With the increase of network complexity,the flexibility of network control and management becomes a nontrivial problem.Both Software Defined Network(SDN) and Autonomic Network technologies are sophisticated technologi...With the increase of network complexity,the flexibility of network control and management becomes a nontrivial problem.Both Software Defined Network(SDN) and Autonomic Network technologies are sophisticated technologies for the network control and management.These two technologies could be combined together to construct a software defined self-managing solution for the future network.An autonomic QoS management mechanism in Software Defined Network(AQSDN) is proposed in this paper.In AQSDN,the various QoS features can be configured autonomically in an OpenFlow switch through extending the OpenFlow and OF-Config protocols.Based on AQSDN,a novel packet context-aware QoS model(PCaQoS) is also introduced for improving the network QoS.PCaQoS takes packet context into account when packet is marked and managed into forwarding queues.The implementation of a video application's prototype which evaluates the self-configuration feature of the AQSDN and the enhancement ability of the PCaQoS is presented in order to validate this design.展开更多
In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this neces...In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services.The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges.To solve these problems,this work provides an overview of multi-dimensional resource management in 6G SIG RAN,including computation and wireless resource.Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges.Then focusing on the provided challenges,the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme.Furthermore,it outlines promising future technologies,including joint model-driven and data-driven resource management technology,and blockchain-based resource management technology within the 6G SIG network.The work also highlights remaining challenges,such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation.Overall,this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks.展开更多
Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accu...Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.展开更多
In the sixth generation mobile communication(6G) system,Non-Terrestrial Networks(NTN),as a supplement to terrestrial network,can meet the requirements of wide area intelligent connection and global ubiquitous seamless...In the sixth generation mobile communication(6G) system,Non-Terrestrial Networks(NTN),as a supplement to terrestrial network,can meet the requirements of wide area intelligent connection and global ubiquitous seamless access,establish intelligent connection for wide area objects,and provide intelligent services.Due to issues such as massive access,doppler shift,and limited spectrum resources in NTN,research on resource management is crucial for optimizing NTN performance.In this paper,a comprehensive survey of multi-pattern heterogeneous NTN resource management is provided.Firstly,the key technologies involved in NTN resource management is summarized.Secondly,NTN resource management is discussed from network pattern and resource pattern.The network pattern focuses on the application of different optimization methods to different network dimension communication resource management,and the resource type pattern focuses on the research and application of multi-domain resource management such as computation,cache,communication and sensing.Finally,future research directions and challenges of 6G NTN resource management are discussed.展开更多
Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhance...Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods.展开更多
Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive s...Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive schemes have longer recovery times while proactive schemes provide faster recovery but overwhelm the memory of switches by flow entries.As SDN adoption grows,ensuring efficient recovery from link failures in the data plane becomes crucial.In particular,data center networks(DCNs)demand rapid recovery times and efficient resource utilization to meet carrier-grade requirements.This paper proposes an efficient Decentralized Failure Recovery(DFR)model for SDNs,meeting recovery time requirements and optimizing switch memory resource consumption.The DFR model enables switches to autonomously reroute traffic upon link failures without involving the controller,achieving fast recovery times while minimizing memory usage.DFR employs the Fast Failover Group in the OpenFlow standard for local recovery without requiring controller communication and utilizes the k-shortest path algorithm to proactively install backup paths,allowing immediate local recovery without controller intervention and enhancing overall network stability and scalability.DFR employs flow entry aggregation techniques to reduce switch memory usage.Instead of matching flow entries to the destination host’s MAC address,DFR matches packets to the destination switch’s MAC address.This reduces the switches’Ternary Content-Addressable Memory(TCAM)consumption.Additionally,DFR modifies Address Resolution Protocol(ARP)replies to provide source hosts with the destination switch’s MAC address,facilitating flow entry aggregation without affecting normal network operations.The performance of DFR is evaluated through the network emulator Mininet 2.3.1 and Ryu 3.1 as SDN controller.For different number of active flows,number of hosts per edge switch,and different network sizes,the proposed model outperformed various failure recovery models:restoration-based,protection by flow entries,protection by group entries and protection by Vlan-tagging model in terms of recovery time,switch memory consumption and controller overhead which represented the number of flow entry updates to recover from the failure.Experimental results demonstrate that DFR achieves recovery times under 20 milliseconds,satisfying carrier-grade requirements for rapid failure recovery.Additionally,DFR reduces switch memory usage by up to 95%compared to traditional protection methods and minimizes controller load by eliminating the need for controller intervention during failure recovery.Theresults underscore the efficiency and scalability of the DFR model,making it a practical solution for enhancing network resilience in SDN environments.展开更多
Software systems play increasing important roles in modern society,and the ability against attacks is of great practical importance to crucial software systems,resulting in that the structure and robustness of softwar...Software systems play increasing important roles in modern society,and the ability against attacks is of great practical importance to crucial software systems,resulting in that the structure and robustness of software systems have attracted a tremendous amount of interest in recent years.In this paper,based on the source code of Tar and MySQL,we propose an approach to generate coupled software networks and construct three kinds of directed software networks:The function call network,the weakly coupled network and the strongly coupled network.The structural properties of these complex networks are extensively investigated.It is found that the average influence and the average dependence for all functions are the same.Moreover,eight attacking strategies and two robustness indicators(the weakly connected indicator and the strongly connected indicator)are introduced to analyze the robustness of software networks.This shows that the strongly coupled network is just a weakly connected network rather than a strongly connected one.For MySQL,high in-degree strategy outperforms other attacking strategies when the weakly connected indicator is used.On the other hand,high out-degree strategy is a good choice when the strongly connected indicator is adopted.This work will highlight a better understanding of the structure and robustness of software networks.展开更多
With the rapid development of information technology,the scale of the network is expanding,and the complexity is increasing day by day.The traditional network management is facing great challenges.The emergence of sof...With the rapid development of information technology,the scale of the network is expanding,and the complexity is increasing day by day.The traditional network management is facing great challenges.The emergence of software-defined network(SDN)technology has brought revolutionary changes to modern network management.This paper aims to discuss the application and prospects of SDN technology in modern network management.Firstly,the basic principle and architecture of SDN are introduced,including the separation of control plane and data plane,centralized control and open programmable interface.Then,it analyzes the advantages of SDN technology in network management,such as simplifying network configuration,improving network flexibility,optimizing network resource utilization,and realizing fast fault recovery.The application examples of SDN in data center networks and WAN optimization management are analyzed.This paper also discusses the development status and trend of SDN in enterprise networks,including the integration of technologies such as cloud computing,big data,and artificial intelligence,the construction of an intelligent and automated network management platform,the improvement of network management efficiency and quality,and the openness and interoperability of network equipment.Finally,the advantages and challenges of SDN technology are summarized,and its future development direction is provided.展开更多
The rapid advancement of 6G communication networks presents both considerable problems and opportunities in network management,necessitating sophisticated solutions that extend beyond conventional methods.This study s...The rapid advancement of 6G communication networks presents both considerable problems and opportunities in network management,necessitating sophisticated solutions that extend beyond conventional methods.This study seeks to investigate and evaluate autonomous network management solutions designed for 6G communication networks,highlighting their technical advantages and potential implications.We examine the role of Artificial Intelligence(AI),Machine Learning(ML),and network automation in facilitating self-organization,optimization,and decision-making within critical network domains,including spectrum management,traffic load balancing,fault detection,and security and privacy.We examine the integration of edge computing and Distributed Ledger Technologies(DLT),specifically blockchain,to improve trust,transparency,and security in autonomous networks.This study provides a comprehensive understanding of the technological developments driving fully autonomous,efficient,and resilient 6G network infrastructures by methodically analyzing existing methodologies,identifying significant research gaps,and exploring potential prospects.The results offer significant insights for researchers,engineers,and industry experts involved in the development and deployment of advanced autonomous network management systems.展开更多
Starting with the goal and significance of software security testing,this paper introduces the main methods of software security testing in the open network environment,including formal security testing,white box test...Starting with the goal and significance of software security testing,this paper introduces the main methods of software security testing in the open network environment,including formal security testing,white box testing,fuzzy testing,model testing,and fault injection testing.A software security testing method based on a security target model is proposed.This paper provides new ideas for software security testing,better adapts to the open network environment,improves the efficiency and quality of testing,and builds a good software application environment.展开更多
Given the grave local and international network security landscape,a national strategic level analysis indicates that the modernization and advancement within the Industry 4.0 era are closely correlated with overall c...Given the grave local and international network security landscape,a national strategic level analysis indicates that the modernization and advancement within the Industry 4.0 era are closely correlated with overall competitive strength.Consequently,China proposed a strategy for the integration of industrialization and informatization,optimizing and adjusting its industrial structure to swiftly achieve transformation and upgrading in the Industry 4.0 era,thereby enhancing the sophistication of intelligent industrial control systems.The distributed control system in a nuclear power plant functions as an industrial control system,overseeing the operational status of the physical process.Its ability to ensure safe and reliable operation is directly linked to nuclear safety and the cybersecurity of the facility.The management of network security in distributed control systems(DCS)is crucial for achieving this objective.Due to the varying network settings and parameters of the DCS implemented in each nuclear power plant,the network security status of the system sometimes diverges from expectations.During system operation,it will undoubtedly encounter network security issues.Consequently,nuclear power plants utilize the technical criteria outlined in GB/T 22239 to formulate a network security management program aimed at enhancing the operational security of DCS within these facilities.This study utilizes existing network security regulations and standards as a reference to analyze the network security control standards based on the nuclear power plant’s control system.It delineates the fundamental requirements for network security management,facilitating integration with the entire life cycle of the research,development,and application of the nuclear power plant’s distributed control system,thereby establishing a network security management methodology that satisfies the control requirements of the nuclear power plant.Initially,it presents DCS and network security management,outlines current domestic and international network security legislation and standards,and specifies the standards pertinent to the administration of DCS in nuclear power plants.Secondly,the design of network security management for DCS is executed in conjunction with the specific context of nuclear power plants.This encompasses the deployment of network security apparatus,validation of the network security management strategy,and optimization adjustments.Consequently,recommendations beneficial to the network security management of nuclear power plants are compiled,aimed at establishing a management system and incorporating the concept of full life cycle management,which is predicated on system requirements,system design,and both software and hardware considerations.Conversely,it presents the notion of comprehensive life cycle management and suggests network security management strategies encompassing system requirements,system architecture,detailed hardware and software design and implementation,procurement,internal system integration,system validation and acceptance testing,system installation,operational maintenance,system modifications,and decommissioning.We will consistently enhance the performance and functionality of DCS in nuclear power plants,establish a safe and secure operational environment,and thereby facilitate the implementation of DCS in nuclear facilities while ensuring robust network security in the future.展开更多
Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core cros...Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core crosstalk.In this paper,we demonstrate a realtime high-speed SDM transmission system over a field-deployed 7-core MCF cable using commercial 400 Gbit/s backbone optical transport network(OTN)transceivers and a network management system.The transceivers employ a high noise-tolerant quadrature phase shift keying(QPSK)modulation format with a 130 Gbaud rate,enabled by optoelectronic multi-chip module(OE-MCM)packaging.The network management system can effectively manage and monitor the performance of the 7-core SDM OTN system and promptly report failure events through alarms.Our field trial demonstrates the compatibility of uncoupled MCF with high-speed OTN transmission equipment and network management systems,supporting its future deployment in next-generation high-speed terrestrial cable transmission networks.展开更多
Many organizations are struggling to provide high bandwidth and reliable internet connectivity at their branch offices and business locations and getting the most out of their operational expense.The need for internet...Many organizations are struggling to provide high bandwidth and reliable internet connectivity at their branch offices and business locations and getting the most out of their operational expense.The need for internet connectivity at any branch offices and business locations is not a luxury anymore but is a necessity.Let us try to understand how to plan and document the SDWAN(Software Defined-Wide Area Network)implementation in an organization.We will try to understand why it is essential to implement the new technology instead of investing in the existing MPLS(Multi-Protocol label switching)by taking an example of a retail organization.Methods:This project/research was performed using the abilities of Software Defined Network Technology and options available in MPLS(Multi-Protocol Label Switching).The Technical Project management principles were adopted as per PMI(Project Management Institute)waterfall methodology.Results/Conclusion:SDWAN technology provides an effective replacement of MPLS network connection for providing WAN connectivity for our office locations.It is essential to follow a documented process for appropriate vendor selection based on the available features and other listed attributes in the article.To be successful in the implementation it is essential to perform a POC(Proof of Concept)in a controlled environment and validate results.SDWAN provides better network performance and improves reliability as the links operate in active-active function.展开更多
Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project man...Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project management,puts forward the team task mechanism of software engineering courses with AI empowerment and cooperation and competition,develops a unified project management platform to support the implementation of team tasks,and proves the effectiveness of the scheme through the results obtained.展开更多
This study focuses on the management of maintenance hemodialysis(MHD)patients,with a specific emphasis on the practical application effect of the network information management model including its impact on patients’...This study focuses on the management of maintenance hemodialysis(MHD)patients,with a specific emphasis on the practical application effect of the network information management model including its impact on patients’compliance.A network information management model for MHD patients was constructed around three management schemes:“software reminders+follow-up guidance”,“dietary records+self-management reminders”,and“dialysis plan+precise weight management”.These schemes were respectively used to optimize anemia management,control the risk of hyperphosphatemia,and improve toxin clearance efficiency.A controlled experiment was conducted,with an experimental group and a control group set up for comparative practice.The results showed that the network information management model can effectively improve patients’anemia,help alleviate mineral metabolism disorders and the accumulation of small-molecule toxins,and exert a positive impact on patients’treatment compliance.展开更多
Internet of things networks often suffer from early node failures and short lifespan due to energy limits.Traditional routing methods are not enough.This work proposes a new hybrid algorithm called ACOGA.It combines A...Internet of things networks often suffer from early node failures and short lifespan due to energy limits.Traditional routing methods are not enough.This work proposes a new hybrid algorithm called ACOGA.It combines Ant Colony Optimization(ACO)and the Greedy Algorithm(GA).ACO finds smart paths while Greedy makes quick decisions.This improves energy use and performance.ACOGA outperforms Hybrid Energy-Efficient(HEE)and Adaptive Lossless Data Compression(ALDC)algorithms.After 500 rounds,only 5%of ACOGA’s nodes are dead,compared to 15%for HEE and 20%for ALDC.The network using ACOGA runs for 1200 rounds before the first nodes fail.HEE lasts 900 rounds and ALDC only 850.ACOGA saves at least 15%more energy by better distributing the load.It also achieves a 98%packet delivery rate.The method works well in mixed IoT networks like Smart Water Management Systems(SWMS).These systems have different power levels and communication ranges.The simulation of proposed model has been done in MATLAB simulator.The results show that that the proposed model outperform then the existing models.展开更多
The proliferation of distributed and renewable energy resources introduces additional operational challenges to power distribution systems.Transactive energy management,which allows networked neighborhood communities ...The proliferation of distributed and renewable energy resources introduces additional operational challenges to power distribution systems.Transactive energy management,which allows networked neighborhood communities and houses to trade energy,is expected to be developed as an effective method for accommodating additional uncertainties and security mandates pertaining to distributed energy resources.This paper proposes and analyzes a two-layer transactive energy market in which houses in networked neighborhood community microgrids will trade energy in respective market layers.This paper studies the blockchain applications to satisfy socioeconomic and technological concerns of secure transactive energy management in a two-level power distribution system.The numerical results for practical networked microgrids located at IllinoisTech−Bronzeville in Chicago illustrate the validity of the proposed blockchain-based transactive energy management for devising a distributed,scalable,efficient,and cybersecured power grid operation.The conclusion of the paper summarizes the prospects for blockchain applications to transactive energy management in power distribution systems.展开更多
5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large nu...5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large number of devices,thus realizing richer application scenarios and constructing 5G-enabled vehicular networks.However,due to the vulnerability of wireless communication,vehicle privacy and communication security have become the key problems to be solved in vehicular networks.Moreover,the large-scale communication in the vehicular networks also makes the higher communication efficiency an inevitable requirement.In order to achieve efficient and secure communication while protecting vehicle privacy,this paper proposes a lightweight key agreement and key update scheme for 5G vehicular networks based on blockchain.Firstly,the key agreement is accomplished using certificateless public key cryptography,and based on the aggregate signature and the cooperation between the vehicle and the trusted authority,an efficient key updating method is proposed,which reduces the overhead and protects the privacy of the vehicle while ensuring the communication security.Secondly,by introducing blockchain and using smart contracts to load the vehicle public key table for key management,this meets the requirements of vehicle traceability and can dynamically track and revoke misbehaving vehicles.Finally,the formal security proof under the eck security model and the informal security analysis is conducted,it turns out that our scheme is more secure than other authentication schemes in the vehicular networks.Performance analysis shows that our scheme has lower overhead than existing schemes in terms of communication and computation.展开更多
Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 3...Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET estimation.The findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological processes.These hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET estimation.The growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional methods.Despite the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data scarcity.Future research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder trust.Additionally,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world applications.Approaches such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these challenges.This study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable regions.By integrating CNNs for automatic feature extraction and leveraging hybrid architectures,HANNs offer considerable advantages for optimizing water management,particularly agriculture.Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and operational success of HANNs in global water resource management.展开更多
Software-defined networking(SDN)is a paradigm shift in modern networking.However,centralised controller architecture in SDNimposed flow setup overhead issue as the control plane handles all flows regardless of size an...Software-defined networking(SDN)is a paradigm shift in modern networking.However,centralised controller architecture in SDNimposed flow setup overhead issue as the control plane handles all flows regardless of size and priority.Existing frameworks strictly reduce control plane overhead and it does not focus on rule placement of the flows itself.Furthermore,existing frameworks do not focus on managing elephant flows like RTSP.Thus,the proposed mechanism will use the flow statistics gathering method such as random packet sampling to determine elephant flow and microflow via a predefined threshold.This mechanism will ensure that the control plane works at an optimum workload because the controller only manages elephant flows via reactive routing and rule placement respectively.Reactive routing has reduced link bandwidth usage below the pre-defined threshold.Furthermore,rule placement has increased average throughput and total transfer to 238%.Meanwhile,the data plane switches will be able to forward microflows via multipath wildcard routing without invoking controller in greater responding time by 85 ms faster in two Transmission Control Protocol(TCP)traffic and achieved 11%and 12%higher total transfer size and throughput respectively.Hence,the controller’s workload reduced significantly to 48%in two TCP traffic.展开更多
基金This work was supported in part by the National High Technology Research and Development Program (863 Program) of China under Grant No. 2011AA01A101, No.2013AA013303, No.2013AA013301and National Natural science foundation of China No. 61370197 & 61271041.
文摘With the increase of network complexity,the flexibility of network control and management becomes a nontrivial problem.Both Software Defined Network(SDN) and Autonomic Network technologies are sophisticated technologies for the network control and management.These two technologies could be combined together to construct a software defined self-managing solution for the future network.An autonomic QoS management mechanism in Software Defined Network(AQSDN) is proposed in this paper.In AQSDN,the various QoS features can be configured autonomically in an OpenFlow switch through extending the OpenFlow and OF-Config protocols.Based on AQSDN,a novel packet context-aware QoS model(PCaQoS) is also introduced for improving the network QoS.PCaQoS takes packet context into account when packet is marked and managed into forwarding queues.The implementation of a video application's prototype which evaluates the self-configuration feature of the AQSDN and the enhancement ability of the PCaQoS is presented in order to validate this design.
基金supported by the National Key Research and Development Program of China(No.2021YFB2900504).
文摘In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services.The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges.To solve these problems,this work provides an overview of multi-dimensional resource management in 6G SIG RAN,including computation and wireless resource.Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges.Then focusing on the provided challenges,the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme.Furthermore,it outlines promising future technologies,including joint model-driven and data-driven resource management technology,and blockchain-based resource management technology within the 6G SIG network.The work also highlights remaining challenges,such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation.Overall,this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks.
基金funded by the Youth Fund of the National Natural Science Foundation of China(Grant No.42261070).
文摘Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.
基金supported in part by the National Natural Science Foundation of China under Grant 62225103,U22B2003,U2441227,and U24A20211the Beijing Natural Science Foundation under Grant L241008+3 种基金the Defense Industrial Technology Development Program JCKY2022110C010the National Key Laboratory of Wireless Communications Foundation under Grant IFN20230201the Fundamental Research Funds for the Central Universities under Grant FRFTP-22-002C2the Xiaomi Fund of Young Scholar。
文摘In the sixth generation mobile communication(6G) system,Non-Terrestrial Networks(NTN),as a supplement to terrestrial network,can meet the requirements of wide area intelligent connection and global ubiquitous seamless access,establish intelligent connection for wide area objects,and provide intelligent services.Due to issues such as massive access,doppler shift,and limited spectrum resources in NTN,research on resource management is crucial for optimizing NTN performance.In this paper,a comprehensive survey of multi-pattern heterogeneous NTN resource management is provided.Firstly,the key technologies involved in NTN resource management is summarized.Secondly,NTN resource management is discussed from network pattern and resource pattern.The network pattern focuses on the application of different optimization methods to different network dimension communication resource management,and the resource type pattern focuses on the research and application of multi-domain resource management such as computation,cache,communication and sensing.Finally,future research directions and challenges of 6G NTN resource management are discussed.
文摘Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods.
文摘Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive schemes have longer recovery times while proactive schemes provide faster recovery but overwhelm the memory of switches by flow entries.As SDN adoption grows,ensuring efficient recovery from link failures in the data plane becomes crucial.In particular,data center networks(DCNs)demand rapid recovery times and efficient resource utilization to meet carrier-grade requirements.This paper proposes an efficient Decentralized Failure Recovery(DFR)model for SDNs,meeting recovery time requirements and optimizing switch memory resource consumption.The DFR model enables switches to autonomously reroute traffic upon link failures without involving the controller,achieving fast recovery times while minimizing memory usage.DFR employs the Fast Failover Group in the OpenFlow standard for local recovery without requiring controller communication and utilizes the k-shortest path algorithm to proactively install backup paths,allowing immediate local recovery without controller intervention and enhancing overall network stability and scalability.DFR employs flow entry aggregation techniques to reduce switch memory usage.Instead of matching flow entries to the destination host’s MAC address,DFR matches packets to the destination switch’s MAC address.This reduces the switches’Ternary Content-Addressable Memory(TCAM)consumption.Additionally,DFR modifies Address Resolution Protocol(ARP)replies to provide source hosts with the destination switch’s MAC address,facilitating flow entry aggregation without affecting normal network operations.The performance of DFR is evaluated through the network emulator Mininet 2.3.1 and Ryu 3.1 as SDN controller.For different number of active flows,number of hosts per edge switch,and different network sizes,the proposed model outperformed various failure recovery models:restoration-based,protection by flow entries,protection by group entries and protection by Vlan-tagging model in terms of recovery time,switch memory consumption and controller overhead which represented the number of flow entry updates to recover from the failure.Experimental results demonstrate that DFR achieves recovery times under 20 milliseconds,satisfying carrier-grade requirements for rapid failure recovery.Additionally,DFR reduces switch memory usage by up to 95%compared to traditional protection methods and minimizes controller load by eliminating the need for controller intervention during failure recovery.Theresults underscore the efficiency and scalability of the DFR model,making it a practical solution for enhancing network resilience in SDN environments.
基金supported by the Beijing Education Commission Science and Technology Project(No.KM201811417005)the National Natural Science Foundation of China(No.62173237)+6 种基金the Aeronautical Science Foundation of China(No.20240055054001)the Open Fund of State Key Laboratory of Satellite Navigation System and Equipment Technology(No.CEPNT2023A01)Joint Fund of Ministry of Natural Resources Key Laboratory of Spatiotemporal Perception and Intelligent Processing(No.232203)the Civil Aviation Flight Technology and Flight Safety Engineering Technology Research Center of Sichuan(No.GY2024-02B)the Applied Basic Research Programs of Liaoning Province(No.2025JH2/101300011)the General Project of Liaoning Provincial Education Department(No.20250054)Research on Safety Intelligent Management Technology and Systems for Mixed Operations of General Aviation Aircraft in Low-Altitude Airspace(No.310125011).
文摘Software systems play increasing important roles in modern society,and the ability against attacks is of great practical importance to crucial software systems,resulting in that the structure and robustness of software systems have attracted a tremendous amount of interest in recent years.In this paper,based on the source code of Tar and MySQL,we propose an approach to generate coupled software networks and construct three kinds of directed software networks:The function call network,the weakly coupled network and the strongly coupled network.The structural properties of these complex networks are extensively investigated.It is found that the average influence and the average dependence for all functions are the same.Moreover,eight attacking strategies and two robustness indicators(the weakly connected indicator and the strongly connected indicator)are introduced to analyze the robustness of software networks.This shows that the strongly coupled network is just a weakly connected network rather than a strongly connected one.For MySQL,high in-degree strategy outperforms other attacking strategies when the weakly connected indicator is used.On the other hand,high out-degree strategy is a good choice when the strongly connected indicator is adopted.This work will highlight a better understanding of the structure and robustness of software networks.
文摘With the rapid development of information technology,the scale of the network is expanding,and the complexity is increasing day by day.The traditional network management is facing great challenges.The emergence of software-defined network(SDN)technology has brought revolutionary changes to modern network management.This paper aims to discuss the application and prospects of SDN technology in modern network management.Firstly,the basic principle and architecture of SDN are introduced,including the separation of control plane and data plane,centralized control and open programmable interface.Then,it analyzes the advantages of SDN technology in network management,such as simplifying network configuration,improving network flexibility,optimizing network resource utilization,and realizing fast fault recovery.The application examples of SDN in data center networks and WAN optimization management are analyzed.This paper also discusses the development status and trend of SDN in enterprise networks,including the integration of technologies such as cloud computing,big data,and artificial intelligence,the construction of an intelligent and automated network management platform,the improvement of network management efficiency and quality,and the openness and interoperability of network equipment.Finally,the advantages and challenges of SDN technology are summarized,and its future development direction is provided.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2025-00559546)supported by the IITP(Institute of Information&Communications Technology Planning&Evaluation)-ITRC(Information Technology Research Center)grant funded by the Korea government(Ministry of Science and ICT)(IITP-2025-RS-2023-00259004)+1 种基金the support by the Deanship of Scientific Research through King Khalid UniversitySaudi Arabia funded by the Large Group Research Project RGP2/267/46。
文摘The rapid advancement of 6G communication networks presents both considerable problems and opportunities in network management,necessitating sophisticated solutions that extend beyond conventional methods.This study seeks to investigate and evaluate autonomous network management solutions designed for 6G communication networks,highlighting their technical advantages and potential implications.We examine the role of Artificial Intelligence(AI),Machine Learning(ML),and network automation in facilitating self-organization,optimization,and decision-making within critical network domains,including spectrum management,traffic load balancing,fault detection,and security and privacy.We examine the integration of edge computing and Distributed Ledger Technologies(DLT),specifically blockchain,to improve trust,transparency,and security in autonomous networks.This study provides a comprehensive understanding of the technological developments driving fully autonomous,efficient,and resilient 6G network infrastructures by methodically analyzing existing methodologies,identifying significant research gaps,and exploring potential prospects.The results offer significant insights for researchers,engineers,and industry experts involved in the development and deployment of advanced autonomous network management systems.
文摘Starting with the goal and significance of software security testing,this paper introduces the main methods of software security testing in the open network environment,including formal security testing,white box testing,fuzzy testing,model testing,and fault injection testing.A software security testing method based on a security target model is proposed.This paper provides new ideas for software security testing,better adapts to the open network environment,improves the efficiency and quality of testing,and builds a good software application environment.
文摘Given the grave local and international network security landscape,a national strategic level analysis indicates that the modernization and advancement within the Industry 4.0 era are closely correlated with overall competitive strength.Consequently,China proposed a strategy for the integration of industrialization and informatization,optimizing and adjusting its industrial structure to swiftly achieve transformation and upgrading in the Industry 4.0 era,thereby enhancing the sophistication of intelligent industrial control systems.The distributed control system in a nuclear power plant functions as an industrial control system,overseeing the operational status of the physical process.Its ability to ensure safe and reliable operation is directly linked to nuclear safety and the cybersecurity of the facility.The management of network security in distributed control systems(DCS)is crucial for achieving this objective.Due to the varying network settings and parameters of the DCS implemented in each nuclear power plant,the network security status of the system sometimes diverges from expectations.During system operation,it will undoubtedly encounter network security issues.Consequently,nuclear power plants utilize the technical criteria outlined in GB/T 22239 to formulate a network security management program aimed at enhancing the operational security of DCS within these facilities.This study utilizes existing network security regulations and standards as a reference to analyze the network security control standards based on the nuclear power plant’s control system.It delineates the fundamental requirements for network security management,facilitating integration with the entire life cycle of the research,development,and application of the nuclear power plant’s distributed control system,thereby establishing a network security management methodology that satisfies the control requirements of the nuclear power plant.Initially,it presents DCS and network security management,outlines current domestic and international network security legislation and standards,and specifies the standards pertinent to the administration of DCS in nuclear power plants.Secondly,the design of network security management for DCS is executed in conjunction with the specific context of nuclear power plants.This encompasses the deployment of network security apparatus,validation of the network security management strategy,and optimization adjustments.Consequently,recommendations beneficial to the network security management of nuclear power plants are compiled,aimed at establishing a management system and incorporating the concept of full life cycle management,which is predicated on system requirements,system design,and both software and hardware considerations.Conversely,it presents the notion of comprehensive life cycle management and suggests network security management strategies encompassing system requirements,system architecture,detailed hardware and software design and implementation,procurement,internal system integration,system validation and acceptance testing,system installation,operational maintenance,system modifications,and decommissioning.We will consistently enhance the performance and functionality of DCS in nuclear power plants,establish a safe and secure operational environment,and thereby facilitate the implementation of DCS in nuclear facilities while ensuring robust network security in the future.
文摘Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core crosstalk.In this paper,we demonstrate a realtime high-speed SDM transmission system over a field-deployed 7-core MCF cable using commercial 400 Gbit/s backbone optical transport network(OTN)transceivers and a network management system.The transceivers employ a high noise-tolerant quadrature phase shift keying(QPSK)modulation format with a 130 Gbaud rate,enabled by optoelectronic multi-chip module(OE-MCM)packaging.The network management system can effectively manage and monitor the performance of the 7-core SDM OTN system and promptly report failure events through alarms.Our field trial demonstrates the compatibility of uncoupled MCF with high-speed OTN transmission equipment and network management systems,supporting its future deployment in next-generation high-speed terrestrial cable transmission networks.
文摘Many organizations are struggling to provide high bandwidth and reliable internet connectivity at their branch offices and business locations and getting the most out of their operational expense.The need for internet connectivity at any branch offices and business locations is not a luxury anymore but is a necessity.Let us try to understand how to plan and document the SDWAN(Software Defined-Wide Area Network)implementation in an organization.We will try to understand why it is essential to implement the new technology instead of investing in the existing MPLS(Multi-Protocol label switching)by taking an example of a retail organization.Methods:This project/research was performed using the abilities of Software Defined Network Technology and options available in MPLS(Multi-Protocol Label Switching).The Technical Project management principles were adopted as per PMI(Project Management Institute)waterfall methodology.Results/Conclusion:SDWAN technology provides an effective replacement of MPLS network connection for providing WAN connectivity for our office locations.It is essential to follow a documented process for appropriate vendor selection based on the available features and other listed attributes in the article.To be successful in the implementation it is essential to perform a POC(Proof of Concept)in a controlled environment and validate results.SDWAN provides better network performance and improves reliability as the links operate in active-active function.
文摘Under the background of training practical compound talents in software engineering,this paper analyzes the problems existing in the current teaching of software engineering courses represented by software project management,puts forward the team task mechanism of software engineering courses with AI empowerment and cooperation and competition,develops a unified project management platform to support the implementation of team tasks,and proves the effectiveness of the scheme through the results obtained.
文摘This study focuses on the management of maintenance hemodialysis(MHD)patients,with a specific emphasis on the practical application effect of the network information management model including its impact on patients’compliance.A network information management model for MHD patients was constructed around three management schemes:“software reminders+follow-up guidance”,“dietary records+self-management reminders”,and“dialysis plan+precise weight management”.These schemes were respectively used to optimize anemia management,control the risk of hyperphosphatemia,and improve toxin clearance efficiency.A controlled experiment was conducted,with an experimental group and a control group set up for comparative practice.The results showed that the network information management model can effectively improve patients’anemia,help alleviate mineral metabolism disorders and the accumulation of small-molecule toxins,and exert a positive impact on patients’treatment compliance.
文摘Internet of things networks often suffer from early node failures and short lifespan due to energy limits.Traditional routing methods are not enough.This work proposes a new hybrid algorithm called ACOGA.It combines Ant Colony Optimization(ACO)and the Greedy Algorithm(GA).ACO finds smart paths while Greedy makes quick decisions.This improves energy use and performance.ACOGA outperforms Hybrid Energy-Efficient(HEE)and Adaptive Lossless Data Compression(ALDC)algorithms.After 500 rounds,only 5%of ACOGA’s nodes are dead,compared to 15%for HEE and 20%for ALDC.The network using ACOGA runs for 1200 rounds before the first nodes fail.HEE lasts 900 rounds and ALDC only 850.ACOGA saves at least 15%more energy by better distributing the load.It also achieves a 98%packet delivery rate.The method works well in mixed IoT networks like Smart Water Management Systems(SWMS).These systems have different power levels and communication ranges.The simulation of proposed model has been done in MATLAB simulator.The results show that that the proposed model outperform then the existing models.
基金funded in part by Grant No.RG-15-135-43 from the Deanship of Scientific Research(DSR)at King Abdulaziz University in Saudi Arabia.
文摘The proliferation of distributed and renewable energy resources introduces additional operational challenges to power distribution systems.Transactive energy management,which allows networked neighborhood communities and houses to trade energy,is expected to be developed as an effective method for accommodating additional uncertainties and security mandates pertaining to distributed energy resources.This paper proposes and analyzes a two-layer transactive energy market in which houses in networked neighborhood community microgrids will trade energy in respective market layers.This paper studies the blockchain applications to satisfy socioeconomic and technological concerns of secure transactive energy management in a two-level power distribution system.The numerical results for practical networked microgrids located at IllinoisTech−Bronzeville in Chicago illustrate the validity of the proposed blockchain-based transactive energy management for devising a distributed,scalable,efficient,and cybersecured power grid operation.The conclusion of the paper summarizes the prospects for blockchain applications to transactive energy management in power distribution systems.
基金supported in part by the National Natural Science Foundation of China under Grant 61941113,Grant 61971033,and Grant 61671057by the Henan Provincial Department of Science and Technology Project(No.212102210408)by the Henan Provincial Key Scientific Research Project(No.22A520041).
文摘5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large number of devices,thus realizing richer application scenarios and constructing 5G-enabled vehicular networks.However,due to the vulnerability of wireless communication,vehicle privacy and communication security have become the key problems to be solved in vehicular networks.Moreover,the large-scale communication in the vehicular networks also makes the higher communication efficiency an inevitable requirement.In order to achieve efficient and secure communication while protecting vehicle privacy,this paper proposes a lightweight key agreement and key update scheme for 5G vehicular networks based on blockchain.Firstly,the key agreement is accomplished using certificateless public key cryptography,and based on the aggregate signature and the cooperation between the vehicle and the trusted authority,an efficient key updating method is proposed,which reduces the overhead and protects the privacy of the vehicle while ensuring the communication security.Secondly,by introducing blockchain and using smart contracts to load the vehicle public key table for key management,this meets the requirements of vehicle traceability and can dynamically track and revoke misbehaving vehicles.Finally,the formal security proof under the eck security model and the informal security analysis is conducted,it turns out that our scheme is more secure than other authentication schemes in the vehicular networks.Performance analysis shows that our scheme has lower overhead than existing schemes in terms of communication and computation.
文摘Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET estimation.The findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological processes.These hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET estimation.The growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional methods.Despite the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data scarcity.Future research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder trust.Additionally,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world applications.Approaches such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these challenges.This study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable regions.By integrating CNNs for automatic feature extraction and leveraging hybrid architectures,HANNs offer considerable advantages for optimizing water management,particularly agriculture.Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and operational success of HANNs in global water resource management.
文摘Software-defined networking(SDN)is a paradigm shift in modern networking.However,centralised controller architecture in SDNimposed flow setup overhead issue as the control plane handles all flows regardless of size and priority.Existing frameworks strictly reduce control plane overhead and it does not focus on rule placement of the flows itself.Furthermore,existing frameworks do not focus on managing elephant flows like RTSP.Thus,the proposed mechanism will use the flow statistics gathering method such as random packet sampling to determine elephant flow and microflow via a predefined threshold.This mechanism will ensure that the control plane works at an optimum workload because the controller only manages elephant flows via reactive routing and rule placement respectively.Reactive routing has reduced link bandwidth usage below the pre-defined threshold.Furthermore,rule placement has increased average throughput and total transfer to 238%.Meanwhile,the data plane switches will be able to forward microflows via multipath wildcard routing without invoking controller in greater responding time by 85 ms faster in two Transmission Control Protocol(TCP)traffic and achieved 11%and 12%higher total transfer size and throughput respectively.Hence,the controller’s workload reduced significantly to 48%in two TCP traffic.