期刊文献+
共找到896篇文章
< 1 2 45 >
每页显示 20 50 100
Slice-Based 6G Network with Enhanced Manta Ray Deep Reinforcement Learning-Driven Proactive and Robust Resource Management
1
作者 Venkata Satya Suresh kumar Kondeti Raghavendra Kulkarni +1 位作者 Binu Sudhakaran Pillai Surendran Rajendran 《Computers, Materials & Continua》 2025年第9期4973-4995,共23页
Next-generation 6G networks seek to provide ultra-reliable and low-latency communications,necessitating network designs that are intelligent and adaptable.Network slicing has developed as an effective option for resou... Next-generation 6G networks seek to provide ultra-reliable and low-latency communications,necessitating network designs that are intelligent and adaptable.Network slicing has developed as an effective option for resource separation and service-level differentiation inside virtualized infrastructures.Nonetheless,sustaining elevated Quality of Service(QoS)in dynamic,resource-limited systems poses significant hurdles.This study introduces an innovative packet-based proactive end-to-end(ETE)resource management system that facilitates network slicing with improved resilience and proactivity.To get around the drawbacks of conventional reactive systems,we develop a cost-efficient slice provisioning architecture that takes into account limits on radio,processing,and transmission resources.The optimization issue is non-convex,NP-hard,and requires online resolution in a dynamic setting.We offer a hybrid solution that integrates an advanced Deep Reinforcement Learning(DRL)methodology with an Improved Manta-Ray Foraging Optimization(ImpMRFO)algorithm.The ImpMRFO utilizes Chebyshev chaotic mapping for the formation of a varied starting population and incorporates Lévy flight-based stochastic movement to avert premature convergence,hence facilitating improved exploration-exploitation trade-offs.The DRL model perpetually acquires optimum provisioning strategies via agent-environment interactions,whereas the ImpMRFO enhances policy performance for effective slice provisioning.The solution,developed in Python,is evaluated across several 6G slicing scenarios that include varied QoS profiles and traffic requirements.The DRL model perpetually acquires optimum provisioning methods via agent-environment interactions,while the ImpMRFO enhances policy performance for effective slice provisioning.The solution,developed in Python,is evaluated across several 6G slicing scenarios that include varied QoS profiles and traffic requirements.Experimental findings reveal that the proactive ETE system outperforms DRL models and non-resilient provisioning techniques.Our technique increases PSSRr,decreases average latency,and optimizes resource use.These results demonstrate that the hybrid architecture for robust,real-time,and scalable slice management in future 6G networks is feasible. 展开更多
关键词 sliced network manta ray foraging optimization Chebyshev chaotic map levy flight
在线阅读 下载PDF
Slice-GCN:基于程序切片与图神经网络的智能合约漏洞检测方法
2
作者 张人娄 吴胜 +1 位作者 张浩 刘方宇 《信息安全学报》 2025年第1期105-118,共14页
智能合约是一段由计算机代码构成的程序。随着智能合约数量的暴涨,如何利用漏洞检测方法来提升智能合约的安全性显得更加重要。已有的符号执行、模糊测试与形式化验证等漏洞检测方法自动化程度低,而基于序列模型的深度学习方法由于对智... 智能合约是一段由计算机代码构成的程序。随着智能合约数量的暴涨,如何利用漏洞检测方法来提升智能合约的安全性显得更加重要。已有的符号执行、模糊测试与形式化验证等漏洞检测方法自动化程度低,而基于序列模型的深度学习方法由于对智能合约源代码的特征挖掘不足导致检测结果的精度偏低。因此,本文提出一个基于程序切片与图神经网络的以太坊智能合约(简称智能合约)漏洞检测方法Slice-GCN。该方法先对程序进行代码预处理简化程序,再使用基于图可达性和数据流方程的程序切片方法对预处理后的程序进行切片,并将切片结果输入长短期记忆网络(LSTM)中提取智能合约的程序语义特征。接着,简化程序依赖图后将其输入图卷积神经网络中,并提取智能合约的程序结构特征。然后,将智能合约的程序语义特征和结构特征拼接后输入多层感知机(MLP)中,并对智能合约进行漏洞检测。在提出Slice-GCN方法的基础上,针对重入攻击、时间戳依赖及整数溢出三类漏洞,本文对Slice-GCN方法与Oyente、Osiris和Soliditycheck三款智能漏洞检测工具进行了对比实验,并且通过消融实验分析了程序切片、图神经网络及图收缩比例对实验结果的影响。实验结果表明本文提出的方法在各类指标上均有较大提升,能有效提升检测准确度和精度,降低误报率,同时在检测速度上也明显优于传统的智能合约漏洞检测工具。 展开更多
关键词 智能合约 漏洞检测 图神经网络 程序切片
在线阅读 下载PDF
Ensemble Encoder-Based Attack Traffic Classification for Secure 5G Slicing Networks
3
作者 Min-Gyu Kim Hwankuk Kim 《Computer Modeling in Engineering & Sciences》 2025年第5期2391-2415,共25页
This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method u... This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks. 展开更多
关键词 5G slicing networks attack traffic classification ensemble encoders autoencoder AI-based security
在线阅读 下载PDF
An Intelligent Admission Control Scheme for Dynamic Slice Handover Policy in 5G Network Slicing
4
作者 Ratih Hikmah Puspita Jehad Ali Byeong-hee Roh 《Computers, Materials & Continua》 SCIE EI 2023年第5期4611-4631,共21页
5G use cases,for example enhanced mobile broadband(eMBB),massive machine-type communications(mMTC),and an ultra-reliable low latency communication(URLLC),need a network architecture capable of sustaining stringent lat... 5G use cases,for example enhanced mobile broadband(eMBB),massive machine-type communications(mMTC),and an ultra-reliable low latency communication(URLLC),need a network architecture capable of sustaining stringent latency and bandwidth requirements;thus,it should be extremely flexible and dynamic.Slicing enables service providers to develop various network slice architectures.As users travel from one coverage region to another area,the callmust be routed to a slice thatmeets the same or different expectations.This research aims to develop and evaluate an algorithm to make handover decisions appearing in 5G sliced networks.Rules of thumb which indicates the accuracy regarding the training data classification schemes within machine learning should be considered for validation and selection of the appropriate machine learning strategies.Therefore,this study discusses the network model’s design and implementation of self-optimization Fuzzy Qlearning of the decision-making algorithm for slice handover.The algorithm’s performance is assessed by means of connection-level metrics considering the Quality of Service(QoS),specifically the probability of the new call to be blocked and the probability of a handoff call being dropped.Hence,within the network model,the call admission control(AC)method is modeled by leveraging supervised learning algorithm as prior knowledge of additional capacity.Moreover,to mitigate high complexity,the integration of fuzzy logic as well as Fuzzy Q-Learning is used to discretize state and the corresponding action spaces.The results generated from our proposal surpass the traditional methods without the use of supervised learning and fuzzy-Q learning. 展开更多
关键词 5g network slice fuzzy q-Learning slice handover
在线阅读 下载PDF
Research on Data Privacy Protection Algorithm with Homomorphism Mechanism Based on Redundant Slice Technology in Wireless Sensor Networks 被引量:6
5
作者 Peng Li Chao Xu +2 位作者 He Xu Lu Dong Ruchuan Wang 《China Communications》 SCIE CSCD 2019年第5期158-170,共13页
Wireless transmission method in wireless sensor networks has put forward higher requirements for private protection technology. According to the packet loss problem of private protection algorithm based on slice techn... Wireless transmission method in wireless sensor networks has put forward higher requirements for private protection technology. According to the packet loss problem of private protection algorithm based on slice technology, this paper proposes the data private protection algorithm with redundancy mechanism, which ensures privacy by privacy homomorphism mechanism and guarantees redundancy by carrying hidden data. Moreover,it selects the routing tree generated by CTP(Collection Tree Protocol) as routing path for data transmission. By dividing at the source node, it adds the hidden information and also the privacy homomorphism. At the same time,the information feedback tree is established between the destination node and the source node. In addition, the destination node immediately sends the packet loss information and the encryption key via the information feedback tree to the source node. As a result,it improves the reliability and privacy of data transmission and ensures the data redundancy. 展开更多
关键词 wireless sensor network PRIVACY PROTECTION slice TECHNOLOGY PRIVACY HOMOMORPHISM collection tree protocol
在线阅读 下载PDF
Demand Prediction Based Slice Reconfiguration Using Dueling Deep Q-Network
6
作者 Wanqing Guan Haijun Zhang 《China Communications》 SCIE CSCD 2022年第5期267-285,共19页
To satisfy diversified service demands of vertical industries,network slicing enables efficient resource allocation of a common infrastructure by creating isolated logical networks.However,uncertainty and dynamics of ... To satisfy diversified service demands of vertical industries,network slicing enables efficient resource allocation of a common infrastructure by creating isolated logical networks.However,uncertainty and dynamics of service demands will cause performance degradation.Due to operation costs and resource constraints,it is challenging to maintain high quality of user experience while obtaining high revenue for service providers(SPs).This paper develops an optimal and fast slice reconfiguration(OFSR)framework based on reinforcement learning,where a novel scheme is proposed to offer optimal decisions for reconfiguring diverse slices.A demand prediction model is proposed to capture changes in resource requirements,based on which the OFSR scheme is triggered to determine whether to perform slice reconfiguration.Considering the large state and action spaces generated from uncertain service time and resource requirements,deep dueling architecture is adopted to improve the convergence rate.Extensive simulations validate the effectiveness of the proposed framework in achieving higher long-term revenue for SPs. 展开更多
关键词 network slicing slice reconfiguration reinforcement learning resource allocation
在线阅读 下载PDF
Incentive Scheme for Slice Cooperation Based on D2D Communication in 5G Networks 被引量:5
7
作者 Qian Sun Lin Tian +2 位作者 Yiqing Zhou Jinglin Shi Zongshuai Zhang 《China Communications》 SCIE CSCD 2020年第1期28-41,共14页
In the 5th generation(5G)wireless communication networks,network slicing emerges where network operators(NPs)form isolated logical slices by the same cellular network infrastructure and spectrum resource.In coverage r... In the 5th generation(5G)wireless communication networks,network slicing emerges where network operators(NPs)form isolated logical slices by the same cellular network infrastructure and spectrum resource.In coverage regions of access points(APs)shared by slices,device to device(D2D)communication can occur among different slices,i.e.,one device acts as D2D relay for another device serving by a different slice,which is defined as slice cooperation in this paper.Since selfish slices will not help other slices by cooperation voluntarily and unconditionally,this paper designs a novel resource allocation scheme to stimulate slice cooperation.The main idea is to encourage slice to perform cooperation for other slices by rewarding it with higher throughput.The proposed incentive scheme for slice cooperation is formulated by an optimal problem,where cooperative activities are introduced to the objective function.Since optimal solutions of the formulated problem are long term statistics,though can be obtained,a practical online slice scheduling algorithm is designed,which can obtain optimal solutions of the formulated maximal problem.Lastly,the throughput isolation indexes are defined to evaluate isolation performance of slice.According to simulation results,the proposed incentive scheme for slice cooperation can stimulate slice cooperation effectively,and the isolation of slice is also simulated and discussed. 展开更多
关键词 slice cooperation incentive cooperation resource allocation for slice slice scheduling wireless communication networks
在线阅读 下载PDF
Resource Allocation for Cognitive Network Slicing in PD-SCMA System Based on Two-Way Deep Reinforcement Learning
8
作者 Zhang Zhenyu Zhang Yong +1 位作者 Yuan Siyu Cheng Zhenjie 《China Communications》 SCIE CSCD 2024年第6期53-68,共16页
In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Se... In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users. 展开更多
关键词 cognitive radio deep reinforcement learning network slicing power-domain non-orthogonal multiple access resource allocation
在线阅读 下载PDF
Strengthening network slicing for Industrial Internet with deep reinforcement learning
9
作者 Yawen Tan Jiadai Wang Jiajia Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第4期863-872,共10页
Industrial Internet combines the industrial system with Internet connectivity to build a new manufacturing and service system covering the entire industry chain and value chain.Its highly heterogeneous network structu... Industrial Internet combines the industrial system with Internet connectivity to build a new manufacturing and service system covering the entire industry chain and value chain.Its highly heterogeneous network structure and diversified application requirements call for the applying of network slicing technology.Guaranteeing robust network slicing is essential for Industrial Internet,but it faces the challenge of complex slice topologies caused by the intricate interaction relationships among Network Functions(NFs)composing the slice.Existing works have not concerned the strengthening problem of industrial network slicing regarding its complex network properties.Towards this end,we aim to study this issue by intelligently selecting a subset of most valuable NFs with the minimum cost to satisfy the strengthening requirements.State-of-the-art AlphaGo series of algorithms and the advanced graph neural network technology are combined to build the solution.Simulation results demonstrate the superior performance of our scheme compared to the benchmark schemes. 展开更多
关键词 Industrial Internet network slicing Deep reinforcement learning Graph neural network
在线阅读 下载PDF
基于差异性隔离和复用的网络切片无线资源分配方案 被引量:4
10
作者 孙君 霭振宇 《通信学报》 北大核心 2025年第3期109-121,共13页
为研究网络切片无线资源复用,同时考虑复用、隔离和优先级三者之间的权衡问题,提出了一种基于差异性隔离和复用的网络切片无线资源分配方案。在现有文献成果基础上,重新定义复用增益和隔离因子2个参数,以复用增益和隔离因子构建加权和函... 为研究网络切片无线资源复用,同时考虑复用、隔离和优先级三者之间的权衡问题,提出了一种基于差异性隔离和复用的网络切片无线资源分配方案。在现有文献成果基础上,重新定义复用增益和隔离因子2个参数,以复用增益和隔离因子构建加权和函数,并引入切片优先级。为求解优化问题设计了复用隔离优先级无线接入(MIPWA)算法,该算法基于改进的遗传算法(GA),引入矩阵编码、轮盘赌选择和最优保留方法来解决问题。结果表明,MIPWA算法使切片1、切片2和切片3的隔离性能分别提高了66.37%、52.73%和21.16%,复用增益仅损失了5.82%、3.86%和3.50%。与仅考虑隔离的算法相比,复用增益分别提高了65.35%、52.74%和22.81%,隔离增益仅损失了2.85%、3.85%和1.86%。以复用增益为例,3个切片下MIPWA算法的优化结果要比传统GA分别高出5.07%、1.81%和1.4%。 展开更多
关键词 网络切片 资源分配 无线资源隔离 无线资源复用 矩阵编码
在线阅读 下载PDF
基于多时间尺度协同的无蜂窝RAN切片资源分配算法
11
作者 夏玮玮 王博业 +5 位作者 夏雅星 缪巍巍 汪大洋 景栋盛 燕锋 沈连丰 《通信学报》 北大核心 2025年第7期60-77,共18页
针对6G无蜂窝无线接入网切片资源分配在业务动态变化时难以保障用户服务质量的问题,提出了一种基于多时间尺度协同优化的资源分配算法。首先,将大时间尺度的面向切片的资源配置问题构建为基于均方误差最小化且以用户平均时延为约束的资... 针对6G无蜂窝无线接入网切片资源分配在业务动态变化时难以保障用户服务质量的问题,提出了一种基于多时间尺度协同优化的资源分配算法。首先,将大时间尺度的面向切片的资源配置问题构建为基于均方误差最小化且以用户平均时延为约束的资源需求预测模型,并通过长短期记忆时序预测网络实现切片资源的精准配置。其次,将小时间尺度的面向用户的资源分配问题构建为最大化系统效用,同时保障用户传输速率服务质量指标的资源分配模型。最后,通过引入基于多智能体协作的近端策略优化算法进行资源的动态分配与实时调整。仿真结果表明,所提算法能够实现切片资源需求的准确预测,有效提高系统传输速率,降低用户平均时延和业务阻塞率。 展开更多
关键词 无蜂窝 网络切片 资源分配 多时间尺度 多智能体强化学习
在线阅读 下载PDF
一种面向物联网的网络切片动态资源分配算法 被引量:1
12
作者 李中捷 潘麒名 姜家祥 《中南民族大学学报(自然科学版)》 2025年第5期639-646,共8页
针对物联网(Internet of Things,IoT)场景下具有差异化资源需求的网络服务资源分配问题,提出了一种将网络切片技术(Network Slicing,NS)与确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)相结合的动态切片资源分配算法(Dynami... 针对物联网(Internet of Things,IoT)场景下具有差异化资源需求的网络服务资源分配问题,提出了一种将网络切片技术(Network Slicing,NS)与确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)相结合的动态切片资源分配算法(Dynamic Slicing Resource Allocation,DSRA).该算法根据切片上不同设备的资源需求,动态分配虚拟化的无线接入网资源,以满足设备资源需求并最小化系统总成本.仿真实验对比分析了所提出的算法与四种基线算法在服务质量(Quality of Service,QoS)满意率和系统总成本的表现.仿真结果表明:在具备多种资源与大量设备的场景中,所提出的算法与基线算法相比,能够显著提高设备的QoS水平,并降低系统的总成本. 展开更多
关键词 物联网 网络切片 资源分配 深度强化学习
在线阅读 下载PDF
基于异构图神经网络的网络切片端到端时延估计
13
作者 胡海峰 朱漪雯 赵海涛 《计算机科学》 北大核心 2025年第3期349-358,共10页
端到端时延作为网络切片重要的性能指标,在切片部署中因受到网络拓扑、流量模型和调度策略等影响,很难通过建模方式进行准确预测。为了解决上述问题,提出基于异构图神经网络的网络切片时延预测(Heterogeneous Graph Neural Network-Base... 端到端时延作为网络切片重要的性能指标,在切片部署中因受到网络拓扑、流量模型和调度策略等影响,很难通过建模方式进行准确预测。为了解决上述问题,提出基于异构图神经网络的网络切片时延预测(Heterogeneous Graph Neural Network-Based Network Slicing Latency Prediction,HGNN)算法。首先,构建了切片-队列-链路的分层异构图,实现了切片的分层特征表达。然后,针对分层图中切片、队列和链路3种类型节点的属性特点,使用异构图神经网络挖掘拓扑动态变化、边特征信息和长依赖关系等和切片相关的底层特征,即分别选用GraphSAGE图神经网络、EGRET图神经网络和门控循环单元GRU来提取切片、队列和链路特征。同时,利用基于异构图神经网络的深度回归实现了网络切片特征表达的更新迭代和切片时延的准确预测。最后,通过构建基于OMNeT++的不同拓扑结构、流量模型和调度策略的切片数据库,验证了HGNN在实际网络场景下对切片端到端时延预测的有效性,并通过对比多种基于图深度学习的切片时延预测算法,进一步验证了HGNN在时延预测准确度和泛化性方面的优越性。 展开更多
关键词 网络切片 异构图神经网络 时延预测 深度回归
在线阅读 下载PDF
卫星通信多场景网络切片服务构建技术研究
14
作者 常鑫 闫宇晗 +1 位作者 曾超 刘丽华 《航天技术与工程学报》 2025年第2期20-30,共11页
随着卫星互联网时代的到来,传统卫星通信运营商面临服务模式单一化与用户场景多元化不相匹配的矛盾。针对多场景应用需求下服务质量保障不足的突出问题,提出卫星通信差异化网络切片服务解决方案。参照5G移动通信网针对增强型移动宽带(eM... 随着卫星互联网时代的到来,传统卫星通信运营商面临服务模式单一化与用户场景多元化不相匹配的矛盾。针对多场景应用需求下服务质量保障不足的突出问题,提出卫星通信差异化网络切片服务解决方案。参照5G移动通信网针对增强型移动宽带(eMBB)、超高可靠超低时延通信(uRLLC)、海量机器类通信(mMTC)三大应用场景的网络切片解决方案,梳理了5个卫星通信典型应用场景,提出了利用网络功能虚拟化(NFV)、网络切片技术构建卫星通信网络切片服务,满足多场景典型应用的技术方案构想,对卫星通信网络架构、网络切片要素、网络切片编排进行了详细描述。通过网络切片编排模型仿真,验证了卫星通信网络按需重组构建多类逻辑网络,以及对多场景应用的支持能力。在当前卫星通信资源极大丰富的条件下,可为后续扩展多场景卫星通信业务,建立良好的应用生态提供参考。 展开更多
关键词 卫星通信 网络切片 网络功能虚拟化(NFV) 核心网虚拟化 接入网虚拟化 承载网虚拟化 多场景应用
在线阅读 下载PDF
基于深度强化学习的工业SDN网络切片资源分配
15
作者 张晓莉 雷雨声 +1 位作者 刘夏茜 王斌 《电讯技术》 北大核心 2025年第8期1221-1230,共10页
针对工业物联网中业务需求多样性和服务质量(Quality of Service,QoS)要求差异性导致的网络资源利用低问题,提出一种基于深度强化学习的网络切片资源分配策略。该策略运用深度强化学习优化网络切片资源分配的准入控制,通过智能体在特定... 针对工业物联网中业务需求多样性和服务质量(Quality of Service,QoS)要求差异性导致的网络资源利用低问题,提出一种基于深度强化学习的网络切片资源分配策略。该策略运用深度强化学习优化网络切片资源分配的准入控制,通过智能体在特定时间窗口内处理资源请求,并根据不同网络切片的QoS要求及请求准入结果进行资源的动态分配。实验结果表明,所提策略相比基准算法在提高网络收益、资源利用率和接收率方面分别提升了8.33%、9.84%和8.57%。该策略能够在保证服务质量的同时提高整个网络的效率和性能。 展开更多
关键词 工业物联网(IIOT) 软件定义网络 网络切片 资源分配 准入控制 深度强化学习
在线阅读 下载PDF
基于新型城域网构建教育专网的应用
16
作者 郭泓伟 《江苏通信》 2025年第3期34-37,49,共5页
本应用以新型城域网为基础,结合网络切片、随流检测等“IPv6+”新技术构建了新型教育专网,其在关键业务保障、可视化运维、安全防护等能力方面均得到有效提升,可满足教育信息化水平不断深入推进的要求。同时,以教育专网应用形成的切片... 本应用以新型城域网为基础,结合网络切片、随流检测等“IPv6+”新技术构建了新型教育专网,其在关键业务保障、可视化运维、安全防护等能力方面均得到有效提升,可满足教育信息化水平不断深入推进的要求。同时,以教育专网应用形成的切片专网解决方案实现了新型城域网端到端网络切片能力输出,可大幅降低行业专网建设与运维成本,支撑各行业的数字化转型。 展开更多
关键词 教育专网 IPv6+ 网络切片 随流检测 新型城域网
在线阅读 下载PDF
基于5G无线通信的配电网电流差动保护系统设计 被引量:4
17
作者 冯兴隆 孔锋峰 +2 位作者 霍凯龙 周国华 赵舫 《电测与仪表》 北大核心 2025年第1期116-123,共8页
以快速实现配电网电流保护,避免出现误动或拒动问题为目的,设计基于5G无线通信的配电网电流差动保护系统。随着5G通信技术的发展,其特有的高可靠性、超低时延等特性,使其成为配电网差动保护的理想通信方式。通过对5G网络构建切片,可以... 以快速实现配电网电流保护,避免出现误动或拒动问题为目的,设计基于5G无线通信的配电网电流差动保护系统。随着5G通信技术的发展,其特有的高可靠性、超低时延等特性,使其成为配电网差动保护的理想通信方式。通过对5G网络构建切片,可以使5G端到端平均时延达到10 ms以内,可有效满足配电网的差动保护需求。数据采集模块通过电流互感器采集配电网两侧各相电流与零序电流信息,将采集到的信息传输至差动保护模块,根据数字信号处理(digital signal processing,DSP)控制器运算的差动保护动作,判据完成配电网电流差动保护与相关自动化功能;对时模块接收北斗/GPS卫星对时,以此辅助变电站与开闭所两侧差动保护模块同步采样。5G CPE(central processing element)通信模组利用5G无线通信网络,通过集中式的网络切片跨区域映射的网络架构实现数据的传输与收发。在配电网产生区域故障的条件下,两个差动保护模块内的差动保护逻辑分别动作,保护动作出口,完成配电网电流差动保护。实验结果显示,文中系统的全部测试结果均达到预期测试的目标,并且在过渡电阻值较高的条件下,该系统仍然以较快的速度准确完成动作。 展开更多
关键词 5G无线通信 电流差动保护 动作判据 网络切片 跨域映射
在线阅读 下载PDF
基于生成对抗网络辅助多智能体强化学习的边缘计算网络联邦切片资源管理 被引量:2
18
作者 林艳 夏开元 张一晋 《电子与信息学报》 北大核心 2025年第3期666-677,共12页
为满足动态边缘计算网络场景下用户差异化服务需求,该文提出一种基于生成对抗网络(GAN)辅助多智能体强化学习(RL)的联邦切片资源管理方案。首先,考虑未知时变信道和随机用户流量到达的场景,以同时优化长期平均服务等待时延和服务满意率... 为满足动态边缘计算网络场景下用户差异化服务需求,该文提出一种基于生成对抗网络(GAN)辅助多智能体强化学习(RL)的联邦切片资源管理方案。首先,考虑未知时变信道和随机用户流量到达的场景,以同时优化长期平均服务等待时延和服务满意率为目标,构建联合带宽和计算切片资源管理优化问题,并进一步建模为分布式部分可观测马尔可夫决策过程(Dec-POMDP)。其次,运用多智能体竞争双深度Q网络(D3QN)方法,结合GAN算法对状态值分布多模态学习的优势,以及利用联邦学习框架促使智能体合作学习,最终实现仅需共享各智能体生成网络加权参数即可完成切片资源管理协同决策。仿真结果表明,所提方案相较于基准方案能够在保护用户隐私的前提下,降低用户平均服务等待时延28%以上,且同时提升用户平均服务满意率8%以上。 展开更多
关键词 边缘计算 网络切片 多智能体强化学习 联邦学习 生成对抗网络
在线阅读 下载PDF
5G网络切片技术在远程医学教育中的应用研究 被引量:1
19
作者 张文雷 郭继成 汪海峰 《电脑与信息技术》 2025年第1期142-146,共5页
随着5G技术的迅猛发展,其在教育领域的潜力日益凸显。着重分析了5G的高速传输率、低时延和广泛连接性等核心特性,并探讨了网络切片技术在提升资源管理和服务质量方面的优势。通过构建5G网络切片支持的医学远程教育模型,运用模拟实验和... 随着5G技术的迅猛发展,其在教育领域的潜力日益凸显。着重分析了5G的高速传输率、低时延和广泛连接性等核心特性,并探讨了网络切片技术在提升资源管理和服务质量方面的优势。通过构建5G网络切片支持的医学远程教育模型,运用模拟实验和案例分析对不同教学场景下的技术性能进行评估。结果表明,5G网络切片能够有效满足高清视频、实时互动和远程操控等需求,为医学远程教育提供个性化服务。进一步提出了一系列优化措施,旨在增强网络效率和优化教学体验,构建一个沉浸式的学习环境,从而激发学生的主动学习意愿。 展开更多
关键词 5G 网络切片 医学远程教育
在线阅读 下载PDF
面向工业互联网的5G专网部署技术及组网研究 被引量:3
20
作者 朱瑾瑜 黄颖 毕雅晴 《通信技术》 2025年第1期1-8,共8页
随着工业企业数字化转型进程的加快,面向互联网的新型应用层出不穷,5G专网作为支撑这一趋势的新型基础设施,其建设开始步入部署规模化、需求定制化的阶段。5G专网组网方案的规划设计应充分考虑不同工业场景的需求,灵活利用切片、用户端... 随着工业企业数字化转型进程的加快,面向互联网的新型应用层出不穷,5G专网作为支撑这一趋势的新型基础设施,其建设开始步入部署规模化、需求定制化的阶段。5G专网组网方案的规划设计应充分考虑不同工业场景的需求,灵活利用切片、用户端口功能(User Port Function,UPF)分流、5G局域网(Local Area Network,LAN)等关键技术,结合虚拟专网、混合专网、物理专网等部署方式来综合制定,为5G进一步融入行业,成为赋能工业生产的关键基础设施提供支持。 展开更多
关键词 工业互联网 5G专网 5G局域网 UPF分流 网络切片 5G TSN
在线阅读 下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部