Training deep neural networks(DNNs)requires a significant amount of time and resources to obtain acceptable results,which severely limits its deployment in resource-limited platforms.This paper proposes DarkFPGA,a nov...Training deep neural networks(DNNs)requires a significant amount of time and resources to obtain acceptable results,which severely limits its deployment in resource-limited platforms.This paper proposes DarkFPGA,a novel customizable framework to efficiently accelerate the entire DNN training on a single FPGA platform.First,we explore batch-level parallelism to enable efficient FPGA-based DNN training.Second,we devise a novel hardware architecture optimised by a batch-oriented data pattern and tiling techniques to effectively exploit parallelism.Moreover,an analytical model is developed to determine the optimal design parameters for the DarkFPGA accelerator with respect to a specific network specification and FPGA resource constraints.Our results show that the accelerator is able to perform about 10 times faster than CPU training and about a third of the energy consumption than GPU training using 8-bit integers for training VGG-like networks on the CIFAR dataset for the Maxeler MAX5 platform.展开更多
Aircraft pollutant emissions are an important part of sources of pollution that directly or indirectly affect human health and ecosystems. This research suggests an Artificial Neural Network model to determine the hea...Aircraft pollutant emissions are an important part of sources of pollution that directly or indirectly affect human health and ecosystems. This research suggests an Artificial Neural Network model to determine the healthy risk level around Soekarno Hatta International Airport-Cengkareng Indonesia. This ANN modeling is a flexible method, which enables to recognize highly complex non-linear correlations. The network was trained with real measurement data and updated with new measurements, enhancing its quality and making it the ideal method for this research. Measurements of aircraft pollutant emissions are carried out with the aim to be used as input data and to validate the developed model. The obtained results concerned the improved ANN architecture model based on pollutant emissions as input variables. ANN model processes variables—hidden layers—and gives an output variable corresponding to a healthy risk level. This model is characterized by a 4-10-1 scheme. Based on ANN criteria, the best validation performance is achieved at epoch 28 from 34 epochs with the Mean Squared Error (MSE) of 9 × 10-3. The correlation between targets and outputs is confirmed. It validated a close relationship between targets and outputs. The network output errors value approaches zero. Further research is needed with the aim to enlarge the scheme of the ANN model by increasing its input variables. This is one of the major key defining environmental capacities of an airport that should be applied by Indonesian airport authorities. These would institute policies to manage or reduce pollutant emissions considering population and income growth to be socially positive.展开更多
In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show...In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show that this model has a simple algorithm and high data utilization,avoids the negative influences caused by the correlation among the data acquired from the difference method and its accuracy is improved compared with the difference method.In addition,the strict weight of CPⅢprecise trigonometric leveling control network was also discussed in this paper.The results demonstrate that the ranging error of trigonometric leveling can be neglected when the vertical angle is less than 3 degrees.The accuracy of CPⅢprecise trigonometric leveling control network has not changed significantly before and after strict weight.展开更多
Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up base...Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up based on a three-step method at key nodes, and model correction values were collected from gauge stations. To improve the accuracy of water level and discharge forecasts for the entire network, the discrete coefficients of the Saint-Venant equations for river sections were regarded as the media carrying the correction values from observation locations to other cross-sections of the river network system. To examine the applicability, the updating model was applied to flow calculation of an ideal river network and the Chengtong section of the Yangtze River. Comparison of the forecast results with the observed data demonstrates that this updating model can improve the forecast accuracy in both ideal and real river networks.展开更多
Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time...Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time unit, the generator determines the sent packets number, the type and size of every sent packet according to the statistical characteristics of the original traffic. Then every packet, in which the protocol headers of transport layer, network layer and ethernet layer are encapsulated, is sent via the responding network interface card in the time unit. The results in the experiment show that the correlation coefficients between the bandwidth, the packet number, packet size distribution, the fragment number of the generated network traffic and those of the original traffic are all more than 0.96. The generated traffic and original traffic are very highly related and similar.展开更多
The recent evolution of the Internet towards "Information-centric" transfer modes has renewed the interest in exploiting proxies to enhance seamless mobility. In this work, we focus on the case of multiple l...The recent evolution of the Internet towards "Information-centric" transfer modes has renewed the interest in exploiting proxies to enhance seamless mobility. In this work, we focus on the case of multiple levels of proxies in ICN architectures, in which content requests from mobile subscribers and the corresponding items are proactively cached to these proxies at different levels. Specifically, we present a multiple-level proactive caching model that selects the appropriate subset of proxies at different levels and supports distributed online decision procedures in terms of the tradeoff between delay and cache cost. We show via extensive simulations the reduction of up to 31.63% in the total cost relative to Full Caching, in which caching in all 1-level neighbor proxies is performed, and up to 84.21% relative to No Caching, in which no caching is used. Moreover, the proposed model outperforms other approaches with a flat cache structure in terms of the total cost.展开更多
Due to the limited transmission range, data sensed by each sensor has to be forwarded in a multi-hop fashion before being delivered to the sink. The sensors closer to the sink have to forward comparatively more messag...Due to the limited transmission range, data sensed by each sensor has to be forwarded in a multi-hop fashion before being delivered to the sink. The sensors closer to the sink have to forward comparatively more messages than sensors at the periphery of the network,and will deplete their batteries earlier. Besides the loss of the sensing capabilities of the nodes close to the sink, a more serious consequence of the death of the first tier of sensor nodes is the loss of connectivity between the nodes at the periphery of the network and the sink;it makes the wireless networks expire. To alleviate this undesired effect and maximize the useful lifetime of the network, we investigate the energy consumption of different tiers and the effect of multiple battery levels, and demonstrate an attractively simple scheme to redistribute the total energy budget in multiple battery levels by data traffic load. We show by theoretical analysis, as well as simulation, that this substantially improves the network lifetime.展开更多
Confirmation of basic technological parameters of tension levellers is the most important factor of leveling strip. Up to now, most factories have used experts’ experience to decide these parameters, without any esta...Confirmation of basic technological parameters of tension levellers is the most important factor of leveling strip. Up to now, most factories have used experts’ experience to decide these parameters, without any established rule to follow. For better quality of strip, a valid method is needed to decide technological parameters precisely and reasonably. In this paper, a method is used based on neural network and genetic algorithm. Neural network has a good ability to extract rules from work process of tension levellers. Then using neural network, which has learned from a lot of working samples, to be the evaluation of fitness, genetic algorithm could easily find the best or better technological parameters. At the end of this paper, examinations are given to show the effect of this method.展开更多
It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synch...It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synchronization can be found in an excitatory/inhibitory (E/I) neuronal network with medium synaptie delay and high level of heterogeneity, which often occurs in real neuronal networks. Two effects of post-synaptic potentials (PSP) to network synchronization are presented, and the synaptic contribution of excitatory and inhibitory neurons to robust synchronization in this E/I network is investigated. It is found that both excitatory and inhibitory neurons may contribute to robust synchronization in E/I networks, especially the excitatory PSP has a more positive effect on synchronization in E/I networks than that in excitatory networks. This may explain the strong robustness of synchronization in Eli neuronal networks.展开更多
Network processors (NPs) are widely used for programmable and high-performance networks;however, the programs for NPs are less portable, the number of NP program developers is small, and the development cost is high. ...Network processors (NPs) are widely used for programmable and high-performance networks;however, the programs for NPs are less portable, the number of NP program developers is small, and the development cost is high. To solve these problems, this paper proposes an open, high-level, and portable programming language called “Phonepl”, which is independent from vendor-specific proprietary hardware and software but can be translated into an NP program with high performance especially in the memory use. A common NP hardware feature is that a whole packet is stored in DRAM, but the header is cached in SRAM. Phonepl has a hardware-independent abstraction of this feature so that it allows programmers mostly unconscious of this hardware feature. To implement the abstraction, four representations of packet data type that cover all the packet operations (including substring, concatenation, input, and output) are introduced. Phonepl have been implemented on Octeon NPs used in plug-ins for a network-virtualization environment called the VNode Infrastructure, and several packet-handling programs were evaluated. As for the evaluation result, the conversion throughput is close to the wire rate, i.e., 10 Gbps, and no packet loss (by cache miss) occurs when the packet size is 256 bytes or larger.展开更多
To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure ...To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.展开更多
The objective of this study is to predict groundwater levels (GWLs) under different impact factors using Artificial Neural Network (ANN) for a case study in Tra Noc Industrial Zone, Can Tho City, Vietnam. This can be ...The objective of this study is to predict groundwater levels (GWLs) under different impact factors using Artificial Neural Network (ANN) for a case study in Tra Noc Industrial Zone, Can Tho City, Vietnam. This can be achieved by evaluating the current state of groundwater resources (GWR) exploitation, use and dynamics;setting-up, calibrating and validating the ANN;and then predicting GWLs at different lead times. The results show that GWLs in the study area have been found to reduce rapidly from 2000 to 2015, especially in the Middle-upper Pleistocene (qp2-3) and upper Pleistocene (qp3) due to the over-withdrawals from the enterprises for production purposes. Concerning this problem, an Official Letter of the People’s Committee of Can Tho City was issued and taken into enforcement in 2012 resulting in the reduction of exploitation. The calibrated ANN structures have successfully demonstrated that the GWLs can be predicted considering different impact factors. The predicted results will help to raise awareness and to draw an attention of the local/central government for a clear GWR management policy for the Mekong delta, especially the industrial zones in the urban areas such as Can Tho city.展开更多
In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid for...In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid form a cluster with a cluster head. Each cluster head maintains the confidence levels of its member nodes based on their readings and reflects them in decision-making. Two thresholds are used to distinguish between false alarms due to malicious nodes and events. In addition, the center of an event region is estimated, if necessary, to enhance the event and malicious node detection accuracy. Experimental results show that the scheme can achieve high malicious node detection accuracy without sacrificing normal sensor nodes.展开更多
We systematically analyze coseismic responses and post-seismic characteristics of groundwater levels in the Three Gorges well-network to the Ms8.0 Wenchuan earthquake on 12 May 2008. The results indicate that these ch...We systematically analyze coseismic responses and post-seismic characteristics of groundwater levels in the Three Gorges well-network to the Ms8.0 Wenchuan earthquake on 12 May 2008. The results indicate that these characteristics differ among wells. On the conditions of similar borehole configurations, the differences are associated with geological structural sites of wells, burial types of aquifers monitored, and transmissivities of aquifer systems. We explored coseismic and post-seismic step-rise and step-drop mechanical mechanisms and their implication to earthquake prediction. We validated the inference that the residual step-rise zone is a possible earthquake risk zone based on recent seismic activity on the Xiannüshan fault in the area.展开更多
With the rise of cloud computing in recent years, a large number of streaming media has yielded an exponential growth in network traffic. With the now present 5G and future 6G, the development of the Internet of Thing...With the rise of cloud computing in recent years, a large number of streaming media has yielded an exponential growth in network traffic. With the now present 5G and future 6G, the development of the Internet of Things (IoT), social networks, video on demand, and mobile multimedia platforms, the backbone network is bound to bear more traffic. The transmission capacity of Single Core Fiber (SCFs) may be limited in the future and Spatial Division Multiplexing (SDM) leveraging multi-core fibers promises to be one of the solutions for the future. Currently, Elastic optical networks (EONs) with multi-core fibers (MCFs) are a kind of SDM-enabled EONs (SDM-EON) used to enhance the capacity of transmission. The resource assignment in MCFs, however, will be subject to Inter-Core Crosstalk (IC-XT), hence, reducing the effectiveness of transmission. This research highlights the routing, modulation level, and spectrum assignment (RMLSA) problems with anycast traffic mode in SDM-EON. A multipath routing scheme is used to reduce the blocking rate of anycast traffic in SDM-EON with the limit of inter-core crosstalk. Hence, an integer linear programming (ILP) problem is formulated and a heuristic algorithm is proposed. Two core-assignment strategies: First-Fit (FF) and Random-Fit (RF) are used and their performance is evaluated through simulations. The simulation results show that the multipath routing method is better than the single-path routing method in terms of blocking ratio and spectrum utilization ratio. Moreover, the FF is better than the RF in low traffic load in terms of blocking ratio (BR), and the opposite in high traffic load. The FF is better than the RF in terms of a spectrum utilization ratio. In an anycast protection problem, the proposed algorithm has a lower BR than previous works.展开更多
The need for travel demand models is growing worldwide. Obtaining reasonably accurate level of service (LOS) attributes of different travel modes such as travel time and cost representing the performance of transporta...The need for travel demand models is growing worldwide. Obtaining reasonably accurate level of service (LOS) attributes of different travel modes such as travel time and cost representing the performance of transportation system is not a trivial task, especially in growing cities of developing countries. This study investigates the sensitivity of results of a travel mode choice model to different specifications of network-based LOS attributes using a mixed logit model. The study also looks at the possibilities of correcting some of the inaccuracies in network-based LOS attributes. Further, the study also explores the effects of different specifications of LOS data on implied values of time and aggregation forecasting. The findings indicate that the implied values of time are very sensitive to specification of data and model implying that utmost care must be taken if the purpose of the model is to estimate values of time. Models estimated on all specifications of LOS-data perform well in prediction, likely suggesting that the extra expense on developing a more detailed and accurate network models so as to derive more precise LOS attributes is unnecessary for impact analyses of some policies.展开更多
In current research, a series of triaxial tests, which were employed to simulate three typical mining lay-outs (i.e., top-coal caving, non-pillar mining and protected coal seam mining), were conducted on coal by using...In current research, a series of triaxial tests, which were employed to simulate three typical mining lay-outs (i.e., top-coal caving, non-pillar mining and protected coal seam mining), were conducted on coal by using MTS815 Flex Test GT rock mechanics test system, and the fracture networks in the broken coal samples were qualitatively and quantitatively investigated by employing CT scanning and 3D reconstruc-tion techniques. This work aimed at providing a detail description on the micro-structure and fracture-connectivity characteristics of rupture coal samples under different mining layouts. The results show that: (i) for protected coal seam mining layout, the coal specimens failure is in a compression-shear manner and oppositely, (ii) the tension-shear failure phenomenon is observed for top-coal caving and non-pillar mining layouts. By investigating the connectivity features of the generated fractures in the direction of r1 under different mining layouts, it is found that the connectivity level of the fractures of the samples corresponding to non-pillar mining layout was the highest.展开更多
The burgeoning use of Web 2.0-powered social media in recent years has inspired numerous studies on the content and composition of online social networks (OSNs). Many methods of harvesting useful information from soci...The burgeoning use of Web 2.0-powered social media in recent years has inspired numerous studies on the content and composition of online social networks (OSNs). Many methods of harvesting useful information from social networks’ immense amounts of user-generated data have been successfully applied to such real-world topics as politics and marketing, to name just a few. This study presents a novel twist on two popular techniques for studying OSNs: community detection and sentiment analysis. Using sentiment classification to enhance community detection and community partitions to permit more in-depth analysis of sentiment data, these two techniques are brought together to analyze four networks from the Twitter OSN. The Twitter networks used for this study are extracted from four accounts related to Microsoft Corporation, and together encompass more than 60,000 users and 2 million tweets collected over a period of 32 days. By combining community detection and sentiment analysis, modularity values were increased for the community partitions detected in three of the four networks studied. Furthermore, data collected during the community detection process enabled more granular, community-level sentiment analysis on a specific topic referenced by users in the dataset.展开更多
文摘Training deep neural networks(DNNs)requires a significant amount of time and resources to obtain acceptable results,which severely limits its deployment in resource-limited platforms.This paper proposes DarkFPGA,a novel customizable framework to efficiently accelerate the entire DNN training on a single FPGA platform.First,we explore batch-level parallelism to enable efficient FPGA-based DNN training.Second,we devise a novel hardware architecture optimised by a batch-oriented data pattern and tiling techniques to effectively exploit parallelism.Moreover,an analytical model is developed to determine the optimal design parameters for the DarkFPGA accelerator with respect to a specific network specification and FPGA resource constraints.Our results show that the accelerator is able to perform about 10 times faster than CPU training and about a third of the energy consumption than GPU training using 8-bit integers for training VGG-like networks on the CIFAR dataset for the Maxeler MAX5 platform.
文摘Aircraft pollutant emissions are an important part of sources of pollution that directly or indirectly affect human health and ecosystems. This research suggests an Artificial Neural Network model to determine the healthy risk level around Soekarno Hatta International Airport-Cengkareng Indonesia. This ANN modeling is a flexible method, which enables to recognize highly complex non-linear correlations. The network was trained with real measurement data and updated with new measurements, enhancing its quality and making it the ideal method for this research. Measurements of aircraft pollutant emissions are carried out with the aim to be used as input data and to validate the developed model. The obtained results concerned the improved ANN architecture model based on pollutant emissions as input variables. ANN model processes variables—hidden layers—and gives an output variable corresponding to a healthy risk level. This model is characterized by a 4-10-1 scheme. Based on ANN criteria, the best validation performance is achieved at epoch 28 from 34 epochs with the Mean Squared Error (MSE) of 9 × 10-3. The correlation between targets and outputs is confirmed. It validated a close relationship between targets and outputs. The network output errors value approaches zero. Further research is needed with the aim to enlarge the scheme of the ANN model by increasing its input variables. This is one of the major key defining environmental capacities of an airport that should be applied by Indonesian airport authorities. These would institute policies to manage or reduce pollutant emissions considering population and income growth to be socially positive.
基金National Natural Science Foundation of China(No.41661091)。
文摘In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show that this model has a simple algorithm and high data utilization,avoids the negative influences caused by the correlation among the data acquired from the difference method and its accuracy is improved compared with the difference method.In addition,the strict weight of CPⅢprecise trigonometric leveling control network was also discussed in this paper.The results demonstrate that the ranging error of trigonometric leveling can be neglected when the vertical angle is less than 3 degrees.The accuracy of CPⅢprecise trigonometric leveling control network has not changed significantly before and after strict weight.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant No.51190091)the National Natural Science Foundation of China(Grant No.51009045)the Open Research Fund Program of the State Key Laboratory of Water Resources and Hydropower Engineering Science of Wuhan University(Grant No.2012B094)
文摘Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up based on a three-step method at key nodes, and model correction values were collected from gauge stations. To improve the accuracy of water level and discharge forecasts for the entire network, the discrete coefficients of the Saint-Venant equations for river sections were regarded as the media carrying the correction values from observation locations to other cross-sections of the river network system. To examine the applicability, the updating model was applied to flow calculation of an ideal river network and the Chengtong section of the Yangtze River. Comparison of the forecast results with the observed data demonstrates that this updating model can improve the forecast accuracy in both ideal and real river networks.
基金supported in part by national science and technology major project of the ministry of science and technology of China No. 2012BAH45B01Fundamental Research Funds for the Central Universities No. 2014ZD03-03
文摘Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time unit, the generator determines the sent packets number, the type and size of every sent packet according to the statistical characteristics of the original traffic. Then every packet, in which the protocol headers of transport layer, network layer and ethernet layer are encapsulated, is sent via the responding network interface card in the time unit. The results in the experiment show that the correlation coefficients between the bandwidth, the packet number, packet size distribution, the fragment number of the generated network traffic and those of the original traffic are all more than 0.96. The generated traffic and original traffic are very highly related and similar.
基金supported by National Natural Science Foundation of China (Grant Nos. 61302078 and 61372108)National High-tech R&D Program of China (863 Program) (Grant Nos. 2011AA01A102)+1 种基金National S&T Major Project (Grant Nos. 2011ZX 03005-004-02)Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0476)
文摘The recent evolution of the Internet towards "Information-centric" transfer modes has renewed the interest in exploiting proxies to enhance seamless mobility. In this work, we focus on the case of multiple levels of proxies in ICN architectures, in which content requests from mobile subscribers and the corresponding items are proactively cached to these proxies at different levels. Specifically, we present a multiple-level proactive caching model that selects the appropriate subset of proxies at different levels and supports distributed online decision procedures in terms of the tradeoff between delay and cache cost. We show via extensive simulations the reduction of up to 31.63% in the total cost relative to Full Caching, in which caching in all 1-level neighbor proxies is performed, and up to 84.21% relative to No Caching, in which no caching is used. Moreover, the proposed model outperforms other approaches with a flat cache structure in terms of the total cost.
文摘Due to the limited transmission range, data sensed by each sensor has to be forwarded in a multi-hop fashion before being delivered to the sink. The sensors closer to the sink have to forward comparatively more messages than sensors at the periphery of the network,and will deplete their batteries earlier. Besides the loss of the sensing capabilities of the nodes close to the sink, a more serious consequence of the death of the first tier of sensor nodes is the loss of connectivity between the nodes at the periphery of the network and the sink;it makes the wireless networks expire. To alleviate this undesired effect and maximize the useful lifetime of the network, we investigate the energy consumption of different tiers and the effect of multiple battery levels, and demonstrate an attractively simple scheme to redistribute the total energy budget in multiple battery levels by data traffic load. We show by theoretical analysis, as well as simulation, that this substantially improves the network lifetime.
文摘Confirmation of basic technological parameters of tension levellers is the most important factor of leveling strip. Up to now, most factories have used experts’ experience to decide these parameters, without any established rule to follow. For better quality of strip, a valid method is needed to decide technological parameters precisely and reasonably. In this paper, a method is used based on neural network and genetic algorithm. Neural network has a good ability to extract rules from work process of tension levellers. Then using neural network, which has learned from a lot of working samples, to be the evaluation of fitness, genetic algorithm could easily find the best or better technological parameters. At the end of this paper, examinations are given to show the effect of this method.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11102038,11472061,70971021,71371046and 61203325the Shanghai Natural Science Foundation under Grant No 13ZR1400200+1 种基金the Undergraduate Education Key Reform Project of Shanghai Universities under Grant No X12071306the Fundamental Research Funds for the Central Universities at Donghua University under Grant Nos 14D110402,2232013D3-39 and 14D110417
文摘It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synchronization can be found in an excitatory/inhibitory (E/I) neuronal network with medium synaptie delay and high level of heterogeneity, which often occurs in real neuronal networks. Two effects of post-synaptic potentials (PSP) to network synchronization are presented, and the synaptic contribution of excitatory and inhibitory neurons to robust synchronization in this E/I network is investigated. It is found that both excitatory and inhibitory neurons may contribute to robust synchronization in E/I networks, especially the excitatory PSP has a more positive effect on synchronization in E/I networks than that in excitatory networks. This may explain the strong robustness of synchronization in Eli neuronal networks.
文摘Network processors (NPs) are widely used for programmable and high-performance networks;however, the programs for NPs are less portable, the number of NP program developers is small, and the development cost is high. To solve these problems, this paper proposes an open, high-level, and portable programming language called “Phonepl”, which is independent from vendor-specific proprietary hardware and software but can be translated into an NP program with high performance especially in the memory use. A common NP hardware feature is that a whole packet is stored in DRAM, but the header is cached in SRAM. Phonepl has a hardware-independent abstraction of this feature so that it allows programmers mostly unconscious of this hardware feature. To implement the abstraction, four representations of packet data type that cover all the packet operations (including substring, concatenation, input, and output) are introduced. Phonepl have been implemented on Octeon NPs used in plug-ins for a network-virtualization environment called the VNode Infrastructure, and several packet-handling programs were evaluated. As for the evaluation result, the conversion throughput is close to the wire rate, i.e., 10 Gbps, and no packet loss (by cache miss) occurs when the packet size is 256 bytes or larger.
基金Supported by the Shanxi Natural Science Foundation under contract number 20041070 and Natural Science Foundation of north u-niversity of China .
文摘To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.
文摘The objective of this study is to predict groundwater levels (GWLs) under different impact factors using Artificial Neural Network (ANN) for a case study in Tra Noc Industrial Zone, Can Tho City, Vietnam. This can be achieved by evaluating the current state of groundwater resources (GWR) exploitation, use and dynamics;setting-up, calibrating and validating the ANN;and then predicting GWLs at different lead times. The results show that GWLs in the study area have been found to reduce rapidly from 2000 to 2015, especially in the Middle-upper Pleistocene (qp2-3) and upper Pleistocene (qp3) due to the over-withdrawals from the enterprises for production purposes. Concerning this problem, an Official Letter of the People’s Committee of Can Tho City was issued and taken into enforcement in 2012 resulting in the reduction of exploitation. The calibrated ANN structures have successfully demonstrated that the GWLs can be predicted considering different impact factors. The predicted results will help to raise awareness and to draw an attention of the local/central government for a clear GWR management policy for the Mekong delta, especially the industrial zones in the urban areas such as Can Tho city.
文摘In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid form a cluster with a cluster head. Each cluster head maintains the confidence levels of its member nodes based on their readings and reflects them in decision-making. Two thresholds are used to distinguish between false alarms due to malicious nodes and events. In addition, the center of an event region is estimated, if necessary, to enhance the event and malicious node detection accuracy. Experimental results show that the scheme can achieve high malicious node detection accuracy without sacrificing normal sensor nodes.
基金supportedby Basic Science Research Special Item of the Institute of Geology, China Earthquake Administration (NoDF-IGCEA-0608-2-10)Special Research Program of China Earthquake Administration (No. 200808079).
文摘We systematically analyze coseismic responses and post-seismic characteristics of groundwater levels in the Three Gorges well-network to the Ms8.0 Wenchuan earthquake on 12 May 2008. The results indicate that these characteristics differ among wells. On the conditions of similar borehole configurations, the differences are associated with geological structural sites of wells, burial types of aquifers monitored, and transmissivities of aquifer systems. We explored coseismic and post-seismic step-rise and step-drop mechanical mechanisms and their implication to earthquake prediction. We validated the inference that the residual step-rise zone is a possible earthquake risk zone based on recent seismic activity on the Xiannüshan fault in the area.
文摘With the rise of cloud computing in recent years, a large number of streaming media has yielded an exponential growth in network traffic. With the now present 5G and future 6G, the development of the Internet of Things (IoT), social networks, video on demand, and mobile multimedia platforms, the backbone network is bound to bear more traffic. The transmission capacity of Single Core Fiber (SCFs) may be limited in the future and Spatial Division Multiplexing (SDM) leveraging multi-core fibers promises to be one of the solutions for the future. Currently, Elastic optical networks (EONs) with multi-core fibers (MCFs) are a kind of SDM-enabled EONs (SDM-EON) used to enhance the capacity of transmission. The resource assignment in MCFs, however, will be subject to Inter-Core Crosstalk (IC-XT), hence, reducing the effectiveness of transmission. This research highlights the routing, modulation level, and spectrum assignment (RMLSA) problems with anycast traffic mode in SDM-EON. A multipath routing scheme is used to reduce the blocking rate of anycast traffic in SDM-EON with the limit of inter-core crosstalk. Hence, an integer linear programming (ILP) problem is formulated and a heuristic algorithm is proposed. Two core-assignment strategies: First-Fit (FF) and Random-Fit (RF) are used and their performance is evaluated through simulations. The simulation results show that the multipath routing method is better than the single-path routing method in terms of blocking ratio and spectrum utilization ratio. Moreover, the FF is better than the RF in low traffic load in terms of blocking ratio (BR), and the opposite in high traffic load. The FF is better than the RF in terms of a spectrum utilization ratio. In an anycast protection problem, the proposed algorithm has a lower BR than previous works.
文摘The need for travel demand models is growing worldwide. Obtaining reasonably accurate level of service (LOS) attributes of different travel modes such as travel time and cost representing the performance of transportation system is not a trivial task, especially in growing cities of developing countries. This study investigates the sensitivity of results of a travel mode choice model to different specifications of network-based LOS attributes using a mixed logit model. The study also looks at the possibilities of correcting some of the inaccuracies in network-based LOS attributes. Further, the study also explores the effects of different specifications of LOS data on implied values of time and aggregation forecasting. The findings indicate that the implied values of time are very sensitive to specification of data and model implying that utmost care must be taken if the purpose of the model is to estimate values of time. Models estimated on all specifications of LOS-data perform well in prediction, likely suggesting that the extra expense on developing a more detailed and accurate network models so as to derive more precise LOS attributes is unnecessary for impact analyses of some policies.
基金financially supported by the Major State Fundamental Research Project of China(Nos.2011CB201201and2010CB226802)the National Natural Science Foundation of China(No.51204113)the Youth Science and Technology Fund of Sichuan Province(No.2012JQ0031)
文摘In current research, a series of triaxial tests, which were employed to simulate three typical mining lay-outs (i.e., top-coal caving, non-pillar mining and protected coal seam mining), were conducted on coal by using MTS815 Flex Test GT rock mechanics test system, and the fracture networks in the broken coal samples were qualitatively and quantitatively investigated by employing CT scanning and 3D reconstruc-tion techniques. This work aimed at providing a detail description on the micro-structure and fracture-connectivity characteristics of rupture coal samples under different mining layouts. The results show that: (i) for protected coal seam mining layout, the coal specimens failure is in a compression-shear manner and oppositely, (ii) the tension-shear failure phenomenon is observed for top-coal caving and non-pillar mining layouts. By investigating the connectivity features of the generated fractures in the direction of r1 under different mining layouts, it is found that the connectivity level of the fractures of the samples corresponding to non-pillar mining layout was the highest.
文摘The burgeoning use of Web 2.0-powered social media in recent years has inspired numerous studies on the content and composition of online social networks (OSNs). Many methods of harvesting useful information from social networks’ immense amounts of user-generated data have been successfully applied to such real-world topics as politics and marketing, to name just a few. This study presents a novel twist on two popular techniques for studying OSNs: community detection and sentiment analysis. Using sentiment classification to enhance community detection and community partitions to permit more in-depth analysis of sentiment data, these two techniques are brought together to analyze four networks from the Twitter OSN. The Twitter networks used for this study are extracted from four accounts related to Microsoft Corporation, and together encompass more than 60,000 users and 2 million tweets collected over a period of 32 days. By combining community detection and sentiment analysis, modularity values were increased for the community partitions detected in three of the four networks studied. Furthermore, data collected during the community detection process enabled more granular, community-level sentiment analysis on a specific topic referenced by users in the dataset.