network for organ sharing database 被引量:3
2
作者 Amaninder Dhaliwal Banreet Dhindsa +3 位作者 Daryl Ramai Harlan Sayles Saurabh Chandan Rajani Rangray 《World Journal of Hepatology》 2022年第5期984-991,共8页
BACKGROUND The utility of hepatitis C virus(HCV)organs has increased after the Food and Drug Administration approval of direct acting anti-viral(DAA)medications for the HCV treatment.The efficacy of DAA in treating HC... BACKGROUND The utility of hepatitis C virus(HCV)organs has increased after the Food and Drug Administration approval of direct acting anti-viral(DAA)medications for the HCV treatment.The efficacy of DAA in treating HCV is nearly 100%.AIM To analyze the United Network for Organ Sharing(UNOS)database to compare the survival rates between the hepatitis C positive donors and negative recipients and hepatitis C negative donors and recipients.METHODS We analyzed the adult patients in UNOS database who underwent deceased donor liver transplant from January 2014 to December 2017.The primary endpoint was to compare the survival rates among the four groups with different hepatitis C donor and recipient status:(Group 1)Both donor and recipient negative for HCV(Group 2)Negative donor and positive recipient for HCV(Group 3)Positive donor and negative recipient for HCV(Group 4)Both positive donor and recipient for HCV.SAS 9.4 software was used for the data analysis.Kaplan Meier log rank test was used to analyze the estimated survival rates among the four groups.RESULTS A total of 24512 patients were included:Group 1:16436,Group 2:6174,Group 3:253 and Group 4:1649.The 1-year(Group 1:91.8%,Group 2:92.12%,Group 3:87%,Group 4:92.8%),2-year(Group 1:88.4%,Group 2:88.1%,Group 3:84.3%,Group 4:87.5%),3-year(Group 1:84.9%,Group 2:84.3%,Group 3:75.9%,Group 4:83.2%)survival rates showed no statistical significance among the four groups.Kaplan Meier log rank test did not show any statistical significance difference in the estimated survival rates between Group 3 vs all the other groups.CONCLUSION The survival rates in hepatitis C positive donors and negative recipients are similar as compared to both hepatitis C negative donors and recipients.This could be due to the use of DAA therapy with cure rates of nearly 100%.This study supports the use of hepatitis C positive organs in the selected group of recipients with and without HCV infection.Further long-term studies are needed to further validate these findings. 展开更多
关键词 Hepatitis C Liver transplant Survival united network for Organ Sharing Direct acting antiviral
暂未订购
Wide-band underwater acoustic absorption based on locally resonant unit and interpenetrating network structure 被引量:5
3
作者 姜恒 王育人 +4 位作者 张密林 胡燕萍 蓝鼎 吴群力 逯还通 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第2期367-372,共6页
The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement... The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range.Moreover, in order to investigate impacts of locally resonant units,some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption. 展开更多
关键词 underwater acoustic absorption wide frequency locally resonant unit interpenetrating networks
原文传递
Minimal Gated Unit for Recurrent Neural Networks 被引量:39
4
作者 Guo-Bing Zhou Jianxin Wu +1 位作者 Chen-Lin Zhang Zhi-Hua Zhou 《International Journal of Automation and computing》 EI CSCD 2016年第3期226-234,共9页
Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many comp... Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many competing and complex hidden units, such as the long short-term memory (LSTM) and the gated recurrent unit (GRU). We propose a gated unit for RNN, named as minimal gated unit (MCU), since it only contains one gate, which is a minimal design among all gated hidden units. The design of MCU benefits from evaluation results on LSTM and GRU in the literature. Experiments on various sequence data show that MCU has comparable accuracy with GRU, but has a simpler structure, fewer parameters, and faster training. Hence, MGU is suitable in RNN's applications. Its simple architecture also means that it is easier to evaluate and tune, and in principle it is easier to study MGU's properties theoretically and empirically. 展开更多
关键词 Recurrent neural network minimal gated unit (MGU) gated unit gate recurrent unit (GRU) long short-term memory(LSTM) deep learning.
原文传递
Real-time analysis and prediction of shield cutterhead torque using optimized gated recurrent unit neural network 被引量:13
5
作者 Song-Shun Lin Shui-Long Shen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1232-1240,共9页
An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated rec... An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling. 展开更多
关键词 Earth pressure balance(EPB)shield tunneling Cutterhead torque(CHT)prediction Particle swarm optimization(PSO) Gated recurrent unit(GRU)neural network
在线阅读 下载PDF
Security System in United Storage Network and Its Implementation
6
作者 黄建忠 谢长生 韩德志 《Journal of Shanghai University(English Edition)》 CAS 2005年第3期249-254,共6页
With development of networked storage and its applications, united storage network (USN) combined with network attached storage (NAS) and storage area network (SAN) has emerged. It has such advantages as high performa... With development of networked storage and its applications, united storage network (USN) combined with network attached storage (NAS) and storage area network (SAN) has emerged. It has such advantages as high performance, low cost, good connectivity, etc. However the security issue has been complicated because USN responds to block I/O and file I/O requests simultaneously. In this paper, a security system module is developed to prevent many types of attacks against USN based on NAS head. The module not only uses effective authentication to prevent unauthorized access to the system data, but also checks the data integrity. Experimental results show that the security module can not only resist remote attacks and attacks from those who has physical access to the USN, but can also be seamlessly integrated into underlying file systems, with little influence on their performance. 展开更多
关键词 network attached storage (NAS) storage area network (SAN) united storage network (USN) hashed message authentication code (HMAC).
在线阅读 下载PDF
Research on the Security of the United Storage Network Based on NAS
7
作者 黄建忠 《Journal of Chongqing University》 CAS 2004年第2期48-53,共6页
A multi-user view file system (MUVFS) and a security scheme are developed to improve the security of the united storage network (USN) that integrates a network attached storage (NAS) and a storage area network (SAN). ... A multi-user view file system (MUVFS) and a security scheme are developed to improve the security of the united storage network (USN) that integrates a network attached storage (NAS) and a storage area network (SAN). The MUVFS offers a storage volume view for each authorized user who can access only the data in his own storage volume, the security scheme enables all users to encrypt and decrypt the data of their own storage view at client-side, and the USN server needs only to check the users’ identities and the data’s integrity. Experiments were performed to compare the sequential read, write and read/write rates of NFS+MUVFS+secure_module with those of NFS. The results indicate that the security of the USN is improved greatly with little influence on the system performance when the MUVFS and the security scheme are integrated into it. 展开更多
关键词 multi-user view file system (MUVFS) storage area network (SAN) united storage network (USN) network attached storage (NAS) hashed message authentication code (HMAC)
在线阅读 下载PDF
The Largest Thermal Power Unit in Northwest Network Starts Construction Soon
8
《Electricity》 1997年第3期50-50,共1页
关键词 The Largest Thermal Power unit in Northwest network Starts Construction Soon
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:2
9
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
A HybridManufacturing ProcessMonitoringMethod Using Stacked Gated Recurrent Unit and Random Forest
10
作者 Chao-Lung Yang Atinkut Atinafu Yilma +2 位作者 Bereket Haile Woldegiorgis Hendrik Tampubolon Hendri Sutrisno 《Intelligent Automation & Soft Computing》 2024年第2期233-254,共22页
This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ... This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems. 展开更多
关键词 Smart manufacturing process monitoring quality control gated recurrent unit neural network random forest
在线阅读 下载PDF
Research on Network-based Integrated Condition Monitoring Unit for Rotating Machinery
11
作者 XIXiao-peng ZHANGWen-rui +2 位作者 XIShuan-min JINGMin-qing YULie 《International Journal of Plant Engineering and Management》 2004年第3期139-144,共6页
In this paper, a network-based monitoring unit for condition monitoring andfault diagnosis of rotating machinery is designed and implemented. With the technology of DSP(Digital signal processing) , TCP/IP, and simulta... In this paper, a network-based monitoring unit for condition monitoring andfault diagnosis of rotating machinery is designed and implemented. With the technology of DSP(Digital signal processing) , TCP/IP, and simultaneous acquisition, a mechanism of multi-process andinter-process communication, the integrating problem of signal acquisition, the data dynamicmanagement and network-based configuration in the embedded condition monitoring system is solved. Itoffers the input function of monitoring information for network-based condition monitoring and afault diagnosis system. 展开更多
关键词 condition monitoring integrated monitoring unit network-basedconfiguration interprocess communication digital signal processing
在线阅读 下载PDF
Simulation of Low TDS and Biological Units of Fajr Industrial Wastewater Treatment Plant Using Artificial Neural Network and Principal Component Analysis Hybrid Method
12
作者 Naser Mehrdadi Hamed Hasanlou +2 位作者 Mohammad Taghi Jafarzadeh Hamidreza Hasanlou Hamid Abdolabadi 《Journal of Water Resource and Protection》 2012年第6期370-376,共7页
Being familiar with characteristics of industrial town effluents from various wastewater treatment units, which have high qualitative and quantitative variations and more uncertainties compared to urban wastewaters, p... Being familiar with characteristics of industrial town effluents from various wastewater treatment units, which have high qualitative and quantitative variations and more uncertainties compared to urban wastewaters, plays very effective role in governing them. With regard to environmental issues, proper operation of wastewater treatment plants is of par- ticular importance that in the case of inappropriate utilization, they will cause serious problems. Processes that exist in environmental systems mostly have two major characteristics: they are dependent on many variables;and there are complex relationships between its components which make them very difficult to analyze. In order to achieve a better and efficient control over the operation of an industrial wastewater treatment plant (WWTP), powerful mathematical tool can be used that is based on recorded data from some basic parameters of wastewater during a period of treatment plant operation. In this study, the treatment plant was divided into two main subsystems including: Low TDS (Total Dissolved Solids) treatment unit and Biological unit (extended aeration). The multilayer perceptron feed forward neural network with a hidden layer and stop training method was used to predict quality parameters of the industrial effluent. Data of this study are related to the Fajr Industrial Wastewater Treatment Plant, located in Mahshahr—Iran that qualita- tive and quantitative characteristics of its units were used for training, calibration and validation of the neural model. Also, Principal Component Analysis (PCA) technique was applied to improve performance of generated models of neural networks. The results of L-TDS unit showed good accuracy of the models in estimating qualitative profile of wastewater but results of biological unit did not have sufficient accuracy to being used. This model facilitates evaluating the performance of each treatment plant units through comparing the results of prediction model with the standard amount of outputs. 展开更多
关键词 Fajr Industrial WASTEWATER Treatment Plant SIMULATION Artificial Neural network PCA LOW TDS BIOLOGICAL unit
暂未订购
基于蜉蝣优化算法的时空融合交通流预测研究 被引量:1
13
作者 张红 巩蕾 +1 位作者 曹洁 张玺君 《哈尔滨工程大学学报》 北大核心 2025年第4期764-771,796,共9页
针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性... 针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性,通过门控机制融合ChebNet捕获的静态空间特征与图卷积网络结合注意力机制捕获的动态空间特征,构建考虑动态时空特征的预测模型,并借助蜉蝣优化算法优化超参数。研究表明:在PeMSD7(M)数据集上,15、30和45 min下该模型MAE的预测精度较T-GCN提高了5.91%、9.06%和10.72%,本文方法具有有效性与优越性。 展开更多
关键词 交通流预测 动态时空特性 超参数 蜉蝣优化算法 时间卷积网络 门控线性单元 注意力机制 图卷积网络
在线阅读 下载PDF
非药物干预改善ICU病人口渴效果的网状Meta分析 被引量:1
14
作者 赵鹏 项丽君 +5 位作者 廖琳 颜明玉 赖琳艳 朱志慧 程雷 张晓梅 《循证护理》 2025年第6期1015-1024,共10页
目的:评价不同非药物干预对缓解重症监护室(ICU)病人口渴的效果,为医护人员选择口渴干预方式提供依据。方法:计算机检索PubMed、the Cochrane Library、EMbase、CINAHL、中国知网、万方数据库、维普数据库、中国生物医学文献数据库中关... 目的:评价不同非药物干预对缓解重症监护室(ICU)病人口渴的效果,为医护人员选择口渴干预方式提供依据。方法:计算机检索PubMed、the Cochrane Library、EMbase、CINAHL、中国知网、万方数据库、维普数据库、中国生物医学文献数据库中关于研究ICU病人口渴感的随机对照试验;检索时限为建库至2024年10月。由2名研究者独立进行文献检索、筛选、质量评价和数据提取;采用RevMan 5.4和Stata 16.0进行相关的统计学分析。结果:最终纳入21篇文献。网状Meta分析结果显示,芦荟薄荷保湿凝胶涂抹口唇、缩短禁水时间和0.45%氯化钠溶液氧驱动雾化缓解ICU病人口渴的效果在非药物干预措施中排名居前3名;冰水擦拭联合冰水喷雾在联合干预措施中排名居第1位。结论:多种非药物干预措施均能缓解ICU病人的口渴感,尤其以芦荟薄荷保湿凝胶涂抹口唇的效果最为明显;临床可根据病人病情特点及实际需求选择合适的口渴干预方式。 展开更多
关键词 非药物干预 口渴 重症监护室 网状Meta分析 循证护理
暂未订购
面向网络空间防御的越权漏洞对抗机器学习检测系统 被引量:1
15
作者 金磊 《微型电脑应用》 2025年第2期292-296,共5页
为了提高网络空间越权漏洞检测的准确性,设计面向网络空间防御的越权漏洞对抗机器学习检测系统。在系统感知层的数据采集模块应用互联网控制消息协议(ICMP)扫描技术采集网络安全漏洞数据,聚类分析清洗数据;由网络通信层将数据发送给存... 为了提高网络空间越权漏洞检测的准确性,设计面向网络空间防御的越权漏洞对抗机器学习检测系统。在系统感知层的数据采集模块应用互联网控制消息协议(ICMP)扫描技术采集网络安全漏洞数据,聚类分析清洗数据;由网络通信层将数据发送给存储层存储;在应用层的越权漏洞检测模块中,以数据调用模块调度数据输入条件残差生成对抗网络,训练后输出越权漏洞识别结果。实验结果表明,所设计系统可有效识别与检测网络空间环境中存在的越权漏洞,检测准确性较高。 展开更多
关键词 网络空间防御 越权漏洞 漏洞检测 机器学习 对抗网络 残差单元
在线阅读 下载PDF
基于Transformer-TCN-GRU的场面滑行轨迹预测模型
16
作者 王兴隆 李国祥 +3 位作者 张钊 叶可 苏婷 葛京 《交通信息与安全》 北大核心 2025年第2期44-53,64,共11页
对于航空器滑行轨迹预测,现有方法在实时推算中等时间尺度内的未来位置精度较低,为进一步提高中等时间尺度内轨迹预测的精度,并保证实时预测的高效性,将Transformer网络、交叉注意力机制、时间卷积网络(temporal convolutional network,... 对于航空器滑行轨迹预测,现有方法在实时推算中等时间尺度内的未来位置精度较低,为进一步提高中等时间尺度内轨迹预测的精度,并保证实时预测的高效性,将Transformer网络、交叉注意力机制、时间卷积网络(temporal convolutional network,TCN)与门控循环单元(gated recurrent unit,GRU)相结合,构建1种输出多条候选轨迹的地面滑行轨迹预测模型。引入Transformer编码器捕捉航空器历史轨迹数据中的时间依赖性和运动状态,获取轨迹特征序列的全局特征表示;结合机场矢量地图和管制系统给出的滑行路径指令计算航空器在未来计划的滑行路径坐标序列,使用交叉注意力机制,以轨迹序列的全局特征作为查询,关注路径坐标序列中对未来滑行影响最大的位置,将融合路径特征后的轨迹全局特征映射为多种模态,对应每条候选轨迹的特征;TCN-GRU轨迹解码器对每种模态的轨迹特征进行解码,捕捉轨迹序列中的长期时间依赖,输出多条预测轨迹及其概率。以国内某大型机场航空器真实滑行轨迹进行验证,未来8 s的位置轨迹预测最小平均位移误差(minimum average displacement error,minADE)为1.932 m,最小最终位移误差(minimum final displacement error,minFDE)为1.811 m,相较于单一的GRU、TCN模型,minADE降低14.10%、16.62%,minFDE降低30.88%、34.72%,测试样本平均耗时17.70 ms,可以准确、快速预测滑行轨迹,有利于保障飞行区的安全运行。 展开更多
关键词 滑行轨迹 轨迹预测 Transformer模型 时间卷积网络 门控循环单元
在线阅读 下载PDF
具有注意力机制的CNN-GRU模型在风电机组异常状态预警中的应用 被引量:1
17
作者 马良玉 胡景琛 +1 位作者 段晓冲 黄日灏 《南京信息工程大学学报》 北大核心 2025年第3期374-383,共10页
针对风电机组长期在恶劣环境中工作导致故障频发的问题,提出一种具有注意力机制的卷积神经网络(CNN)及门控循环单元(GRU)的异常工况预警方法.利用快速密度峰值聚类和局部离群因子算法对风电机组数据采集与监控系统中的异常数据进行清洗... 针对风电机组长期在恶劣环境中工作导致故障频发的问题,提出一种具有注意力机制的卷积神经网络(CNN)及门控循环单元(GRU)的异常工况预警方法.利用快速密度峰值聚类和局部离群因子算法对风电机组数据采集与监控系统中的异常数据进行清洗,结合机理分析及极端梯度提升(XGBoost)算法对特征重要性的评估确定模型的输入输出参数,进而采用具有注意力机制的CNN-GRU模型建立风电机组正常运行工况的性能预测模型.以该预测模型为基础,利用时移滑动窗口构建风电机组状态评价指标,并结合统计学中的区间估计法确定预警阈值,最终实现机组异常工况预警.应用某风电机组真实历史故障数据进行实验,结果表明,本文所提方法能够准确地对异常状态进行提前识别和预警,有利于运维人员及时处理故障,保证机组安全稳定运行. 展开更多
关键词 风电机组 卷积神经网络 门控循环单元 注意力机制 故障预警
在线阅读 下载PDF
基于GAT-GRU的高渗透率分布式新能源接入的配电网无功优化 被引量:1
18
作者 刘会家 滕杰 +1 位作者 冯铃 肖懂 《现代电力》 北大核心 2025年第3期531-541,共11页
无功优化在配电网的电压控制、潮流分布以及整个配电网的稳定中起着至关重要的作用。目前,高渗透率新能源的分布式并网以及负荷的多样化给电网的稳定运行带来了巨大的挑战,传统无功补偿方式的时效性以及准确性在当下复杂电网背景下已经... 无功优化在配电网的电压控制、潮流分布以及整个配电网的稳定中起着至关重要的作用。目前,高渗透率新能源的分布式并网以及负荷的多样化给电网的稳定运行带来了巨大的挑战,传统无功补偿方式的时效性以及准确性在当下复杂电网背景下已经无法满足低成本–高质量的供电要求。针对以上情况,该文采用图注意力网络(graph attention networks,GAT)结合门控循环单元(gate recurrent unit,GRU)神经网络对配电网的无功做出优化决策,基于GAT-GRU网络,把握节点间相关性特征的同时获取配电网特征时间依赖性。依据决策,通过无功调节设备与智能柔性开关(soft open point,SOP)协同,以解决配电网的无功优化问题。最后,利用改进的IEEE 33节点配电模型对所提方法进行验证,结果表明GAT-GRU网络在电压控制、网络损耗优化等方面具有良好的效果,证明了该方法在无功优化中的有效性与优异性。 展开更多
关键词 无功优化 配电网 图注意力网络 门控循环单元 分布式能源 智能软开关
原文传递
特殊路网拓扑解构下的时空异质化交通流预测
19
作者 侯越 张鑫 +2 位作者 袭著涛 王甜甜 马宝君 《铁道科学与工程学报》 北大核心 2025年第7期2932-2945,共14页
在城市路网中,整体一般路网交通流通常具有早、中、晚的时间异质性和路网关联差异的空间异质性,但局部特殊路网大多呈现Y形或环形拓扑结构,其交通流打破了整体路网的常规时空异质性模式,表现为非典型的时间规律和空间关联分布。然而,现... 在城市路网中,整体一般路网交通流通常具有早、中、晚的时间异质性和路网关联差异的空间异质性,但局部特殊路网大多呈现Y形或环形拓扑结构,其交通流打破了整体路网的常规时空异质性模式,表现为非典型的时间规律和空间关联分布。然而,现有研究大多将路网作为整体进行建模,忽略了局部特殊路网的影响。鉴于此,为解决现有研究中Y形、环形路网影响考虑不充分及各类路网节点空间关联关系存在时变问题,提出特殊路网拓扑解构下的时空异质化交通流预测模型,该模型利用时滞影响下的动态图生成模块,构建反映当前时间步路网空间关联关系的图结构。在此基础上,利用特殊路网解构及动态映射模块,分离出Y形、环形路网时序特征及其时滞动态图。继而利用特殊路网影响下的空间特征提取模块,对整体路网、Y形、环形路网独立建模。实验基于公开高速路网数据集,研究结果表明,与当前先进的模型相比,所提模型的E_(mae)、E_(rmse)在PEMSD4、PEMSD8、成都-滴滴数据集上性能分别提升了4.9074%、4.3404%、3.2295%、0.1667%、1.2677%、1.1861%。同时相较于将路网视为整体进行建模,所提模型的E_(mae)、E_(rmse)在PEMSD8数据集上性能分别提升了8.6514%、6.5366%,进一步证明考虑局部特殊路网的有效性。综上所述,所提模型能充分考虑局部特殊路网对整体交通路网的影响,为时空异质化交通流预测提供一种新的思路。 展开更多
关键词 交通流预测 图卷积网络 门控循环单元 特殊路网 时空异质性
在线阅读 下载PDF
基于等压能量分析与CNN-GRU-MHA的锂电池SOH估计方法
20
作者 汪晓璐 赵筛筛 张朝龙 《电气工程学报》 北大核心 2025年第3期233-241,共9页
精确有效的锂电池健康状态(State of health,SOH)估计方法是电池管理系统的研发重点。针对实测噪声导致难以准确估计锂电池SOH的问题,提出一种基于等压能量分析与卷积神经网络(Convolutional neural network,CNN)-门控循环单元(Gated re... 精确有效的锂电池健康状态(State of health,SOH)估计方法是电池管理系统的研发重点。针对实测噪声导致难以准确估计锂电池SOH的问题,提出一种基于等压能量分析与卷积神经网络(Convolutional neural network,CNN)-门控循环单元(Gated recurrent unit,GRU)-多头注意力机制(Multi-headed attention,MHA)的锂电池SOH估计方法。首先,分析恒流充电阶段电池能量与电压关系,绘制等压能量曲线;其次,提取等压能量曲线的峰值作为健康因子,表征锂电池SOH退化特性;最后,采用CNN提取健康因子深层特征,构建基于GRU-MHA方法的锂电池SOH估计模型。试验结果表明,所提方法能够有效克服实测噪声,SOH估计误差小于1%。同时,比较试验表明,所提方法具有更好的估计效果。 展开更多
关键词 锂电池 SOH估计 等压能量分析 卷积神经网络 门控循环单元
在线阅读 下载PDF
上一页 1 2 174 下一页 到第
使用帮助 返回顶部