In the context of the information age,on the basis of the convenience of computer networks,security issues have gradually emerged.The data encryption technology is reasonably applied in the process of computer network...In the context of the information age,on the basis of the convenience of computer networks,security issues have gradually emerged.The data encryption technology is reasonably applied in the process of computer network security practice,which promotes the safe and reliable operation of the computer network to a certain extent.Based on this,our article regards data encryption technology as the main research object,focusing on its specific application in computer network security.展开更多
When integrating data encryption technology into the security management of computer network communication, it is necessary to select the corresponding technical scheme according to the characteristics of the current ...When integrating data encryption technology into the security management of computer network communication, it is necessary to select the corresponding technical scheme according to the characteristics of the current network environment, clarify the types and application characteristics of security protection technology, improve the security management mode, and prevent people from using computers. The current security management scheme is gradually improved, so that the application advantages of data encryption technology can be fully highlighted and peoples information security can be maintained.展开更多
After an introduction to the implementation of supervisory computer control (SCC) through networks and the relevant security issues, this paper centers on the core of network security design: intelligent front-end pro...After an introduction to the implementation of supervisory computer control (SCC) through networks and the relevant security issues, this paper centers on the core of network security design: intelligent front-end processor (FEP), encryption/decryption method and authentication protocol. Some other system-specific security measures are also proposed. Although these are examples only, the techniques discussed can also be used in and provide reference for other remote control systems.展开更多
There have been various security measures that deal with data security in wired or wireless network, where these measures help to make sure that data from one point to another is intact, by identifying, authenticating...There have been various security measures that deal with data security in wired or wireless network, where these measures help to make sure that data from one point to another is intact, by identifying, authenticating, authorizing the right users and also encrypting the data over the network. Data communication between computers has brought about countless benefits to users, but the same information technologies have created a gap, a vulnerable space in the communication medium, where the data that’s been exchanged or transferred, thereby causing threats to the data. Especially data on wireless networks are much exposed to threats since the network has been broadcasted unlike a wired network. Data security in the past dealth with integrity, confidentiality and ensuring authorized usage of the data and the system. Less or no focus was placed on the reactive approach or measures to data security which is capable of responding properly to mitigate an attacker and avoid harm and also to prevent future attacks. This research is going to expose the mechanisms and measures of data security in wireless networks from the reactive security approaches point of view and exposes the reactive approaches used to enhance data security.展开更多
The key exposure problem is a practical threat for many security applications. In wireless sensor networks (WSNs), keys could be compromised easily due to its limited hardware protections. A secure group key managemen...The key exposure problem is a practical threat for many security applications. In wireless sensor networks (WSNs), keys could be compromised easily due to its limited hardware protections. A secure group key management scheme is responsible for secure distributing group keys among valid nodes of the group. Based on the key-insulated encryption (KIE), we propose a group key management scheme (KIE-GKMS), which integrates the pair-wise key pre-distribution for WSN. The KIE-GKMS scheme updates group keys dynamically when adding or removing nodes. Moreover, the security analysis proves that the KIE-GKMS scheme not only obtains the semantic security, but also provides the forward and backward security. Finally, the theoretical analysis shows that the KIE-GKMS scheme has constant performance on both communication and storage costs in sensor nodes.展开更多
In wireless sensor networks, secure data aggregation protocols target the two major objectives, namely, security and en route aggregation. Although en route aggregation of reverse multi-cast traffic improves energy ef...In wireless sensor networks, secure data aggregation protocols target the two major objectives, namely, security and en route aggregation. Although en route aggregation of reverse multi-cast traffic improves energy efficiency, it becomes a hindrance to end-to-end security. Concealed data aggregation protocols aim to preserve the end-to-end privacy of sensor readings while performing en route aggregation. However, the use of inherently malleable privacy homomorphism makes these protocols vulnerable to active attackers. In this paper, we propose an integrity and privacy preserving end-to-end secure data aggregation protocol. We use symmetric key-based homomorphic primitives to provide end-to-end privacy and end-to-end integrity of reverse multicast traffic. As sensor network has a non-replenishable energy supply, the use of symmetric key based homomorphic primitives improves the energy efficiency and increase the sensor network’s lifetime. We comparatively evaluate the performance of the proposed protocol to show its efficacy and efficiency in resource-constrained environments.展开更多
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c...VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions.展开更多
With the popularity of the Internet and improvement of information technology,digital information sharing increasingly becomes the trend.More and More universities pay attention to the digital campus,and the construct...With the popularity of the Internet and improvement of information technology,digital information sharing increasingly becomes the trend.More and More universities pay attention to the digital campus,and the construction of digital library has become the focus of digital campus.A set of manageable,authenticated and secure solutions are needed for remote access to make the campus network be a transit point for the outside users.Remote Access IPSEC Virtual Private Network gives the solution of remote access to e-library resources,networks resources and so on very safely through a public network.It establishes a safe and stable tunnel which encrypts the data passing through it with robust secured algorithms.It is to establish a virtual private network in Internet,so that the two long-distance network users can transmit data to each other in a dedicated network channel.Using this technology,multi-network campus can communicate securely in the unreliable public internet.展开更多
Data security is a major cloud computing issue due to different usertransactions in the system. The evolution of cryptography and cryptographic analysis are regarded domains of current research. deoxyribo nucleic acid...Data security is a major cloud computing issue due to different usertransactions in the system. The evolution of cryptography and cryptographic analysis are regarded domains of current research. deoxyribo nucleic acid (DNA) cryptography makes use of DNA as a sensing platform, which is then manipulated usinga variety of molecular methods. Many security mechanisms including knowledgebased authentication, two-factor authentication, adaptive authentication, multifactorauthentication and single password authentication have been deployed. These cryptographic techniques have been developed to ensure confidentiality, but most ofthem are based on complex mathematical calculations and equations. In the proposed approach, a novel and unique Hybrid helix scuttle-deoxy ribo nucleic acids(HHS-DNA) encryption algorithm has been proposed which is inspired by DNAcryptography and Helix scuttle. The proposed HHS-DNA is a type of multifold binary version of DNA (MF-BDNA). The major role of this paper is to present a multifold HHS-DNA algorithm to encrypt the cloud data assuring more security with lesscomplexity. The experimentation is carried out and it reduces the encryption time,cipher text size, and improves throughput. When compared with previous techniques, there is a 45% improvement in throughput, 37% fast in encryption time,54.67% cipher text size. The relevant experimental results and foregoing analysisshow that this method is of good robustness, stability, and security.展开更多
文摘In the context of the information age,on the basis of the convenience of computer networks,security issues have gradually emerged.The data encryption technology is reasonably applied in the process of computer network security practice,which promotes the safe and reliable operation of the computer network to a certain extent.Based on this,our article regards data encryption technology as the main research object,focusing on its specific application in computer network security.
文摘When integrating data encryption technology into the security management of computer network communication, it is necessary to select the corresponding technical scheme according to the characteristics of the current network environment, clarify the types and application characteristics of security protection technology, improve the security management mode, and prevent people from using computers. The current security management scheme is gradually improved, so that the application advantages of data encryption technology can be fully highlighted and peoples information security can be maintained.
文摘After an introduction to the implementation of supervisory computer control (SCC) through networks and the relevant security issues, this paper centers on the core of network security design: intelligent front-end processor (FEP), encryption/decryption method and authentication protocol. Some other system-specific security measures are also proposed. Although these are examples only, the techniques discussed can also be used in and provide reference for other remote control systems.
文摘There have been various security measures that deal with data security in wired or wireless network, where these measures help to make sure that data from one point to another is intact, by identifying, authenticating, authorizing the right users and also encrypting the data over the network. Data communication between computers has brought about countless benefits to users, but the same information technologies have created a gap, a vulnerable space in the communication medium, where the data that’s been exchanged or transferred, thereby causing threats to the data. Especially data on wireless networks are much exposed to threats since the network has been broadcasted unlike a wired network. Data security in the past dealth with integrity, confidentiality and ensuring authorized usage of the data and the system. Less or no focus was placed on the reactive approach or measures to data security which is capable of responding properly to mitigate an attacker and avoid harm and also to prevent future attacks. This research is going to expose the mechanisms and measures of data security in wireless networks from the reactive security approaches point of view and exposes the reactive approaches used to enhance data security.
基金Project(61100201) supported by National Natural Science Foundation of ChinaProject(12ZZ019) supported by Technology Innovation Research Program,Shang Municipal Education Commission,China+1 种基金Project(LYM11053) supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province,ChinaProject(NCET-12-0358) supported by New Century Excellent Talentsin University,Ministry of Education,China
文摘The key exposure problem is a practical threat for many security applications. In wireless sensor networks (WSNs), keys could be compromised easily due to its limited hardware protections. A secure group key management scheme is responsible for secure distributing group keys among valid nodes of the group. Based on the key-insulated encryption (KIE), we propose a group key management scheme (KIE-GKMS), which integrates the pair-wise key pre-distribution for WSN. The KIE-GKMS scheme updates group keys dynamically when adding or removing nodes. Moreover, the security analysis proves that the KIE-GKMS scheme not only obtains the semantic security, but also provides the forward and backward security. Finally, the theoretical analysis shows that the KIE-GKMS scheme has constant performance on both communication and storage costs in sensor nodes.
文摘In wireless sensor networks, secure data aggregation protocols target the two major objectives, namely, security and en route aggregation. Although en route aggregation of reverse multi-cast traffic improves energy efficiency, it becomes a hindrance to end-to-end security. Concealed data aggregation protocols aim to preserve the end-to-end privacy of sensor readings while performing en route aggregation. However, the use of inherently malleable privacy homomorphism makes these protocols vulnerable to active attackers. In this paper, we propose an integrity and privacy preserving end-to-end secure data aggregation protocol. We use symmetric key-based homomorphic primitives to provide end-to-end privacy and end-to-end integrity of reverse multicast traffic. As sensor network has a non-replenishable energy supply, the use of symmetric key based homomorphic primitives improves the energy efficiency and increase the sensor network’s lifetime. We comparatively evaluate the performance of the proposed protocol to show its efficacy and efficiency in resource-constrained environments.
文摘VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions.
文摘With the popularity of the Internet and improvement of information technology,digital information sharing increasingly becomes the trend.More and More universities pay attention to the digital campus,and the construction of digital library has become the focus of digital campus.A set of manageable,authenticated and secure solutions are needed for remote access to make the campus network be a transit point for the outside users.Remote Access IPSEC Virtual Private Network gives the solution of remote access to e-library resources,networks resources and so on very safely through a public network.It establishes a safe and stable tunnel which encrypts the data passing through it with robust secured algorithms.It is to establish a virtual private network in Internet,so that the two long-distance network users can transmit data to each other in a dedicated network channel.Using this technology,multi-network campus can communicate securely in the unreliable public internet.
文摘Data security is a major cloud computing issue due to different usertransactions in the system. The evolution of cryptography and cryptographic analysis are regarded domains of current research. deoxyribo nucleic acid (DNA) cryptography makes use of DNA as a sensing platform, which is then manipulated usinga variety of molecular methods. Many security mechanisms including knowledgebased authentication, two-factor authentication, adaptive authentication, multifactorauthentication and single password authentication have been deployed. These cryptographic techniques have been developed to ensure confidentiality, but most ofthem are based on complex mathematical calculations and equations. In the proposed approach, a novel and unique Hybrid helix scuttle-deoxy ribo nucleic acids(HHS-DNA) encryption algorithm has been proposed which is inspired by DNAcryptography and Helix scuttle. The proposed HHS-DNA is a type of multifold binary version of DNA (MF-BDNA). The major role of this paper is to present a multifold HHS-DNA algorithm to encrypt the cloud data assuring more security with lesscomplexity. The experimentation is carried out and it reduces the encryption time,cipher text size, and improves throughput. When compared with previous techniques, there is a 45% improvement in throughput, 37% fast in encryption time,54.67% cipher text size. The relevant experimental results and foregoing analysisshow that this method is of good robustness, stability, and security.