Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stre...Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a) a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types; (b) a post-peak strength behavior dependent on the minor principal stress, with respect to rock type; (c) sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval). Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D) failure criteria by incorporating intermediate principal stress effects.展开更多
The solar powered systems require high step-up converter for efficient energy transfer.For this,quasi-impedance network converter has been introduced.The quasi-impedance network converter(QZNC)is of two types:type-1 an...The solar powered systems require high step-up converter for efficient energy transfer.For this,quasi-impedance network converter has been introduced.The quasi-impedance network converter(QZNC)is of two types:type-1 and type-2 configuration.Both the type-1 and type-2 QZNC configurations have drooping voltage gain profile due to presence of high switching noise.To overcome this,a new quasi-impedance network converter synchronizing the switching circuit with low frequency noise has been proposed.In this paper,the proposed QZNC con-figuration utilizes the current controlling diode to prevent the output voltage drop.Thus,the suggested topology provides linear high voltage gain profile,low load voltage ripple,and reduced impedance network stress and device stress.There-fore,the efficiency of proposed QZNC has been improved.The topology descrip-tion,working principle,parameter design and comparison with traditional converters are illustrated.Andfinally,both simulation and practical results are presented to confirm the converter characteristics and performance.From the results,it has been found that the performance of the suggested topology is better as it achieves a higher efficiency of 81%and hence,it is suitable for high power applications.展开更多
Phlomis purpurea L.grows spontaneously in dry and stony habitats from the south of Iberian Peninsula and in cork oak(Quercus suber L.)and holm oak(Q.ilex ssp.rotundifolia,Lam.)plantations infested with Phytophthora ci...Phlomis purpurea L.grows spontaneously in dry and stony habitats from the south of Iberian Peninsula and in cork oak(Quercus suber L.)and holm oak(Q.ilex ssp.rotundifolia,Lam.)plantations infested with Phytophthora cinnamomi(Rands).The aim of this study is to understand the genetic basis of P.purpurea innate immunity to this pathogen.The transcriptome analysis of P.purpurea upon challenging with P.cinnamomi revealed a set of up-regulated genes,related to signaling,transcription factors and response to stress.Transcripts involved in the synthesis of a number of proteins,namely:ANKYRIN,AP2,AQUAPORIN,ARMADILLO,At1G69870-LIKE,BHLH,BON1,CALMODULIN,CALNEXIN,CALRETICULINE,CC-NBS-LRR,CHAPERONE,CYTOCHROME,DUF,GH3,GMP,G-TYPE,LIPOXYGENASE,MLO-LIKE,MYB,NAC,NBS-LRR,PENTATRICOPEPTIDE,SUBTILISIN,WAK,bZIP and hormones such as BRASSINOSTEROID,JASMONATE,SALICYLATE,ETHYLENE-RESPONSIVE were identified.P.purpurea ability to cope with P.cinnamomi attack is based on the expression of a set of transcription factors and signaling molecules targeted by the pathogen.The information gathered contributes to the elucidation of the overall response of P.purpurea to P.cinnamomi attempted infection which can be helpful for improving woody species resistance to pathogenic oomycetes.展开更多
As sessile organisms plants must ronmental conditions. To survive cope with ever changing enviplants have evolved elaborate mechanisms to perceive and rapidly respond to a diverse range of abiotic and biotic stresses....As sessile organisms plants must ronmental conditions. To survive cope with ever changing enviplants have evolved elaborate mechanisms to perceive and rapidly respond to a diverse range of abiotic and biotic stresses. Central to this response is the ability to modulate gene expression at both the transcriptional and posttranscriptional levels. This review will focus on recent progress that has been made towards understanding the rapid reprogramming of the transcriptome that occurs in response to stress as well as emerging mechanisms underpinning the reprogramming of gene expression in response to stress,展开更多
In plant immunity, pathogen-activated intracellular nucleotide binding/leucine rich repeat (NLR) receptors mobilize disease resistance pathways, but the downstream signaling mechanisms remain obscure. Enhanced disea...In plant immunity, pathogen-activated intracellular nucleotide binding/leucine rich repeat (NLR) receptors mobilize disease resistance pathways, but the downstream signaling mechanisms remain obscure. Enhanced disease susceptibility 1 (EDS1) controls transcriptional reprogramming in resistance triggered by Toll-lnterleukinl-Receptor domain (TIR)-family NLRs (TNLs). Transcriptional induction of the salicylic acid (SA) hormone defense sector provides one crucial barrier against biotrophic pathogens. Here, we present genetic and molecular evidence that in Arabidopsis an EDS1 complex with its partner PAD4 inhibits MYC2, a master regulator of SA-antagonizing jasmonic acid (JA) hormone pathways. In the TNL immune response, EDSl/PAD4 interference with MYC2 boosts the SA defense sector independently of EDS1-induced SA synthesis, thereby effectively blocking actions of a potent bacterial JA mimic, coronatine (COR). We show that antagonism of MYC2 occurs after COR has been sensed inside the nucleus but before or coincident with MYC2 binding to a target promoter, pANAC019. The stable interaction of PAD4 with MYC2 in planta is competed by EDS1-PAD4 complexes. However, suppression of MYC2-promoted genes requires EDS1 together with PAD4, pointing to an essential EDS1-PAD4 heterodimer activity in MYC2 inhibition. Taken together, these results uncover an immune receptor signaling circuit that intersects with hormone pathway crosstalk to reduce bacterial pathogen growth.展开更多
文摘Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a) a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types; (b) a post-peak strength behavior dependent on the minor principal stress, with respect to rock type; (c) sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval). Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D) failure criteria by incorporating intermediate principal stress effects.
文摘The solar powered systems require high step-up converter for efficient energy transfer.For this,quasi-impedance network converter has been introduced.The quasi-impedance network converter(QZNC)is of two types:type-1 and type-2 configuration.Both the type-1 and type-2 QZNC configurations have drooping voltage gain profile due to presence of high switching noise.To overcome this,a new quasi-impedance network converter synchronizing the switching circuit with low frequency noise has been proposed.In this paper,the proposed QZNC con-figuration utilizes the current controlling diode to prevent the output voltage drop.Thus,the suggested topology provides linear high voltage gain profile,low load voltage ripple,and reduced impedance network stress and device stress.There-fore,the efficiency of proposed QZNC has been improved.The topology descrip-tion,working principle,parameter design and comparison with traditional converters are illustrated.Andfinally,both simulation and practical results are presented to confirm the converter characteristics and performance.From the results,it has been found that the performance of the suggested topology is better as it achieves a higher efficiency of 81%and hence,it is suitable for high power applications.
文摘Phlomis purpurea L.grows spontaneously in dry and stony habitats from the south of Iberian Peninsula and in cork oak(Quercus suber L.)and holm oak(Q.ilex ssp.rotundifolia,Lam.)plantations infested with Phytophthora cinnamomi(Rands).The aim of this study is to understand the genetic basis of P.purpurea innate immunity to this pathogen.The transcriptome analysis of P.purpurea upon challenging with P.cinnamomi revealed a set of up-regulated genes,related to signaling,transcription factors and response to stress.Transcripts involved in the synthesis of a number of proteins,namely:ANKYRIN,AP2,AQUAPORIN,ARMADILLO,At1G69870-LIKE,BHLH,BON1,CALMODULIN,CALNEXIN,CALRETICULINE,CC-NBS-LRR,CHAPERONE,CYTOCHROME,DUF,GH3,GMP,G-TYPE,LIPOXYGENASE,MLO-LIKE,MYB,NAC,NBS-LRR,PENTATRICOPEPTIDE,SUBTILISIN,WAK,bZIP and hormones such as BRASSINOSTEROID,JASMONATE,SALICYLATE,ETHYLENE-RESPONSIVE were identified.P.purpurea ability to cope with P.cinnamomi attack is based on the expression of a set of transcription factors and signaling molecules targeted by the pathogen.The information gathered contributes to the elucidation of the overall response of P.purpurea to P.cinnamomi attempted infection which can be helpful for improving woody species resistance to pathogenic oomycetes.
文摘As sessile organisms plants must ronmental conditions. To survive cope with ever changing enviplants have evolved elaborate mechanisms to perceive and rapidly respond to a diverse range of abiotic and biotic stresses. Central to this response is the ability to modulate gene expression at both the transcriptional and posttranscriptional levels. This review will focus on recent progress that has been made towards understanding the rapid reprogramming of the transcriptome that occurs in response to stress as well as emerging mechanisms underpinning the reprogramming of gene expression in response to stress,
基金This work was funded by The Max Planck Society, an Alexander von Hum-boldt Foundation postdoctoral fellowship, and the National Nature Science Foundation of China (Grant 31770277) (HC), a Chinese Scholarship Council PhD fellowship (CSC) (JQ) and Deutsche Forschungsgemein- schaft SFB 670 grant (JEP, DB).
文摘In plant immunity, pathogen-activated intracellular nucleotide binding/leucine rich repeat (NLR) receptors mobilize disease resistance pathways, but the downstream signaling mechanisms remain obscure. Enhanced disease susceptibility 1 (EDS1) controls transcriptional reprogramming in resistance triggered by Toll-lnterleukinl-Receptor domain (TIR)-family NLRs (TNLs). Transcriptional induction of the salicylic acid (SA) hormone defense sector provides one crucial barrier against biotrophic pathogens. Here, we present genetic and molecular evidence that in Arabidopsis an EDS1 complex with its partner PAD4 inhibits MYC2, a master regulator of SA-antagonizing jasmonic acid (JA) hormone pathways. In the TNL immune response, EDSl/PAD4 interference with MYC2 boosts the SA defense sector independently of EDS1-induced SA synthesis, thereby effectively blocking actions of a potent bacterial JA mimic, coronatine (COR). We show that antagonism of MYC2 occurs after COR has been sensed inside the nucleus but before or coincident with MYC2 binding to a target promoter, pANAC019. The stable interaction of PAD4 with MYC2 in planta is competed by EDS1-PAD4 complexes. However, suppression of MYC2-promoted genes requires EDS1 together with PAD4, pointing to an essential EDS1-PAD4 heterodimer activity in MYC2 inhibition. Taken together, these results uncover an immune receptor signaling circuit that intersects with hormone pathway crosstalk to reduce bacterial pathogen growth.