期刊文献+
共找到1,587篇文章
< 1 2 80 >
每页显示 20 50 100
An Estimation Method for Relationship Strength in Weighted Social Network Graphs 被引量:6
1
作者 Xiang XLin Tao Shang Jianwei Liu 《Journal of Computer and Communications》 2014年第4期82-89,共8页
Previous works mainly focused on estimating direct relationship strength in social networks. If two users are not directly connected in a social network, there is no direct relationship. In order to estimate the relat... Previous works mainly focused on estimating direct relationship strength in social networks. If two users are not directly connected in a social network, there is no direct relationship. In order to estimate the relationship strength between two indirectly connected users as well as directly connected users, this paper proposes an estimation method for relationship strength in weighted social network graphs, which is based on the trust propagation strategy and the estimation of direct relationship strength. Our method considers the length of a relationship path, the number of relationship paths and the edge weights (direct relationship strength) along with a relationship path to estimate the strength of indirect relationship. Then it synthesizes the direct and indirect relationship strength to represent the strength of relationship between two users in social net- works. Thus our method can fully estimate the relationship strength between any two users in a social network no matter whether they are directly connected or not. 展开更多
关键词 SOCIAL networkS RELATIONSHIP strength Estimation
暂未订购
Neural network modeling to evaluate the dynamic flow stress of high strength armor steels under high strain rate compression 被引量:3
2
作者 Ravindranadh BOBBILI V.MADHU A.K.GOGIA 《Defence Technology(防务技术)》 SCIE EI CAS 2014年第4期334-342,共9页
An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) exper... An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures(500e650 C), strains(0.05e0.2) and strain rates(1000e5500/s) are employed to formulate Je C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the Je C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures. 展开更多
关键词 人工神经网络模型 高应变率 高强度 装甲钢 流变应力 可预测性 压缩 评估
在线阅读 下载PDF
Fuzzy neural network analysis on gray cast iron with high tensile strength and thermal conductivity 被引量:2
3
作者 Gui-quan Wang Xiang Chen Yan-xiang Li 《China Foundry》 SCIE 2019年第3期190-197,共8页
To develop a high performance gray cast iron with high tensile strength and thermal conductivity, multivariable analysis of microstructural effects on properties of gray cast iron was performed. The concerned paramete... To develop a high performance gray cast iron with high tensile strength and thermal conductivity, multivariable analysis of microstructural effects on properties of gray cast iron was performed. The concerned parameters consisted of graphite content, maximum graphite length, primary dendrite percentage and microhardness of the matrix. Under the superposed influence of various parameters, the relationships between thermal conductivity and structural characteristics become irregular, as well as the effects of graphite length on the strength. An adaptive neuro-fuzzy inference system was built to link the parameters and properties. A sensitivity test was then performed to rank the relative impact of parameters. It was found that the dominant parameter for tensile strength is graphite content, while the most relative parameter for thermal conductivity is maximum graphite length. The most effective method to simultaneously improve the tensile and thermal conductivity of gray cast iron is to reduce the carbon equivalent and increase the length of graphite flakes. 展开更多
关键词 HIGH performance GRAY CAST iron fuzzy NEURAL network TENSILE strength thermal CONDUCTIVITY
在线阅读 下载PDF
Evolution and spatial characteristics of tourism field strength of cities linked by high-speed rail (HSR) network in China 被引量:7
4
作者 WANG Degen NIU Yu +3 位作者 SUN Feng WANG Kaiyong QIAN Jia LI Feng 《Journal of Geographical Sciences》 SCIE CSCD 2017年第7期835-856,共22页
Traffic is an indispensable prerequisite for a tourism system. The "four vertical and four horizontal" HSR network represents an important milestone of the "traffic revolution" in China. It will affect the spatial... Traffic is an indispensable prerequisite for a tourism system. The "four vertical and four horizontal" HSR network represents an important milestone of the "traffic revolution" in China. It will affect the spatial pattern of tourism accessibility in Chinese cities, thus substan- tially increasing their power to attract tourists and their radiation force. This paper examines the evolution and spatial characteristics of the power to attract tourism of cities linked by China's HSR network by measuring the influence of accessibility of 338 HSR-linked cities using GIS analysis. The results show the following. (1) The accessibility of Chinese cities is optimized by the HSR network, whose spatial pattern of accessibility exhibits an obvious traf- fic direction and causes a high-speed rail-corridor effect. (2) The spatial pattern of tourism field strength in Chinese cities exhibits the dual characteristics of multi-center annular diver- gence and dendritic diffusion. Dendritic diffusion is particularly more obvious along the HSR line. The change rate of urban tourism field strength forms a high-value corridor along the HSR line and exhibits a spatial pattern of decreasing area from the center to the outer limit along the HSR line. (3) The influence of the higher and highest tourism field strength areas along the HSR line is most significant, and the number of cities that distribute into these two types of tourism field strengths significantly increases: their area expands by more than 100% HSR enhances the tourism field strength value of regional central cities, and the radiation range of tourism attraction extends along the HSR line. 展开更多
关键词 high-speed rail network tourism field strength spatial pattern EVOLUTION China
原文传递
Strength dynamics of weighted evolving networks 被引量:1
5
作者 吴建军 高自友 孙会君 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第1期47-50,共4页
In this paper, a simple model for the strength dynamics of weighted evolving networks is proposed to characterize the weighted networks. By considering the congestion effects, this approach can yield power law strengt... In this paper, a simple model for the strength dynamics of weighted evolving networks is proposed to characterize the weighted networks. By considering the congestion effects, this approach can yield power law strength distribution appeared on the many real weighted networks, such as traffic networks, internet networks. Besides, the relationship between strength and degree is given. Numerical simulations indicate that the strength distribution is strongly related to the strength dynamics decline. The model also provides us with a better description of the real weighted networks. 展开更多
关键词 strength dynamics WEIGHTED complex networks
原文传递
Prediction of Sintering Strength for Selective Laser Sintering of Polystyrene Using Artificial Neural Network 被引量:4
6
作者 王传洋 姜宁 +2 位作者 陈再良 陈瑶 董渠 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期825-830,共6页
In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser... In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser sintering( SLS) of polystyrene( PS). Artificial neural network( ANN) methodology is employed to develop mathematical relationships between the process parameters and the output variable of the sintering strength. Experimental data are used to train and test the network. The present neural network model is applied to predicting the experimental outcome as a function of input parameters within a specified range. Predicted sintering strength using the trained back propagation( BP) network model showed quite a good agreement with measured ones. The results showed that the networks had high processing speed,the abilities of error-correcting and self-organizing. ANN models had favorable performance and proved to be an applicable tool for predicting sintering strength SLS of PS. 展开更多
关键词 selective laser sintering(SLS) polystyrene(PS) strength artificial neural network(ANN)
在线阅读 下载PDF
Mass concrete strength assessment method by Sonreb and Core combined method using artificial neural network
7
作者 王浩 宗周红 +1 位作者 胡若玫 张竞男 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期115-120,共6页
The Sonreb and Core (SRC) combined method is proposed to assess the concrete compression strength of mass concrete structures.Artificial neural network is employed together with the SRC combined method to obtain the o... The Sonreb and Core (SRC) combined method is proposed to assess the concrete compression strength of mass concrete structures.Artificial neural network is employed together with the SRC combined method to obtain the optimal core number.The artificial neural network is trained based on data from different testing methods.The procedure of using artificial neural network to assess the concrete strength is described.It proves that the SRC combined method is superior in many aspects and artificial the presented neural network has a high efficiency and reliability.The combined method using artificial intelligence is promising in the strength assessment of mass concrete structures such as the dam,the anchor of the suspension bridge,etc. 展开更多
关键词 REBOUND uitrasonic core. strength assessment: BP neural network
在线阅读 下载PDF
A Double Network Hydrogel with High Mechanical Strength and Shape Memory Properties 被引量:4
8
作者 Lei Zhu Chun-ming Xiong +3 位作者 Xiao-fen Tang Li-jun Wang Kang Peng Hai-yang Yang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第3期350-358,368,共10页
Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into t... Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly. 展开更多
关键词 DOUBLE network HYDROGEL WEAK POLYELECTROLYTE High mechanical strength Shape MEMORY properties
在线阅读 下载PDF
Prediction of the residual strength of clay using functional networks 被引量:6
9
作者 S.Z.Khan Shakti Suman +1 位作者 M.Pavani S.K.Das 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期67-74,共8页
Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of s... Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks(FN) using data available in the literature. The performance of FN was compared with support vector machine(SVM) and artificial neural network(ANN) based on statistical parameters like correlation coefficient(R), Nash–Sutcliff coefficient of efficiency(E), absolute average error(AAE), maximum average error(MAE) and root mean square error(RMSE). Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output. 展开更多
关键词 LANDSLIDES Residual strength Index properties Prediction model Functional networks
在线阅读 下载PDF
Ultimate Compressive Strength Prediction for Stiffened Panels by Counterpropagation Neural Networks(CPN)
10
作者 魏东 张圣坤 《China Ocean Engineering》 SCIE EI 1999年第3期335-342,共8页
Stiffened Panels are important strength members in ship and offshore structures. A new method based on counterpropagation neural networks (CPN) is proposed in this paper to predict the ultimate compressive strength of... Stiffened Panels are important strength members in ship and offshore structures. A new method based on counterpropagation neural networks (CPN) is proposed in this paper to predict the ultimate compressive strength of stiffened panels. Compared with two-parametric polynomial, this method can take more parameters into account and make more use of experimental data. Numerical study is carried out to verify the validation of this method. The new method may find wide application in practical design. 展开更多
关键词 stiffened panels ultimate strength counterpropagation neural networks
在线阅读 下载PDF
Topological probability and connection strength induced activity in complex neural networks
11
作者 韦笃取 张波 +1 位作者 丘东元 罗晓曙 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期204-208,共5页
Recent experimental evidence suggests that some brain activities can be assigned to small-world networks. In this work, we investigate how the topological probability p and connection strength C affect the activities ... Recent experimental evidence suggests that some brain activities can be assigned to small-world networks. In this work, we investigate how the topological probability p and connection strength C affect the activities of discrete neural networks with small-world (SW) connections. Network elements are described by two-dimensional map neurons (2DMNs) with the values of parameters at which no activity occurs. It is found that when the value of p is smaller or larger, there are no active neurons in the network, no matter what the value of connection strength is; for a given appropriate connection strength, there is an intermediate range of topological probability where the activity of 2DMN network is induced and enhanced. On the other hand, for a given intermediate topological probability level, there exists an optimal value of connection strength such that the frequency of activity reaches its maximum. The possible mechanism behind the action of topological probability and connection strength is addressed based on the bifurcation method. Furthermore, the effects of noise and transmission delay on the activity of neural network are also studied. 展开更多
关键词 topological probability small world connections connection strength neural networks activity
原文传递
Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength
12
作者 柴元 陈立群 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期173-178,共6页
In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance princi... In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance principle, a cri- teflon is established by constructing an effective control identification scheme and adjusting automatically the adaptive coupling strength. The proposed control law is applied to a complex community network which is periodically synchro- nized with different chaotic states. Numerical simulations are conducted to demonstrate the feasibility of the proposed method. 展开更多
关键词 community networks periodic synchronization adaptive coupling strength uncertain parameters
原文传递
IMPROVED OXYGEN PERMEABILITY AND MECHANICAL STRENGTH OF SILICONE HYDROGELS WITH INTERPENETRATING NETWORK STRUCTURE
13
作者 Jing-jing Wang Xin-song Li 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2010年第6期849-857,共9页
The interpenetrating polymer network(IPN) silicone hydrogels with improved oxygen permeability and mechanical strength were prepared by UV-initiated polymerization of monomers including methacryloxypropyl tris(trimeth... The interpenetrating polymer network(IPN) silicone hydrogels with improved oxygen permeability and mechanical strength were prepared by UV-initiated polymerization of monomers including methacryloxypropyl tris(trimethylsiloxy)silane(TRIS),2-hydroxyethylmethacrylate(HEMA) and N-vinyl pyrrolidone(NVP) in the presence of free radical photoinitiator and cationic photoinitiator.The polymerization mechanism was investigated by the formation of gel network.The structure of IPN hydrogels was characterized by Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC) and transmission electron microscopy(TEM).The results showed that the IPN hydrogels exhibited a heterogeneous morphology.The mechanical properties,surface wettability and oxygen permeability were examined by using a tensile tester,a contact angle goniometer and an oxygen transmission tester,respectively.The equilibrium water content of the hydrogels was measured by the gravimetric method.The results revealed that the IPN hydrogels possessed hydrophilic surface and high water content.They exhibited improved oxygen permeability and mechanical strength because of the incorporation of TRIS. 展开更多
关键词 Interpenetrating polymer network Silicone hydrogel PHOTOPOLYMERIZATION Oxygen permeability Mechanical strength
原文传递
抑郁障碍和双相障碍患者脑白质网络节点强度差异研究
14
作者 刘海燕 史家波 +3 位作者 花玲玲 阎锐 汤浩 姚志剑 《中国神经精神疾病杂志》 北大核心 2025年第6期321-326,共6页
目的探讨抑郁障碍和双相障碍患者脑白质网络节点强度的差异,分析患者不同脑区的结构连接受损情况及其在鉴别中的作用。方法纳入91例基线诊断为抑郁发作的患者,经过≥9年的自然观察随访后,最终确定23例维持抑郁障碍诊断(单相组)和18例维... 目的探讨抑郁障碍和双相障碍患者脑白质网络节点强度的差异,分析患者不同脑区的结构连接受损情况及其在鉴别中的作用。方法纳入91例基线诊断为抑郁发作的患者,经过≥9年的自然观察随访后,最终确定23例维持抑郁障碍诊断(单相组)和18例维持双相障碍诊断(双相组)的患者纳入分析。同时纳入30名健康对照者(对照组)。受试者在入组时均接受弥散张量成像扫描,采用确定性纤维追踪技术构建脑白质结构加权网络。比较三组间脑白质网络的节点连接强度差异,进一步采用受试者操作特征(receiver operator characteristic,ROC)曲线评估差异脑区对抑郁障碍和双相障碍鉴别诊断的价值。结果双相组在左前扣带回的节点强度较单相组降低(3.89±0.76 vs.4.74±0.60),在右尾状核(4.94±1.26 vs.3.46±0.99)、右苍白球(1.98±0.67 vs.1.25±0.29)的节点强度较单相组升高(P<0.01,FWE校正)。左前扣带回、右尾状核、右苍白球3个脑区的连接强度联合鉴别抑郁障碍和双相障碍绘制ROC曲线,曲线下面积(area under the curve,AUC)为0.95(95%CI:0.91~0.99;P<0.01),敏感度0.89,特异度0.87。结论脑结构网络的节点强度差异可以作为一个潜在的影像学生物标志物识别抑郁障碍和双相障碍,联合差异脑区的节点强度可以得到更好的识别率。 展开更多
关键词 抑郁障碍 双相障碍 弥散张量成像 大脑结构网络 节点强度 ROC曲线 随访研究
暂未订购
基于SSA-BP的孔道压浆料抗压强度预测研究
15
作者 卜良桃 叶好焰 +1 位作者 杜国强 侯琦 《建筑科学与工程学报》 北大核心 2025年第3期115-125,共11页
为实现压浆料抗压强度的精准预测,引入麻雀搜索算法(SSA)优化BP神经网络的初始权重和阈值;设计并开展了表面硬度法与超声法检测试验,以108组试验数据为样本,建立了包含2节点输入层、9节点隐含层与1节点输出层的压浆料抗压强度SSA-BP神... 为实现压浆料抗压强度的精准预测,引入麻雀搜索算法(SSA)优化BP神经网络的初始权重和阈值;设计并开展了表面硬度法与超声法检测试验,以108组试验数据为样本,建立了包含2节点输入层、9节点隐含层与1节点输出层的压浆料抗压强度SSA-BP神经网络预测模型,与BP神经网络、遗传算法(GA)优化后的BP神经网络及测强公式预测结果进行对比;探讨了不同输入参数组合对SSA-BP模型预测效果的影响。结果表明:相比BP模型与GA-BP模型,SSA-BP模型的均方误差(MSE)分别降低了53.23%与26.86%,单次训练时间较GA-BP模型减少了34.40%;相比测强公式,预测值与实测值的判定系数R2从0.937提高至0.975,MSE与平均绝对误差(MAE)分别降低了19.81%与7.20%;单一输入参数的SSA-BP模型误差精度降低,但仍具备良好的泛化能力;SSA-BP模型能够较好挖掘输入、输出参数的数据信息,在拟合优度与预测精度方面比传统方法更有优势,可以准确预测压浆料抗压强度,为孔道压浆料性能预测提供了新方法。 展开更多
关键词 孔道压浆料 麻雀搜索算法 BP神经网络 抗压强度预测 超声法 表面硬度法
在线阅读 下载PDF
双重网络嵌入对新颖性与影响力的作用研究 被引量:3
16
作者 杜美玲 张鹏 +1 位作者 王巍 王海杰 《科学学与科学技术管理》 北大核心 2025年第4期145-164,共20页
新颖性和影响力作为创造力的两个核心特征,是评价研发人员创新绩效的重要标准。现有研究鲜有从合作网络和知识网络双重网络嵌入的理论视角切入,探究新颖性和影响力的形成机制,且少有研究关系、结构嵌入性维度上双重网络的作用机制。因此... 新颖性和影响力作为创造力的两个核心特征,是评价研发人员创新绩效的重要标准。现有研究鲜有从合作网络和知识网络双重网络嵌入的理论视角切入,探究新颖性和影响力的形成机制,且少有研究关系、结构嵌入性维度上双重网络的作用机制。因此,聚焦于合作网络和知识网络构成的双重网络,从关系、结构嵌入性两个维度出发,将研发人员创造力细化为新颖性和影响力两个层面,揭示双重网络嵌入对研发人员创造力的影响机制。基于华为技术有限公司1995—2021年期间23 198名研发人员的58 640条中国专利数据,采用社会网络分析方法和固定效应的负二项回归模型进行实证分析,结果表明:(1)合作网络的关系强度对新颖性与影响力均起到正向作用;(2)合作网络的结构洞对新颖性与影响力均起到正向作用;(3)知识网络的关系强度负向调节合作网络的关系强度与新颖性之间的关系,但正向调节合作网络的关系强度与影响力之间的关系;(4)知识网络的结构洞负向调节合作网络的结构洞与新颖性之间的关系,却正向调节合作网络的结构洞与影响力之间的关系。 展开更多
关键词 双重网络 合作网络 知识网络 关系强度 结构洞 新颖性 影响力
原文传递
基于微观马尔科夫链的企业隐性知识多重网络传播模型研究 被引量:1
17
作者 王筱莉 钱梦迪 +1 位作者 邓思远 赵来军 《昆明理工大学学报(自然科学版)》 北大核心 2025年第3期216-226,共11页
企业隐性知识及其传播是影响企业发展的重要因素.首先,本文考虑关系强度和知识基础对企业隐性知识传播的影响,建立包含显性知识传播网(UAU)、隐性知识传播网(SIR)、员工关系强度网的UAU-SIR多重网络模型;其次,基于微观马尔科夫链方法构... 企业隐性知识及其传播是影响企业发展的重要因素.首先,本文考虑关系强度和知识基础对企业隐性知识传播的影响,建立包含显性知识传播网(UAU)、隐性知识传播网(SIR)、员工关系强度网的UAU-SIR多重网络模型;其次,基于微观马尔科夫链方法构造状态转移树,给出动态转移方程并计算出多重网络模型的传播阈值;最后,运用Matlab软件对模型中的重要参数进行数值仿真分析.研究结果表明:企业中显性知识的传播要早于隐性知识的传播;关系强度对隐性知识传播有更大的影响,强关系更有利于隐性知识传播;调节因子与企业隐性知识传播呈正相关;当隐性知识传播率小于传播阈值时,隐性知识无法在企业中传播开来. 展开更多
关键词 隐性知识 显性知识 关系强度 微观马尔科夫链 多重网络
原文传递
离子交联纳米复合高强度水凝胶的制备与性能 被引量:1
18
作者 游曼可 周卿云 +3 位作者 柴子铧 王大威 吴江渝 曾小平 《复合材料学报》 北大核心 2025年第6期3439-3448,共10页
通过自由基聚合法和盐溶液浸泡法相结合,制备了一种综合性能良好的离子交联纳米复合水凝胶。首先用水溶性短链壳聚糖(CS)改性埃洛石纳米管(HNTs),再与丙烯酰胺(AM)、丙烯酸(AA)等经过热引发自由基聚合得到纳米复合水凝胶基体,随后浸泡Fe... 通过自由基聚合法和盐溶液浸泡法相结合,制备了一种综合性能良好的离子交联纳米复合水凝胶。首先用水溶性短链壳聚糖(CS)改性埃洛石纳米管(HNTs),再与丙烯酰胺(AM)、丙烯酸(AA)等经过热引发自由基聚合得到纳米复合水凝胶基体,随后浸泡Fe(NO_(3))_(3)溶液、Na_(2)SO_(4)溶液,得到力学性能优异、具有独特抗溶胀性且抗冻的离子交联纳米复合水凝胶。FTIR及TEM结果证实形成了CS修饰HNTs的结构,复合水凝胶的SEM结果显示浸泡离子后结构变得更加紧密、孔洞尺寸明显减少。考察了不同含量的AA、HNTs对复合水凝胶力学性能的影响。结果表明:当CS为2wt%,AA占单体总量的12mol%、AM占88mol%,HNTs为3.5wt%且浸泡了Fe^(3+)和SO_(4)^(2-)离子溶液时,水凝胶的综合力学性能最佳,拉伸强度与断裂伸长率分别达到3.96 MPa与553%,85%应变下的抗压强度为13.4 MPa,且经过去离子水浸泡48 h后,拉伸强度增长到5.64MPa,模量高达15 MPa,为设计和开发强韧水凝胶提供了新策略。 展开更多
关键词 埃洛石纳米管 复合水凝胶 离子交联 双网络 高强度
原文传递
基于SSA-GA-BP神经网络的城轨地下线振动源强预测模型 被引量:1
19
作者 刘庆杰 刘博亮 +3 位作者 冯青松 徐璐 罗信伟 刘文武 《铁道科学与工程学报》 北大核心 2025年第5期2355-2366,共12页
为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素... 为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素,利用斯皮尔曼相关系数得到各类影响因素与振动源强的关系强度。分别建立基于卷积神经网络(CNN)、随机森林(RF)、支持向量机(SVM)等5个机器学习模型,对比分析了不同模型对振动源强的预测效果。使用麻雀搜索算法(SSA)和遗传算法(GA)优化BP神经网络模型的结构、超参数、权重及阈值,对比SSA-GA-BP、SSA-BP、GA-BP神经网络对振动源强的预测精度。最终使用4个差异明显且未经模型学习的新断面验证SSA-GA-BP模型的泛化能力。结果表明:5种机器学习模型中BP神经网络的非线性回归拟合能力最强,验证集MAE损失为1.55 dB,决定系数为0.948;SSA-GA-BP模型对振动源强的预测精度高于SSA-BP和GA-BP,验证集MAE、MAPE和决定系数分别为1.289 dB、1.856%和0.967,有80.11%数据的平均绝对误差在2 dB以内;SSA-GA-BP模型对4个经典的新断面数据预测效果良好,4个断面汇总数据的MAE、MSE和MAPE误差值分别为1.21 dB、2.18 dB和1.67%,决定系数为0.977,有70%数据的预测误差在2 dB以内,证明了SSA-GA-BP模型有较强的泛化能力。SSA-GA-BP振源预测模型具有较好的预测精度和快速预测能力,研究可为轨道交通地下线路设计阶段的减振降噪设计提供参考。 展开更多
关键词 城市轨道交通地下线 振动源强 预测 BP神经网络 麻雀搜索算法 遗传算法
在线阅读 下载PDF
基于BP神经网络的机制砂混凝土抗压强度预测 被引量:1
20
作者 张军 崔政新 +1 位作者 裘松立 宋冰泉 《建筑技术》 2025年第1期88-92,共5页
机制砂混凝土强度影响因素复杂,收集国内外权威文献试验数据建立了162组机制砂抗压强度的数据库,利用BP神经网络对机制砂混凝土抗压强度进行预测。采用多层反向传播算法对人工神经网络模型进行训练并预测,发现BP神经网络模型具有良好的... 机制砂混凝土强度影响因素复杂,收集国内外权威文献试验数据建立了162组机制砂抗压强度的数据库,利用BP神经网络对机制砂混凝土抗压强度进行预测。采用多层反向传播算法对人工神经网络模型进行训练并预测,发现BP神经网络模型具有良好的预测和泛化能力,模型的预测值与实测值高度吻合;基于BP神经网络模型分析了石粉含量对机制砂混凝土不同强度等级的影响,发现石粉含量约10%时达到最大值,预测值与实际值的误差在8%以内。深度学习方法可有效提高机制砂混凝土配合比设计的试验效率,降低材料和时间成本。 展开更多
关键词 机制砂混凝土 抗压强度 BP神经网络 石粉含量 配合比设计
在线阅读 下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部