Auditory sense is an important way for people to receive and interact with foreign information.In different environment,the auditory sense changes.Therefore,it is necessary to find a detection method that can detect h...Auditory sense is an important way for people to receive and interact with foreign information.In different environment,the auditory sense changes.Therefore,it is necessary to find a detection method that can detect hearing in a timely manner.In this paper,EEG experiments were used to construct and compare brain functional networks in different states,and auditory state models were constructed with different auditory input signals.Secondly,the cross-correlation method is used to slice the signal and construct the adjacency matrix.Louvain community detection algorithm is used to process the data and calculate the network conversion rate under different parameters.It is concluded that the network conversion rate can be used to analyze the temporal variation of auditory information under the condition of controlled parameters.This indicates that the network conversion rate can also be used as a method to analyze auditory signals in the future.展开更多
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so...Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.展开更多
This paper proposes a model-based control framework for vehicle platooning systems with secondorder nonlinear dynamics operating over switching signed networks,time-varying delays,and deception attacks.The study inclu...This paper proposes a model-based control framework for vehicle platooning systems with secondorder nonlinear dynamics operating over switching signed networks,time-varying delays,and deception attacks.The study includes two configurations:a leaderless structure using Finite-Time Non-Singular Terminal Bipartite Consensus(FNTBC)and Fixed-Time Bipartite Consensus(FXTBC),and a leader—follower structure ensuring structural balance and robustness against deceptive signals.In the leaderless model,a bipartite controller based on impulsive control theory,gauge transformation,and Markovian switching Lyapunov functions ensures mean-square stability and coordination under deception attacks and communication delays.The FNTBC achieves finite-time convergence depending on initial conditions,while the FXTBC guarantees fixed-time convergence independent of them,providing adaptability to different operating states.In the leader—follower case,a discontinuous impulsive control law synchronizes all followers with the leader despite deceptive attacks and switching topologies,maintaining robust coordination through nonlinear corrective mechanisms.To validate the approach,simulations are conducted on systems of five and seventeen vehicles in both leaderless and leader—follower configurations.The results demonstrate that the proposed framework achieves rapid consensus,strong robustness,and high resistance to deception attacks,offering a secure and scalable model-based control solution for modern vehicular communication networks.展开更多
On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the est...On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the estimation error cannot be guaranteed to converge to zero.In addition,the state estimator of non-switched neural networks with integral and exponentially convergent terms cannot be used to improve the estimation performance of switched neural networks due to the difficulties caused by the nonsmoothness of the considered Lyapunov function at the switching instants.In this paper,we aim at overcoming such difficulties and filling in the gaps,by proposing a novel adaptive ETS(AETS)to design an event-based H_(∞)switched proportional-integral(PI)state estimator.A triggering-dependent exponential convergence term and an integral term are introduced into the switched PI state estimator.The relationship among the average dwell time,the AETS and the PI state estimator are established by the triggering-dependent exponential convergence term such that estimation error asymptotically converges to zero with H_(∞)performance level.It is shown that the convergence rate of the resultant error system can be adaptively adjusted according to triggering signals.Finally,the validity of the proposed theoretical results is verified through two illustrative examples.展开更多
This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking...This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking capacity for systems with uncertainties and disturbances. First, SMC discrete equivalent control law is designed on the basis of the nominal model of the system and the adaptive exponential reaching law, and subsequently, stability of the algorithm is analyzed. Second, RBF network is used to f...展开更多
This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is trans...This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.展开更多
The resistive switching characteristics of TiO_2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth...The resistive switching characteristics of TiO_2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth of the TiO_2 nanowires, making the preparation straightforward. It also acts as a bottom electrode for the device. A top Al electrode was fabricated by e-beam evaporation process. The Al/TiO_2 nanowire networks/Ti device fabricated in this way displayed a highly repeatable and electroforming-free bipolar resistive behavior with retention for more than 10~4 s and an OFF/ON ratio of approximately 70. The switching mechanism of this Al/TiO_2 nanowire networks/Ti device is suggested to arise from the migration of oxygen vacancies under applied electric field. This provides a facile way to obtain metal oxide nanowire-based Re RAM device in the future.展开更多
A switched system approach is proposed to model networked control systems (NCSs) with communication constraints. This enables us to apply the rich theory of switched systems to analyzing such NCSs. Sufficient condit...A switched system approach is proposed to model networked control systems (NCSs) with communication constraints. This enables us to apply the rich theory of switched systems to analyzing such NCSs. Sufficient conditions are presented on the stabilization of NCSs. Stabilizing state/output feedback controllers can be constructed by using the feasible solutions of some linear matrix inequalities (LMIs). The merit of our proposed approach is that the behavior of the NCSs can be studied by considering switched system without augmenting the system. A simulation example is worked out to illustrate the effectiveness of the proposed approach.展开更多
A parametric Colored Petri net model of the switched Ethernet network with the tree-like topology is developed. The model’s structure is the same for any given network and contains fixed number of nodes. The tree-lik...A parametric Colored Petri net model of the switched Ethernet network with the tree-like topology is developed. The model’s structure is the same for any given network and contains fixed number of nodes. The tree-like topology of a definite network is given as the marking of dedicated places. The model represents a network containing workstations, servers, switches, and provides the evaluation of the network response time. Besides topology, the parameters of the model are performances of hardware and software used within the network. Performance evaluation for the network of the railway dispatcher center is implemented. Topics of the steady-stable condition and the optimal choice of hardware are discussed.展开更多
This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is consid...This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.展开更多
National R&D activities on optical switching networkare introduced. Optical switching network testbedswere established in China including 3T-net andOBS ring and mesh network test-bed with the supportof national ...National R&D activities on optical switching networkare introduced. Optical switching network testbedswere established in China including 3T-net andOBS ring and mesh network test-bed with the supportof national '863' program. As an importantmodule in OPS network, a novel all-optical serialmulticast mode is discussed.展开更多
Pocket Switched Networks(PSN)represent a particular remittent network for direct communication between the handheld mobile devices.Compared to traditional networks,there is no stable topology structure for PSN where t...Pocket Switched Networks(PSN)represent a particular remittent network for direct communication between the handheld mobile devices.Compared to traditional networks,there is no stable topology structure for PSN where the nodes observe the mobility model of human society.It is a kind of Delay Tolerant Networks(DTNs)that gives a description to circulate information among the network nodes by the way of taking the benefit of transferring nodes from one area to another.Considering its inception,there are several schemes for message routing in the infrastructure-less environment in which human mobility is only the best manner to exchange information.For routing messages,PSN uses different techniques such asDistributed Expectation-Based Spatio-Temporal(DEBT)Epidemic(DEBTE),DEBT Cluster(DEBTC),and DEBT Tree(DEBTT).Understanding on how the network environment is affected for these routing strategies are the main motivation of this research.In this paper,we have investigated the impact of network nodes,the message copies per transmission,and the overall carrying out of these routing protocols.ONE simulator was used to analyze those techniques on the basis of delivery,overhead,and latency.The result of this task demonstrates that for a particular simulation setting,DEBTE is the best PSN routing technique among all,against DEBTC and DEBTT.展开更多
A new weighted fair queueing algorithm is proposed, which uses the novel flow-based service ratio parameters to schedule flows. This solves the main drawback of traditional weighted fair queneing algorithms- the packe...A new weighted fair queueing algorithm is proposed, which uses the novel flow-based service ratio parameters to schedule flows. This solves the main drawback of traditional weighted fair queneing algorithms- the packet-based calculation of the weight parameters. In addition, this paper proposes a novel service ratio calculation method and a queue mangement technology. The former adjusts the service ratio parameters adaptively based on the dynamics of the packet lengths and thee solves the unfairness problem induced by the variable packet length. The latter improves the utilization of the server's queue buffer and reduces the delay jitter through restricting the buffer length for each flow.展开更多
This paper is concerned with the global stabilization of state-dependent switching neural networks(SDSNNs)viadiscontinuous event-triggered control with network-induced communication delay.Aiming at decreasing triggeri...This paper is concerned with the global stabilization of state-dependent switching neural networks(SDSNNs)viadiscontinuous event-triggered control with network-induced communication delay.Aiming at decreasing triggering times,a discontinuous event-trigger scheme is utilized to determine whether the sampling information is required to be sent outor not.Meanwhile,under the effect of communication delay,the trigger condition and SDSNNs are transformed into twotractable models by designing a fictitious delay function.Then,using the Lyapunov–Krasovskii stability theory,someinequality estimation techniques,and extended reciprocally convex combination method,two sufficient criteria are established for ensuring the global stabilization of the resulting closed-loop SDSNNs,respectively.A unified framework isderived that has the ability to handle the simultaneous existence of the communication delay,the properties of discontinuousevent-trigger scheme,as well as feedback controller design.Additionally,the developed results demonstrate a quantitativerelationship among the event trigger parameter,communication delay,and triggering times.Finally,two numerical examples are presented to illustrate the usefulness of the developed stabilization scheme.展开更多
In this approach, three typical implementation schemes of self-healing function in VP switches are discussed and three corresponding queue models for backup-VP self-healing algorithm are established. Computer simulati...In this approach, three typical implementation schemes of self-healing function in VP switches are discussed and three corresponding queue models for backup-VP self-healing algorithm are established. Computer simulations are made to these queue models, and detailed analyses are presented to the effect of both the three implementation schemes of self-healing function and some architecture parameters in VP switches on self-healing performance.展开更多
In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the a...In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.展开更多
Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H...Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.展开更多
Network calculus is an evolving new methodology for backlog and delay analysis of packet-switching networks. With network calculus we are able to compute tight bounds on delays,backlogs,and effective bandwidths in a l...Network calculus is an evolving new methodology for backlog and delay analysis of packet-switching networks. With network calculus we are able to compute tight bounds on delays,backlogs,and effective bandwidths in a lossless setting applicable to packet-switching networks and better understand some physical properties of networks. In this paper,the basic network calculus concepts of arrival curves and service curves are introduced.Then we provide the approach for modeling leaky-bucket,generic cell rate algorithm(GCRA),constant bit rate(CBR)flow, variable bit rate(VBR) flow with arrival curve.It is shown that all rate-based packet schedulers can be by a simple rate latency service curve.And by applying these fundamental rules of network calculus,bounds on delay, buffer,effective bandwidth for leaky bucket,GCRA,CBR and VBR can be derived and some practical examples are given.Finally,we compare all the results obtained and conclude this paper.展开更多
文摘Auditory sense is an important way for people to receive and interact with foreign information.In different environment,the auditory sense changes.Therefore,it is necessary to find a detection method that can detect hearing in a timely manner.In this paper,EEG experiments were used to construct and compare brain functional networks in different states,and auditory state models were constructed with different auditory input signals.Secondly,the cross-correlation method is used to slice the signal and construct the adjacency matrix.Louvain community detection algorithm is used to process the data and calculate the network conversion rate under different parameters.It is concluded that the network conversion rate can be used to analyze the temporal variation of auditory information under the condition of controlled parameters.This indicates that the network conversion rate can also be used as a method to analyze auditory signals in the future.
基金supported in part by the National Natural Science Foundation of China(62273255,62350003,62088101)the Shanghai Science and Technology Cooperation Project(22510712000,21550760900)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities
文摘Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP.2/103/46”Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia for funding this research work through project number“NBU-FFR-2025-871-15”funding from Prince Sattam bin Abdulaziz University project number(PSAU/2025/R/1447).
文摘This paper proposes a model-based control framework for vehicle platooning systems with secondorder nonlinear dynamics operating over switching signed networks,time-varying delays,and deception attacks.The study includes two configurations:a leaderless structure using Finite-Time Non-Singular Terminal Bipartite Consensus(FNTBC)and Fixed-Time Bipartite Consensus(FXTBC),and a leader—follower structure ensuring structural balance and robustness against deceptive signals.In the leaderless model,a bipartite controller based on impulsive control theory,gauge transformation,and Markovian switching Lyapunov functions ensures mean-square stability and coordination under deception attacks and communication delays.The FNTBC achieves finite-time convergence depending on initial conditions,while the FXTBC guarantees fixed-time convergence independent of them,providing adaptability to different operating states.In the leader—follower case,a discontinuous impulsive control law synchronizes all followers with the leader despite deceptive attacks and switching topologies,maintaining robust coordination through nonlinear corrective mechanisms.To validate the approach,simulations are conducted on systems of five and seventeen vehicles in both leaderless and leader—follower configurations.The results demonstrate that the proposed framework achieves rapid consensus,strong robustness,and high resistance to deception attacks,offering a secure and scalable model-based control solution for modern vehicular communication networks.
基金supported in part by the National Natural Science Foundation of China under Grants 62103352supported in part by Hebei Natural Science Foundation,China under Grant F2023203056the 8th batch of post-doctoral Innovative Talent Support Program BX20230150.
文摘On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the estimation error cannot be guaranteed to converge to zero.In addition,the state estimator of non-switched neural networks with integral and exponentially convergent terms cannot be used to improve the estimation performance of switched neural networks due to the difficulties caused by the nonsmoothness of the considered Lyapunov function at the switching instants.In this paper,we aim at overcoming such difficulties and filling in the gaps,by proposing a novel adaptive ETS(AETS)to design an event-based H_(∞)switched proportional-integral(PI)state estimator.A triggering-dependent exponential convergence term and an integral term are introduced into the switched PI state estimator.The relationship among the average dwell time,the AETS and the PI state estimator are established by the triggering-dependent exponential convergence term such that estimation error asymptotically converges to zero with H_(∞)performance level.It is shown that the convergence rate of the resultant error system can be adaptively adjusted according to triggering signals.Finally,the validity of the proposed theoretical results is verified through two illustrative examples.
文摘This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking capacity for systems with uncertainties and disturbances. First, SMC discrete equivalent control law is designed on the basis of the nominal model of the system and the adaptive exponential reaching law, and subsequently, stability of the algorithm is analyzed. Second, RBF network is used to f...
基金the National Natural Science Foundation of China (No.60874024, 60574013).
文摘This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.
基金supported by the Natural Sciences and Engineering Research Council(NSERC)of CanadaThe financial support of the State Scholarship Fund of China(No.201506160061)
文摘The resistive switching characteristics of TiO_2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth of the TiO_2 nanowires, making the preparation straightforward. It also acts as a bottom electrode for the device. A top Al electrode was fabricated by e-beam evaporation process. The Al/TiO_2 nanowire networks/Ti device fabricated in this way displayed a highly repeatable and electroforming-free bipolar resistive behavior with retention for more than 10~4 s and an OFF/ON ratio of approximately 70. The switching mechanism of this Al/TiO_2 nanowire networks/Ti device is suggested to arise from the migration of oxygen vacancies under applied electric field. This provides a facile way to obtain metal oxide nanowire-based Re RAM device in the future.
基金This work was supported by the National Natural Science Founda- tion of China (61374078) and Natural Science Foundation Project of Chongqing CSTC (cstc2014jcyjA40014).
基金This work is supported by the National Natural Science Foundation of China (No. 60528007, 10372002, 60274001, 60304003), the National KeyBasic Research and Development Program (No. 2002CB312200).
文摘A switched system approach is proposed to model networked control systems (NCSs) with communication constraints. This enables us to apply the rich theory of switched systems to analyzing such NCSs. Sufficient conditions are presented on the stabilization of NCSs. Stabilizing state/output feedback controllers can be constructed by using the feasible solutions of some linear matrix inequalities (LMIs). The merit of our proposed approach is that the behavior of the NCSs can be studied by considering switched system without augmenting the system. A simulation example is worked out to illustrate the effectiveness of the proposed approach.
文摘A parametric Colored Petri net model of the switched Ethernet network with the tree-like topology is developed. The model’s structure is the same for any given network and contains fixed number of nodes. The tree-like topology of a definite network is given as the marking of dedicated places. The model represents a network containing workstations, servers, switches, and provides the evaluation of the network response time. Besides topology, the parameters of the model are performances of hardware and software used within the network. Performance evaluation for the network of the railway dispatcher center is implemented. Topics of the steady-stable condition and the optimal choice of hardware are discussed.
基金This work was supported by the National Natural Science Foundation of China (No.60574013, 60274009), and the Natural Science Fundation ofLiaoning Province (No.20032020).
文摘This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.
基金supported by the NSFC for Distin guished Young Scholars(No.60325104)NSFC (No.90704006)+4 种基金National 973 Program(No.2007CB310705)National 863 Program(No.2006AA01Z238)PCSIRT(No.IRT0609)ISTCP(No.2006DFA11040)111 Project(No.B07005),P.R.China
文摘National R&D activities on optical switching networkare introduced. Optical switching network testbedswere established in China including 3T-net andOBS ring and mesh network test-bed with the supportof national '863' program. As an importantmodule in OPS network, a novel all-optical serialmulticast mode is discussed.
基金UPNM Grant J0117-UPNM/2016/GPJP/5/ICT/2.The authors fully acknowledged Ministry of Higher Education(MOHE)and National Defence University of Malaysia for the approved fund which makes this important research viable and effective.The authors also would like to thank University Grant Commission of Bangladesh,Comilla University for the financial support.
文摘Pocket Switched Networks(PSN)represent a particular remittent network for direct communication between the handheld mobile devices.Compared to traditional networks,there is no stable topology structure for PSN where the nodes observe the mobility model of human society.It is a kind of Delay Tolerant Networks(DTNs)that gives a description to circulate information among the network nodes by the way of taking the benefit of transferring nodes from one area to another.Considering its inception,there are several schemes for message routing in the infrastructure-less environment in which human mobility is only the best manner to exchange information.For routing messages,PSN uses different techniques such asDistributed Expectation-Based Spatio-Temporal(DEBT)Epidemic(DEBTE),DEBT Cluster(DEBTC),and DEBT Tree(DEBTT).Understanding on how the network environment is affected for these routing strategies are the main motivation of this research.In this paper,we have investigated the impact of network nodes,the message copies per transmission,and the overall carrying out of these routing protocols.ONE simulator was used to analyze those techniques on the basis of delivery,overhead,and latency.The result of this task demonstrates that for a particular simulation setting,DEBTE is the best PSN routing technique among all,against DEBTC and DEBTT.
基金National Natural Science Foundation of China ( No.60572157)Sharp Corporation of Japanthe Hi-Tech Research and Development Program(863) of China (No.2003AA123310)
文摘A new weighted fair queueing algorithm is proposed, which uses the novel flow-based service ratio parameters to schedule flows. This solves the main drawback of traditional weighted fair queneing algorithms- the packet-based calculation of the weight parameters. In addition, this paper proposes a novel service ratio calculation method and a queue mangement technology. The former adjusts the service ratio parameters adaptively based on the dynamics of the packet lengths and thee solves the unfairness problem induced by the variable packet length. The latter improves the utilization of the server's queue buffer and reduces the delay jitter through restricting the buffer length for each flow.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62003194,61973199,61573008,and 61973200).
文摘This paper is concerned with the global stabilization of state-dependent switching neural networks(SDSNNs)viadiscontinuous event-triggered control with network-induced communication delay.Aiming at decreasing triggering times,a discontinuous event-trigger scheme is utilized to determine whether the sampling information is required to be sent outor not.Meanwhile,under the effect of communication delay,the trigger condition and SDSNNs are transformed into twotractable models by designing a fictitious delay function.Then,using the Lyapunov–Krasovskii stability theory,someinequality estimation techniques,and extended reciprocally convex combination method,two sufficient criteria are established for ensuring the global stabilization of the resulting closed-loop SDSNNs,respectively.A unified framework isderived that has the ability to handle the simultaneous existence of the communication delay,the properties of discontinuousevent-trigger scheme,as well as feedback controller design.Additionally,the developed results demonstrate a quantitativerelationship among the event trigger parameter,communication delay,and triggering times.Finally,two numerical examples are presented to illustrate the usefulness of the developed stabilization scheme.
基金Supported by the National Natural Science Foundation of China
文摘In this approach, three typical implementation schemes of self-healing function in VP switches are discussed and three corresponding queue models for backup-VP self-healing algorithm are established. Computer simulations are made to these queue models, and detailed analyses are presented to the effect of both the three implementation schemes of self-healing function and some architecture parameters in VP switches on self-healing performance.
文摘In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.
基金supported by the National Natural Science Foundation of China(61403344)
文摘Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.
基金supported in part by the development Foundation of Southwest Jiaotong Universitythe National Natural Science Foundation of China under Grant No.60572143
文摘Network calculus is an evolving new methodology for backlog and delay analysis of packet-switching networks. With network calculus we are able to compute tight bounds on delays,backlogs,and effective bandwidths in a lossless setting applicable to packet-switching networks and better understand some physical properties of networks. In this paper,the basic network calculus concepts of arrival curves and service curves are introduced.Then we provide the approach for modeling leaky-bucket,generic cell rate algorithm(GCRA),constant bit rate(CBR)flow, variable bit rate(VBR) flow with arrival curve.It is shown that all rate-based packet schedulers can be by a simple rate latency service curve.And by applying these fundamental rules of network calculus,bounds on delay, buffer,effective bandwidth for leaky bucket,GCRA,CBR and VBR can be derived and some practical examples are given.Finally,we compare all the results obtained and conclude this paper.