Many practical systems in natural and social sciences can be described by dynamical networks. Day by day we have measured and accumulated huge amounts of data from these networks, which can be used by us to further ou...Many practical systems in natural and social sciences can be described by dynamical networks. Day by day we have measured and accumulated huge amounts of data from these networks, which can be used by us to further our understanding of the world. The structures of the networks producing these data are often unknown. Consequently, understanding the structures of these networks from available data turns to be one of the central issues in interdisciplinary fields, which is called the network recon- struction problem. In this paper, we considered problems of network reconstructions using partially available data and some situations where data availabilities are not sufficient for conventional network reconstructions. Furthermore, we proposed to infer subnetwork with data of the subnetwork available only and other nodes of the entire network hidden; to depict group-group interactions in networks with averages of groups of node variables available; and to perform network reconstructions with known data of node variables only when networks are driven by both unknown internal fast-varying noises and unknown external slowly-varying signals. All these situations are expected to be common in practical systems and the methods and results may be useful for real world applications.展开更多
The central concept of strategic benchmarking is resource management efficiency,which ultimately results in profitability.However,little is known about performance measurement from resource-based perspectives.This stu...The central concept of strategic benchmarking is resource management efficiency,which ultimately results in profitability.However,little is known about performance measurement from resource-based perspectives.This study uses the data envelopment analysis(DEA)model with a dynamic network structure to measure the resource management and profitability efficiencies of 287 US commercial banks from 2010 to 2020.Furthermore,we provide frontier projections and incorporate five variables,namely capital adequacy,asset quality,management quality,earning ability,and liquidity(i.e.,the CAMEL ratings).The results revealed that the room for improvement in bank performance is 55.4%.In addition,we found that the CAMEL ratings of efficient banks are generally higher than those of inefficient banks,and management quality,earnings quality,and liquidity ratios positively contribute to bank performance.Moreover,big banks are generally more efficient than small banks.Overall,this study continues the current heated debate on performance measurement in the banking industry,with a particular focus on the DEA application to answer the fundamental question of why resource management efficiency reflects benchmark firms and provides insights into how efficient management of CAMEL ratings would help in improving their performance.展开更多
Cryptocurrency, as a typical application scene of blockchain, has attracted broad interests from both industrial and academic communities. With its rapid development, the cryptocurrency transaction network embedding(C...Cryptocurrency, as a typical application scene of blockchain, has attracted broad interests from both industrial and academic communities. With its rapid development, the cryptocurrency transaction network embedding(CTNE) has become a hot topic. It embeds transaction nodes into low-dimensional feature space while effectively maintaining a network structure,thereby discovering desired patterns demonstrating involved users' normal and abnormal behaviors. Based on a wide investigation into the state-of-the-art CTNE, this survey has made the following efforts: 1) categorizing recent progress of CTNE methods, 2) summarizing the publicly available cryptocurrency transaction network datasets, 3) evaluating several widely-adopted methods to show their performance in several typical evaluation protocols, and 4) discussing the future trends of CTNE. By doing so, it strives to provide a systematic and comprehensive overview of existing CTNE methods from static to dynamic perspectives,thereby promoting further research into this emerging and important field.展开更多
针对在大规模时序医疗数据的分析中现有检测方法检测精度低、检测速度慢等问题,文中提出了一种基于深度学习的时序病变数据段分类方法。该方法在TSTKS(Ternary Search Trees and modified Kolmogorov-Smirnov)算法和滑动窗口理论的基础...针对在大规模时序医疗数据的分析中现有检测方法检测精度低、检测速度慢等问题,文中提出了一种基于深度学习的时序病变数据段分类方法。该方法在TSTKS(Ternary Search Trees and modified Kolmogorov-Smirnov)算法和滑动窗口理论的基础上,利用深度学习技术实现了对病变数据段的快速准确分类。文中以利用该方法对病变数据段进行分类的结果作为依据,实现了滑动窗口大小的动态调整。通过对真实癫痫脑电信号(Electroencephalogram,EEG)进行分析,证明了所提病变数据段分类方法和基于该分类方法的滑动窗口动态调整机制具有检测速度快、精度较高等优点,可以为大规模时序数据的快速分析研究提供一种新选择。展开更多
文摘Many practical systems in natural and social sciences can be described by dynamical networks. Day by day we have measured and accumulated huge amounts of data from these networks, which can be used by us to further our understanding of the world. The structures of the networks producing these data are often unknown. Consequently, understanding the structures of these networks from available data turns to be one of the central issues in interdisciplinary fields, which is called the network recon- struction problem. In this paper, we considered problems of network reconstructions using partially available data and some situations where data availabilities are not sufficient for conventional network reconstructions. Furthermore, we proposed to infer subnetwork with data of the subnetwork available only and other nodes of the entire network hidden; to depict group-group interactions in networks with averages of groups of node variables available; and to perform network reconstructions with known data of node variables only when networks are driven by both unknown internal fast-varying noises and unknown external slowly-varying signals. All these situations are expected to be common in practical systems and the methods and results may be useful for real world applications.
基金provided by Ministry of Science and Technology(Grant No.MOST 107-2410-H-034-056-MY3).
文摘The central concept of strategic benchmarking is resource management efficiency,which ultimately results in profitability.However,little is known about performance measurement from resource-based perspectives.This study uses the data envelopment analysis(DEA)model with a dynamic network structure to measure the resource management and profitability efficiencies of 287 US commercial banks from 2010 to 2020.Furthermore,we provide frontier projections and incorporate five variables,namely capital adequacy,asset quality,management quality,earning ability,and liquidity(i.e.,the CAMEL ratings).The results revealed that the room for improvement in bank performance is 55.4%.In addition,we found that the CAMEL ratings of efficient banks are generally higher than those of inefficient banks,and management quality,earnings quality,and liquidity ratios positively contribute to bank performance.Moreover,big banks are generally more efficient than small banks.Overall,this study continues the current heated debate on performance measurement in the banking industry,with a particular focus on the DEA application to answer the fundamental question of why resource management efficiency reflects benchmark firms and provides insights into how efficient management of CAMEL ratings would help in improving their performance.
基金supported in part by the National Natural Science Foundation of China (62272078)the CAAI-Huawei MindSpore Open Fund (CAAIXSJLJJ-2021-035A)the Doctoral Student Talent Training Program of Chongqing University of Posts and Telecommunications (BYJS202009)。
文摘Cryptocurrency, as a typical application scene of blockchain, has attracted broad interests from both industrial and academic communities. With its rapid development, the cryptocurrency transaction network embedding(CTNE) has become a hot topic. It embeds transaction nodes into low-dimensional feature space while effectively maintaining a network structure,thereby discovering desired patterns demonstrating involved users' normal and abnormal behaviors. Based on a wide investigation into the state-of-the-art CTNE, this survey has made the following efforts: 1) categorizing recent progress of CTNE methods, 2) summarizing the publicly available cryptocurrency transaction network datasets, 3) evaluating several widely-adopted methods to show their performance in several typical evaluation protocols, and 4) discussing the future trends of CTNE. By doing so, it strives to provide a systematic and comprehensive overview of existing CTNE methods from static to dynamic perspectives,thereby promoting further research into this emerging and important field.
基金the Foundation of National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics(Grant No.61422202105)Qing Lan Project and the National Natural Science Foundation of China(Grant No.51775270).
文摘针对在大规模时序医疗数据的分析中现有检测方法检测精度低、检测速度慢等问题,文中提出了一种基于深度学习的时序病变数据段分类方法。该方法在TSTKS(Ternary Search Trees and modified Kolmogorov-Smirnov)算法和滑动窗口理论的基础上,利用深度学习技术实现了对病变数据段的快速准确分类。文中以利用该方法对病变数据段进行分类的结果作为依据,实现了滑动窗口大小的动态调整。通过对真实癫痫脑电信号(Electroencephalogram,EEG)进行分析,证明了所提病变数据段分类方法和基于该分类方法的滑动窗口动态调整机制具有检测速度快、精度较高等优点,可以为大规模时序数据的快速分析研究提供一种新选择。