In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A controller is first designed by the use of a hierarchical structure of two first-order sliding surfa...In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A controller is first designed by the use of a hierarchical structure of two first-order sliding surfaces represented by two actuated and un-actuated subsystems in the bridge crane. Parameters of the controller are then intelligently estimated, where uncertain parameters due to disturbances in the 3D overhead crane dynamic model are proposed to be represented by radial basis function networks whose weights are derived from a Lyapunov function. The proposed approach allows the crane system to be robust under uncertainty conditions in which some uncertain and unknown parameters are highly difficult to determine. Moreover, stability of the sliding surfaces is proved to be guaranteed. Effectiveness of the proposed approach is then demonstrated by implementing the algorithm in both synthetic and reallife systems, where the results obtained by our method are highly promising.展开更多
为满足铁路接触网腕臂智能检修作业中机械臂自动导航需求,提出一种综合解决路径规划和障碍物避让问题的研究方法。该方法将双重目标转化为单一的约束优化问题。在此基础上,对标准快速搜索随机树(Rapidly exploring Random Tree,RRT)算...为满足铁路接触网腕臂智能检修作业中机械臂自动导航需求,提出一种综合解决路径规划和障碍物避让问题的研究方法。该方法将双重目标转化为单一的约束优化问题。在此基础上,对标准快速搜索随机树(Rapidly exploring Random Tree,RRT)算法进行改进,引入地图复杂程度评估策略和高斯混合分布采样策略,以约束随机采样点的生成方向。通过加入角度约束策略和临近障碍物的变步长机制,确保随机树始终向目标点方向生长,从而规划出渐进最优的路径。此外,设计一种基于甲虫嗅觉探测的递归神经网络(Recurrent Neural Network based on Beetle Olfactory Detection,RNNBOD)算法,配置最优关节角度,驱动冗余机械臂末端执行器沿规划的参考路径移动,从而降低其计算成本。仿真结果表明,该方法不仅有效提升了标准RRT算法的搜索效率、节点利用率和路径质量,还成功解决了冗余机械臂在运行过程中的跟踪控制难题。展开更多
Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generat...Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generated control overhead consists of controller-device and inter-controller communications to discover the network topology, exchange configurations, and set up and modify flow tables in the control plane. However, due to the high complexity of the proposed optimization model to the CPP, heuristic algorithms have been reported to find near-optimal solutions faster for large-scale wired networks. In this paper, the objective is to extend those existing heuristic algorithms to solve a proposed optimization model to the CPP in software-<span>defined multihop wireless networking</span><span> (SDMWN).</span>Our results demonstrate that using ranking degrees assigned to the possible controller placements, including the average distance to other devices as a degree or the connectivity degree of each placement, the extended heuristic algorithms are able to achieve the optimal solution in small-scale networks in terms of the generated control overhead and the number of controllers selected in the network. As a result, using extended heuristic algorithms, the average number of hops among devices and their assigned controllers as well as among controllers will be reduced. Moreover, these algorithms are able tolower<span "=""> </span>the control overhead in large-scale networks and select fewer controllers compared to an extended algorithm that solves the CPP in SDMWN based on a randomly selected controller placement approach.展开更多
移动自组网(Mobile Ad Hoc Network, MANET)主要应用于军事活动、灾后救援等大规模的活动中,随着节点数的增加、移动速度的加快,网络拓扑变得更加复杂,网络稳定性和性能也随之下降。频繁的网络拓扑变化会导致簇结构变得不稳定并且控制...移动自组网(Mobile Ad Hoc Network, MANET)主要应用于军事活动、灾后救援等大规模的活动中,随着节点数的增加、移动速度的加快,网络拓扑变得更加复杂,网络稳定性和性能也随之下降。频繁的网络拓扑变化会导致簇结构变得不稳定并且控制开销也会增加。为了解决这一问题,提出了一种改进的加权分簇算法,通过仿真表明,该算法可以有效地提高大规模移动自组网的性能。展开更多
文摘In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A controller is first designed by the use of a hierarchical structure of two first-order sliding surfaces represented by two actuated and un-actuated subsystems in the bridge crane. Parameters of the controller are then intelligently estimated, where uncertain parameters due to disturbances in the 3D overhead crane dynamic model are proposed to be represented by radial basis function networks whose weights are derived from a Lyapunov function. The proposed approach allows the crane system to be robust under uncertainty conditions in which some uncertain and unknown parameters are highly difficult to determine. Moreover, stability of the sliding surfaces is proved to be guaranteed. Effectiveness of the proposed approach is then demonstrated by implementing the algorithm in both synthetic and reallife systems, where the results obtained by our method are highly promising.
文摘水声网络(underwater acoustic network,UAN)具有长传播时延、高误码率、半双工通信等特性,这些特性严重影响了UAN中数据的可靠传输。而在线喷泉码具有在线控制、编解码复杂度低、码率自适应等诸多优势,在线喷泉码适合于保障UAN中数据的可靠传输。针对递归与限制反馈的在线喷泉码(recursive OFC with limited feedback,ROFC-LF)存在不理想覆盖和4元环问题导致略高的开销和频繁的反馈,提出适用于UAN的基于优先级与可Zigzag解码的ROFC-LF(priority-based and zigzag-decodable ROFC-LF,P-ZROFC-LF)。P-ZROFC-LF在建立阶段选取具有最高优先级的原始包进行编码直至所有原始包均参与编码。同时,引入可Zigzag解码编码,将无用编码包进行移位异或转换为有用编码包来提高解码性能。通过随机图理论,分析P-ZROFC-LF所需编码包数与原始包数之间的关系。理论分析与仿真结果表明,与大部分在线喷泉码相比,P-ZROFC-LF显著提高了反馈和开销性能。其中P-ZROFC-LF相比于ROFC-LF的反馈和开销分别减少了18%和0.0176,更适用于UAN。
文摘为满足铁路接触网腕臂智能检修作业中机械臂自动导航需求,提出一种综合解决路径规划和障碍物避让问题的研究方法。该方法将双重目标转化为单一的约束优化问题。在此基础上,对标准快速搜索随机树(Rapidly exploring Random Tree,RRT)算法进行改进,引入地图复杂程度评估策略和高斯混合分布采样策略,以约束随机采样点的生成方向。通过加入角度约束策略和临近障碍物的变步长机制,确保随机树始终向目标点方向生长,从而规划出渐进最优的路径。此外,设计一种基于甲虫嗅觉探测的递归神经网络(Recurrent Neural Network based on Beetle Olfactory Detection,RNNBOD)算法,配置最优关节角度,驱动冗余机械臂末端执行器沿规划的参考路径移动,从而降低其计算成本。仿真结果表明,该方法不仅有效提升了标准RRT算法的搜索效率、节点利用率和路径质量,还成功解决了冗余机械臂在运行过程中的跟踪控制难题。
文摘Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generated control overhead consists of controller-device and inter-controller communications to discover the network topology, exchange configurations, and set up and modify flow tables in the control plane. However, due to the high complexity of the proposed optimization model to the CPP, heuristic algorithms have been reported to find near-optimal solutions faster for large-scale wired networks. In this paper, the objective is to extend those existing heuristic algorithms to solve a proposed optimization model to the CPP in software-<span>defined multihop wireless networking</span><span> (SDMWN).</span>Our results demonstrate that using ranking degrees assigned to the possible controller placements, including the average distance to other devices as a degree or the connectivity degree of each placement, the extended heuristic algorithms are able to achieve the optimal solution in small-scale networks in terms of the generated control overhead and the number of controllers selected in the network. As a result, using extended heuristic algorithms, the average number of hops among devices and their assigned controllers as well as among controllers will be reduced. Moreover, these algorithms are able tolower<span "=""> </span>the control overhead in large-scale networks and select fewer controllers compared to an extended algorithm that solves the CPP in SDMWN based on a randomly selected controller placement approach.
文摘移动自组网(Mobile Ad Hoc Network, MANET)主要应用于军事活动、灾后救援等大规模的活动中,随着节点数的增加、移动速度的加快,网络拓扑变得更加复杂,网络稳定性和性能也随之下降。频繁的网络拓扑变化会导致簇结构变得不稳定并且控制开销也会增加。为了解决这一问题,提出了一种改进的加权分簇算法,通过仿真表明,该算法可以有效地提高大规模移动自组网的性能。