Currently, different kinds of security devices are deployed in the cloud datacenter environment and tenants may choose their desired security services such as firewall and IDS (intrusion detection system). At the sa...Currently, different kinds of security devices are deployed in the cloud datacenter environment and tenants may choose their desired security services such as firewall and IDS (intrusion detection system). At the same time, tenants in cloud computing datacenters are dynamic and have different requirements. Therefore, security device deployment in cloud datacenters is very complex and may lead to inefficient resource utilization. In this paper, we study this problem in a software-defined network (SDN) based multi-tenant cloud datacenter environment. We propose a load-adaptive traffic steering and packet forwarding scheme called LTSS to solve the problem. Our scheme combines SDN controller with TagOper plug-in to determine the traffic paths with the minimum load for tenants and allows tenants to get their desired security services in SDN-based datacenter networks. We also build a prototype system for LTSS to verify its functionality and evaluate performance of our design.展开更多
Software-Defined Networking(SDN) decouples the control plane and the data plane in network switches and routers, which enables the rapid innovation and optimization of routing and switching configurations. However,t...Software-Defined Networking(SDN) decouples the control plane and the data plane in network switches and routers, which enables the rapid innovation and optimization of routing and switching configurations. However,traditional routing mechanisms in SDN, based on the Dijkstra shortest path, do not take the capacity of nodes into account, which may lead to network congestion. Moreover, security resource utilization in SDN is inefficient and is not addressed by existing routing algorithms. In this paper, we propose Route Guardian, a reliable securityoriented SDN routing mechanism, which considers the capabilities of SDN switch nodes combined with a Network Security Virtualization framework. Our scheme employs the distributed network security devices effectively to ensure analysis of abnormal traffic and malicious node isolation. Furthermore, Route Guardian supports dynamic routing reconfiguration according to the latest network status. We prototyped Route Guardian and conducted theoretical analysis and performance evaluation. Our results demonstrate that this approach can effectively use the existing security devices and mechanisms in SDN.展开更多
基金The work is supported by the National Natural Science Foundation of China under Grant Nos. 61572137 and 61728202, and Shanghai Innovation Action Project under Grant No. 16DZ1100200.
文摘Currently, different kinds of security devices are deployed in the cloud datacenter environment and tenants may choose their desired security services such as firewall and IDS (intrusion detection system). At the same time, tenants in cloud computing datacenters are dynamic and have different requirements. Therefore, security device deployment in cloud datacenters is very complex and may lead to inefficient resource utilization. In this paper, we study this problem in a software-defined network (SDN) based multi-tenant cloud datacenter environment. We propose a load-adaptive traffic steering and packet forwarding scheme called LTSS to solve the problem. Our scheme combines SDN controller with TagOper plug-in to determine the traffic paths with the minimum load for tenants and allows tenants to get their desired security services in SDN-based datacenter networks. We also build a prototype system for LTSS to verify its functionality and evaluate performance of our design.
基金supported in part by the National Natural Science Foundation of China (Nos. 61402029, 61370190, and 61379002)the National Key Basic Research Program (973) of China (No. 2012CB315905)
文摘Software-Defined Networking(SDN) decouples the control plane and the data plane in network switches and routers, which enables the rapid innovation and optimization of routing and switching configurations. However,traditional routing mechanisms in SDN, based on the Dijkstra shortest path, do not take the capacity of nodes into account, which may lead to network congestion. Moreover, security resource utilization in SDN is inefficient and is not addressed by existing routing algorithms. In this paper, we propose Route Guardian, a reliable securityoriented SDN routing mechanism, which considers the capabilities of SDN switch nodes combined with a Network Security Virtualization framework. Our scheme employs the distributed network security devices effectively to ensure analysis of abnormal traffic and malicious node isolation. Furthermore, Route Guardian supports dynamic routing reconfiguration according to the latest network status. We prototyped Route Guardian and conducted theoretical analysis and performance evaluation. Our results demonstrate that this approach can effectively use the existing security devices and mechanisms in SDN.