The data acquisition stations and the data processing center of the Science and Application Center for Lunar and Deep-space Exploration (SACLuDE) are located at different geographical sites. They respectively have the...The data acquisition stations and the data processing center of the Science and Application Center for Lunar and Deep-space Exploration (SACLuDE) are located at different geographical sites. They respectively have their own local networks and interconnect with each other through access to the core data network. This paper describes the clock drift in the computer and other networked devices building up the infrastructure of the above local networks. The network time variance of the stochastic model is also estimated. The poor precision of network synchronization will bring about potential hazards to the network operation and application running in the networks, which is clarified in the present paper. At the end of the paper, a cost-effective and feasible solution is proposed based on the Global Position System (GPS) and the Network Time Protocol (NTP).展开更多
This paper presents a new method for finding the natural frequency set of a linear time invariant network. In the paper deriving and proving of a common equation are described. It is for the first time that in the co...This paper presents a new method for finding the natural frequency set of a linear time invariant network. In the paper deriving and proving of a common equation are described. It is for the first time that in the common equation the natural frequencies of an n th order network are correlated with the n port parameters. The equation is simple and dual in form and clear in its physical meaning. The procedure of finding the solution is simplified and standardized, and it will not cause the loss of roots. The common equation would find wide use and be systematized.展开更多
Time-sensitive networks(TSNs)support not only traditional best-effort communications but also deterministic communications,which send each packet at a deterministic time so that the data transmissions of networked con...Time-sensitive networks(TSNs)support not only traditional best-effort communications but also deterministic communications,which send each packet at a deterministic time so that the data transmissions of networked control systems can be precisely scheduled to guarantee hard real-time constraints.No-wait scheduling is suitable for such TSNs and generates the schedules of deterministic communications with the minimal network resources so that all of the remaining resources can be used to improve the throughput of best-effort communications.However,due to inappropriate message fragmentation,the realtime performance of no-wait scheduling algorithms is reduced.Therefore,in this paper,joint algorithms of message fragmentation and no-wait scheduling are proposed.First,a specification for the joint problem based on optimization modulo theories is proposed so that off-the-shelf solvers can be used to find optimal solutions.Second,to improve the scalability of our algorithm,the worst-case delay of messages is analyzed,and then,based on the analysis,a heuristic algorithm is proposed to construct low-delay schedules.Finally,we conduct extensive test cases to evaluate our proposed algorithms.The evaluation results indicate that,compared to existing algorithms,the proposed joint algorithm improves schedulability by up to 50%.展开更多
In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global e...In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global exponential robust stability is presented. It is shown that the obtained result is different from or improves some existing ones reported in the literatures. Finally, some numerical examples and a simulation are given to show the effectiveness of the obtained result.展开更多
In this paper, the problem of the global exponential stability analysis is investigated for a class of recurrent neural networks (RNNs) with time-varying discrete and distributed delays. Due to a novel technique whe...In this paper, the problem of the global exponential stability analysis is investigated for a class of recurrent neural networks (RNNs) with time-varying discrete and distributed delays. Due to a novel technique when estimating the upper bound of the derivative of Lyapunov functional, we establish new exponential stability criteria in terms of LMIs. It is shown that the obtained criteria can provide less conservative results than some existing ones. Numerical examples are given to show the effectiveness of the proposed results.展开更多
In this paper, the problem of stability analysis for neural networks with time-varying delays is considered. By constructing a new augmented Lyapunov-Krasovskii's functional and some novel analysis techniques, improv...In this paper, the problem of stability analysis for neural networks with time-varying delays is considered. By constructing a new augmented Lyapunov-Krasovskii's functional and some novel analysis techniques, improved delaydependent criteria for checking the stability of the neural networks are established. The proposed criteria are presented in terms of linear matrix inequalities (LMIs) which can be easily solved and checked by various convex optimization algorithms. Two numerical examples are included to show the superiority of our results.展开更多
This paper proposes a distributed second-order consensus time synchronization, which incorporates the second-order consensus algorithm into wireless sensor networks. Since local clocks may have different skews and off...This paper proposes a distributed second-order consensus time synchronization, which incorporates the second-order consensus algorithm into wireless sensor networks. Since local clocks may have different skews and offsets, the algorithm is designed to include offset compensation and skew compensation. The local clocks are not directly modified, thus the virtual clocks are built according to the local clocks via the compensation parameters. Each node achieves a virtual consensus clock by periodically updated compensation parameters. Finally, the effectiveness of the proposed algorithm is verified through a number of simulations in a mesh network. It is proved that the proposed algorithm has the advantage of being distributed, asymptotic convergence, and robust to new node joining.展开更多
With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency an...With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency and certainty especially for autonomous driving.Time sensitive networking(TSN)based on Ethernet gives a possible solution to these requirements.Previous surveys usually investigated TSN from a general perspective,which referred to TSN of various application fields.In this paper,we focus on the application of TSN to the in-vehicle networks.For in-vehicle networks,we discuss all related TSN standards specified by IEEE 802.1 work group up to now.We further overview and analyze recent literature on various aspects of TSN for automotive applications,including synchronization,resource reservation,scheduling,certainty,software and hardware.Application scenarios of TSN for in-vehicle networks are analyzed one by one.Since TSN of in-vehicle network is still at a very initial stage,this paper also gives insights on open issues,future research directions and possible solutions.展开更多
To improve the diagnosis accuracy and self-adaptability of fatigue crack in ulterior place of the supporting shaft, time series and neural network are attempted to be applied in research on diag-nosing the fatigue cr...To improve the diagnosis accuracy and self-adaptability of fatigue crack in ulterior place of the supporting shaft, time series and neural network are attempted to be applied in research on diag-nosing the fatigue crack’s degree based on analyzing the vibration characteristics of the supporting shaft. By analyzing the characteristic parameter which is easy to be detected from the supporting shaft’s exterior, the time series model parameter which is hypersensitive to the situation of fatigue crack in ulterior place of the supporting shaft is the target input of neural network, and the fatigue crack’s degree value of supporting shaft is the output. The BP network model can be built and net-work can be trained after the structural parameters of network are selected. Furthermore, choosing the other two different group data can test the network. The test result will verify the validity of the BP network model. The result of experiment shows that the method of time series and neural network are effective to diagnose the occurrence and the development of the fatigue crack’s degree in ulterior place of the supporting shaft.展开更多
In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new...In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.展开更多
This paper is concerned with the stability analysis for static recurrent neural networks (RNNs) with time-varying delay. By Lyapunov functional method and linear matrix inequality technique, some new delay-dependent...This paper is concerned with the stability analysis for static recurrent neural networks (RNNs) with time-varying delay. By Lyapunov functional method and linear matrix inequality technique, some new delay-dependent conditions are established to ensure the asymptotic stability of the neural network. Expressed in linear matrix inequalities (LMIs), the proposed delay-dependent stability conditions can be checked using the recently developed algorithms. A numerical example is given to show that the obtained conditions can provide less conservative results than some existing ones.展开更多
In this paper, we investigate the problem of H∞ synchronization for chaotic neural networks with time-varying delays. A new model of the networks with disturbances in both master and slave systems is presented. By co...In this paper, we investigate the problem of H∞ synchronization for chaotic neural networks with time-varying delays. A new model of the networks with disturbances in both master and slave systems is presented. By constructing a suitable Lyapunov–Krasovskii functional and using a reciprocally convex approach, a novel H∞ synchronization criterion for the networks concerned is established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed method.展开更多
We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments f...We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.展开更多
In this paper, the distributed synchronization of stochastic coupled neural networks with time-varying delay is concerned via randomly occurring control. We use two Bernoulli stochastic variables to describe the occur...In this paper, the distributed synchronization of stochastic coupled neural networks with time-varying delay is concerned via randomly occurring control. We use two Bernoulli stochastic variables to describe the occurrence of distributed adaptive control and updating law according to certain probabilities. The distributed adaptive control and updating law for each vertex in the network depend on the state information on each vertex’s neighborhood. Based on Lyapunov stability theory, It<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ô<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> differential equations, etc., by constructing the appropriate Lyapunov functional, we study and obtain sufficient conditions for the distributed synchronization of such networks in mean square.展开更多
This paper proposes an adaptive neural network control method for a class of perturbed strict-feedback nonlinear systems with unknown time delays. Radial basis function neural networks are used to approximate unknown ...This paper proposes an adaptive neural network control method for a class of perturbed strict-feedback nonlinear systems with unknown time delays. Radial basis function neural networks are used to approximate unknown intermediate control signals. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown time delay terms have been compensated. Dynamic surface control technique is used to overcome the problem of "explosion of complexity" in backstepping design procedure. In addition, the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system is proved. A main advantage of the proposed controller is that both problems of "curse of dimensionality" and "explosion of complexity" are avoided simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the approach.展开更多
Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network a...Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed. The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes. The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.展开更多
This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequal...This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.展开更多
文摘The data acquisition stations and the data processing center of the Science and Application Center for Lunar and Deep-space Exploration (SACLuDE) are located at different geographical sites. They respectively have their own local networks and interconnect with each other through access to the core data network. This paper describes the clock drift in the computer and other networked devices building up the infrastructure of the above local networks. The network time variance of the stochastic model is also estimated. The poor precision of network synchronization will bring about potential hazards to the network operation and application running in the networks, which is clarified in the present paper. At the end of the paper, a cost-effective and feasible solution is proposed based on the Global Position System (GPS) and the Network Time Protocol (NTP).
文摘This paper presents a new method for finding the natural frequency set of a linear time invariant network. In the paper deriving and proving of a common equation are described. It is for the first time that in the common equation the natural frequencies of an n th order network are correlated with the n port parameters. The equation is simple and dual in form and clear in its physical meaning. The procedure of finding the solution is simplified and standardized, and it will not cause the loss of roots. The common equation would find wide use and be systematized.
基金partially supported by National Key Research and Development Program of China(2018YFB1700200)National Natural Science Foundation of China(61972389,61903356,61803368,U1908212)+2 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences,National Science and Technology Major Project(2017ZX02101007-004)Liaoning Provincial Natural Science Foundation of China(2020-MS-034,2019-YQ-09)China Postdoctoral Science Foundation(2019M661156)。
文摘Time-sensitive networks(TSNs)support not only traditional best-effort communications but also deterministic communications,which send each packet at a deterministic time so that the data transmissions of networked control systems can be precisely scheduled to guarantee hard real-time constraints.No-wait scheduling is suitable for such TSNs and generates the schedules of deterministic communications with the minimal network resources so that all of the remaining resources can be used to improve the throughput of best-effort communications.However,due to inappropriate message fragmentation,the realtime performance of no-wait scheduling algorithms is reduced.Therefore,in this paper,joint algorithms of message fragmentation and no-wait scheduling are proposed.First,a specification for the joint problem based on optimization modulo theories is proposed so that off-the-shelf solvers can be used to find optimal solutions.Second,to improve the scalability of our algorithm,the worst-case delay of messages is analyzed,and then,based on the analysis,a heuristic algorithm is proposed to construct low-delay schedules.Finally,we conduct extensive test cases to evaluate our proposed algorithms.The evaluation results indicate that,compared to existing algorithms,the proposed joint algorithm improves schedulability by up to 50%.
基金supported by 973 Programs (No.2008CB317110)the Key Project of Chinese Ministry of Education (No.107098)+1 种基金Sichuan Province Project for Applied Basic Research (No.2008JY0052)the Project for Academic Leader and Group of UESTC
文摘In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global exponential robust stability is presented. It is shown that the obtained result is different from or improves some existing ones reported in the literatures. Finally, some numerical examples and a simulation are given to show the effectiveness of the obtained result.
基金supported by National Natural Science Foundation of China (No.60674027,No.60974127)Key Project of Education Ministry of China (No.208074)
文摘In this paper, the problem of the global exponential stability analysis is investigated for a class of recurrent neural networks (RNNs) with time-varying discrete and distributed delays. Due to a novel technique when estimating the upper bound of the derivative of Lyapunov functional, we establish new exponential stability criteria in terms of LMIs. It is shown that the obtained criteria can provide less conservative results than some existing ones. Numerical examples are given to show the effectiveness of the proposed results.
基金Project supported by the MKE (The Ministry of Knowledge Economy),Koreathe ITRC (Information Technology Research Center) support program supervised by the IITA (Institute for Information Technology Advancement) (Grant No. IITA-2009-C1090-0904-0007)
文摘In this paper, the problem of stability analysis for neural networks with time-varying delays is considered. By constructing a new augmented Lyapunov-Krasovskii's functional and some novel analysis techniques, improved delaydependent criteria for checking the stability of the neural networks are established. The proposed criteria are presented in terms of linear matrix inequalities (LMIs) which can be easily solved and checked by various convex optimization algorithms. Two numerical examples are included to show the superiority of our results.
基金Supported by the National Natural Science Foundation of China(No.61340034)the Research Program of Application Foundation and Advanced Technology of Tianjin(No.13JCYBJC15600)
文摘This paper proposes a distributed second-order consensus time synchronization, which incorporates the second-order consensus algorithm into wireless sensor networks. Since local clocks may have different skews and offsets, the algorithm is designed to include offset compensation and skew compensation. The local clocks are not directly modified, thus the virtual clocks are built according to the local clocks via the compensation parameters. Each node achieves a virtual consensus clock by periodically updated compensation parameters. Finally, the effectiveness of the proposed algorithm is verified through a number of simulations in a mesh network. It is proved that the proposed algorithm has the advantage of being distributed, asymptotic convergence, and robust to new node joining.
文摘With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency and certainty especially for autonomous driving.Time sensitive networking(TSN)based on Ethernet gives a possible solution to these requirements.Previous surveys usually investigated TSN from a general perspective,which referred to TSN of various application fields.In this paper,we focus on the application of TSN to the in-vehicle networks.For in-vehicle networks,we discuss all related TSN standards specified by IEEE 802.1 work group up to now.We further overview and analyze recent literature on various aspects of TSN for automotive applications,including synchronization,resource reservation,scheduling,certainty,software and hardware.Application scenarios of TSN for in-vehicle networks are analyzed one by one.Since TSN of in-vehicle network is still at a very initial stage,this paper also gives insights on open issues,future research directions and possible solutions.
基金This project is supported by National Natural Science Fundation of China (No. 50675066)Provincial Key Technologies R&D of Hunan, China (No. 05FJ2001)China Postdoctoral Science Foundation (No. 2005038006).
文摘To improve the diagnosis accuracy and self-adaptability of fatigue crack in ulterior place of the supporting shaft, time series and neural network are attempted to be applied in research on diag-nosing the fatigue crack’s degree based on analyzing the vibration characteristics of the supporting shaft. By analyzing the characteristic parameter which is easy to be detected from the supporting shaft’s exterior, the time series model parameter which is hypersensitive to the situation of fatigue crack in ulterior place of the supporting shaft is the target input of neural network, and the fatigue crack’s degree value of supporting shaft is the output. The BP network model can be built and net-work can be trained after the structural parameters of network are selected. Furthermore, choosing the other two different group data can test the network. The test result will verify the validity of the BP network model. The result of experiment shows that the method of time series and neural network are effective to diagnose the occurrence and the development of the fatigue crack’s degree in ulterior place of the supporting shaft.
基金Natural Science Foundation of Henan Education Department (No.2007120005).
文摘In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China (No. 60674027)
文摘This paper is concerned with the stability analysis for static recurrent neural networks (RNNs) with time-varying delay. By Lyapunov functional method and linear matrix inequality technique, some new delay-dependent conditions are established to ensure the asymptotic stability of the neural network. Expressed in linear matrix inequalities (LMIs), the proposed delay-dependent stability conditions can be checked using the recently developed algorithms. A numerical example is given to show that the obtained conditions can provide less conservative results than some existing ones.
基金Project supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(Grant No.2012-0000479)the Korea Healthcare Technology R&D Project,Ministry of Health and Welfare,Republic of Korea(Grant No.A100054)
文摘In this paper, we investigate the problem of H∞ synchronization for chaotic neural networks with time-varying delays. A new model of the networks with disturbances in both master and slave systems is presented. By constructing a suitable Lyapunov–Krasovskii functional and using a reciprocally convex approach, a novel H∞ synchronization criterion for the networks concerned is established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China ( Grant Nos. 61104148, 41174109, and 50974095)the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX05020-006)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110032120088)
文摘We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.
文摘In this paper, the distributed synchronization of stochastic coupled neural networks with time-varying delay is concerned via randomly occurring control. We use two Bernoulli stochastic variables to describe the occurrence of distributed adaptive control and updating law according to certain probabilities. The distributed adaptive control and updating law for each vertex in the network depend on the state information on each vertex’s neighborhood. Based on Lyapunov stability theory, It<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ô<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> differential equations, etc., by constructing the appropriate Lyapunov functional, we study and obtain sufficient conditions for the distributed synchronization of such networks in mean square.
基金Supported by National Naturai Science Foundation of China (61273104, 61021002, 61104097), and Projects of Major Interna-tional (Regional) Joint Research Program National Natural Science Foundation of China (61120106010)
文摘This paper proposes an adaptive neural network control method for a class of perturbed strict-feedback nonlinear systems with unknown time delays. Radial basis function neural networks are used to approximate unknown intermediate control signals. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown time delay terms have been compensated. Dynamic surface control technique is used to overcome the problem of "explosion of complexity" in backstepping design procedure. In addition, the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system is proved. A main advantage of the proposed controller is that both problems of "curse of dimensionality" and "explosion of complexity" are avoided simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the approach.
基金the National Natural Science Foundation of China (60474076)Natural Science Foundationof Jiangxi Province, China (2007GZS0899)Scientific Research Foundation of Jiangxi Provincial Education Department, China(GJJ08238).
文摘Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed. The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes. The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.
基金supported by the National Natural Science Foundation of China (Grant No.60974139)the Fundamental Research Funds for the Central Universities (Grant No.72103676)
文摘This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.