期刊文献+
共找到27,766篇文章
< 1 2 250 >
每页显示 20 50 100
Artificial Intelligence (AI)-Enabled Unmanned Aerial Vehicle (UAV) Systems for Optimizing User Connectivity in Sixth-Generation (6G) Ubiquitous Networks
1
作者 Zeeshan Ali Haider Inam Ullah +2 位作者 Ahmad Abu Shareha Rashid Nasimov Sufyan Ali Memon 《Computers, Materials & Continua》 2026年第1期534-549,共16页
The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-gener... The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment. 展开更多
关键词 6G networks UAV-based communication cooperative reinforcement learning network optimization user connectivity energy efficiency
在线阅读 下载PDF
Optimal Dispatch of Urban Distribution Networks Considering Virtual Power Plant Coordination under Extreme Scenarios
2
作者 Yong Li Yuxuan Chen +4 位作者 Jiahui He Guowei He Chenxi Dai Jingjing Tong Wenting Lei 《Energy Engineering》 2026年第1期204-220,共17页
Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the... Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study. 展开更多
关键词 Urban distribution network virtual power plant power supply support leader-follower optimization game extreme weather scenarios
在线阅读 下载PDF
Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles 被引量:1
3
作者 Chenxu Wang Jing Bian Rui Yuan 《Energy Engineering》 2025年第3期985-1003,共19页
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o... Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem. 展开更多
关键词 Active distribution network new energy electric vehicles dynamic reactive power optimization kmedoids clustering hybrid optimization algorithm
在线阅读 下载PDF
Multi-Timescale Optimization Scheduling of Distribution Networks Based on the Uncertainty Intervals in Source-Load Forecasting 被引量:1
4
作者 Huanan Yu Chunhe Ye +3 位作者 Shiqiang Li He Wang Jing Bian Jinling Li 《Energy Engineering》 2025年第6期2417-2448,共32页
With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation ... With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load.Accounting for these issues,this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks.First,the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts,based on which,the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed.Subsequently,a multi-timescale optimization framework was constructed,incorporating the generation and load forecast uncertainties.This framework included optimization models for dayahead scheduling,intra-day optimization,and real-time adjustments,aiming to meet flexibility needs across different timescales and improve the economic efficiency of the grid.Furthermore,an improved soft actor-critic algorithm was introduced to enhance the uncertainty exploration capability.Utilizing a centralized training and decentralized execution framework,a multi-agent SAC network model was developed to improve the decision-making efficiency of the agents.Finally,the effectiveness and superiority of the proposed method were validated using a modified IEEE-33 bus test system. 展开更多
关键词 Renewable energy distribution networks source-load uncertainty interval flexible scheduling soft actor-critic algorithm optimization model
在线阅读 下载PDF
Multi-Stage Voltage Control Optimization Strategy for Distribution Networks Considering Active-Reactive Co-Regulation of Electric Vehicles
5
作者 Shukang Lyu Fei Zeng +3 位作者 Huachun Han Huiyu Miao Yi Pan Xiaodong Yuan 《Energy Engineering》 EI 2025年第1期221-242,共22页
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis... The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network. 展开更多
关键词 Electric vehicle(EV) distribution network multi-stage optimization active-reactive power regulation voltage control
在线阅读 下载PDF
Deep Learning Mixed Hyper-Parameter Optimization Based on Improved Cuckoo Search Algorithm
6
作者 TONG Yu CHEN Rong HU Biling 《Wuhan University Journal of Natural Sciences》 2025年第2期195-204,共10页
Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,... Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,integer,or mixed,and are often given based on experience but largely affect the effectiveness of activity recognition.In order to adapt to different hyper-parameter optimization problems,our improved Cuckoo Search(CS)algorithm is proposed to optimize the mixed hyper-parameters in deep learning algorithm.The algorithm optimizes the hyper-parameters in the deep learning model robustly,and intelligently selects the combination of integer type and continuous hyper-parameters that make the model optimal.Then,the mixed hyper-parameter in Convolutional Neural Network(CNN),Long-Short-Term Memory(LSTM)and CNN-LSTM are optimized based on the methodology on the smart home activity recognition datasets.Results show that the methodology can improve the performance of the deep learning model and whether we are experienced or not,we can get a better deep learning model using our method. 展开更多
关键词 improved Cuckoo Search algorithm mixed hyper-parameter optimization deep learning
原文传递
Enhanced Multi-Object Dwarf Mongoose Algorithm for Optimization Stochastic Data Fusion Wireless Sensor Network Deployment
7
作者 Shumin Li Qifang Luo Yongquan Zhou 《Computer Modeling in Engineering & Sciences》 2025年第2期1955-1994,共40页
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ... Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained. 展开更多
关键词 Stochastic data fusion wireless sensor networks network deployment spatiotemporal coverage dwarf mongoose optimization algorithm multi-objective optimization
在线阅读 下载PDF
A hybrid genetic algorithm to the program optimization model based on a heterogeneous network
8
作者 CHEN Hang DOU Yajie +3 位作者 CHEN Ziyi JIA Qingyang ZHU Chen CHEN Haoxuan 《Journal of Systems Engineering and Electronics》 2025年第4期994-1005,共12页
Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and ... Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm. 展开更多
关键词 program optimization heterogeneous network genetic algorithm portfolio selection.
在线阅读 下载PDF
An Optimization Method for Reducing Losses in Distribution Networks Based on Tabu Search Algorithm
9
作者 Jiaqian Zhao Xiufang Gu +1 位作者 Xiaoyu Wei Mingyu Bao 《Journal of Electronic Research and Application》 2025年第2期181-190,共10页
With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reductio... With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reduction measure,lack of economy,and practicality in existing research,this paper proposes an optimization method of distribution network loss reduction based on tabu search algorithm and optimizes the combination and parameter configuration of loss reduction measure.The optimization model is developed with the goal of maximizing comprehensive benefits,incorporating both economic and environmental factors,and accounting for investment costs,including the loss of power reduction.Additionally,the model ensures that constraint conditions such as power flow equations,voltage deviations,and line transmission capacities are satisfied.The solution is obtained through a tabu search algorithm,which is well-suited for solving nonlinear problems with multiple constraints.Combined with the example of 10kV25 node construction,the simulation results show that the method can significantly reduce the network loss on the basis of ensuring the economy and environmental protection of the system,which provides a theoretical basis for distribution network planning. 展开更多
关键词 Distribution network Loss reduction measures ECONOMY optimization model Tabu search algorithm
在线阅读 下载PDF
Efficient identification of photovoltaic cell parameters via Bayesian neural network-artificial ecosystem optimization algorithm
10
作者 Bo Yang Ruyi Zheng +2 位作者 Yucun Qian Boxiao Liang Jingbo Wang 《Global Energy Interconnection》 2025年第2期316-337,共22页
Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,a... Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,and loss of recorded data can deteriorate the extraction accuracy of unknown parameters.Hence,this study proposes an intelligent parameter-identification strategy that integrates artificial ecosystem optimization(AEO)and a Bayesian neural network(BNN)for PV cell parameter extraction.A BNN is used for data preprocessing,including data denoising and prediction.Furthermore,the AEO algorithm is utilized to identify unknown parameters in the single-diode model(SDM),double-diode model(DDM),and three-diode model(TDM).Nine other metaheuristic algorithms(MhAs)are adopted for an unbiased and comprehensive validation.Simulation results show that BNN-based data preprocessing com-bined with effective MhAs significantly improve the parameter-extraction accuracy and stability compared with methods without data preprocessing.For instance,under denoised data,the accuracies of the SDM,DDM,and TDM increase by 99.69%,99.70%,and 99.69%,respectively,whereas their accuracy improvements increase by 66.71%,59.65%,and 70.36%,respectively. 展开更多
关键词 Photovoltaic cell Bayesian neural network Artificial ecosystem optimization Parameter identification
在线阅读 下载PDF
Deep-operator-network-based Mars entry parametric bank angle profile optimization
11
作者 Bo TANG Yanning GUO +2 位作者 Youmin GONG Jie MEI Weiren WU 《Chinese Journal of Aeronautics》 2025年第9期383-400,共18页
Rapid and reliable onboard optimization of bank angle profiles is crucial for mitigating uncertainties during Mars atmospheric entry.This paper presents a neural-network-accelerated methodology for optimizing parametr... Rapid and reliable onboard optimization of bank angle profiles is crucial for mitigating uncertainties during Mars atmospheric entry.This paper presents a neural-network-accelerated methodology for optimizing parametric bank angle profiles in Mars atmospheric entry missions.The methodology includes a universal approach to handling path constraints and a reliable solution method based on the Particle Swarm Optimization(PSO)algorithm.For illustrative purposes,a mission with the objective of maximizing terminal altitude is considered.The original entry optimization problem is converted into optimizing three coefficients for the bank angle profiles with terminal constraints by formulating a parametric Mars entry bank angle profile and constraint handling methods.The parameter optimization problem is addressed using the PSO algorithm,with reliability enhanced by increasing the PSO swarm size.To improve computational efficiency,an enhanced Deep Operator Network(Deep ONet)is used as a dynamics solver to predict terminal states under various bank angle profiles rapidly.Numerical simulations demonstrate that the proposed methodology ensures reliable convergence with a sufficiently large PSO swarm while maintaining high computational efficiency facilitated by the neural-network-based dynamics solver.Compared to the existing methodologies,this methodology offers a streamlined process,the reduced sensitivity to initial guesses,and the improved computational efficiency. 展开更多
关键词 Bank angle profile Mars entry Neural networks Operator learning Particle swarm optimization
原文传递
Joint Optimization Beamforming and Horizontal Trajectory for UAV Covert Communications in Non-Terrestrial Network
12
作者 Lyu Daxin Wen Zhaoxi +2 位作者 Ma Yingchang Zhang Junlin Liu Mingqian 《China Communications》 2025年第10期34-51,共18页
With the widespread application of com-munication technology in the non-terrestrial network(NTN),the issue of the insecure communication due to the inherent openness of the NTN is increasingly being recognized.Consequ... With the widespread application of com-munication technology in the non-terrestrial network(NTN),the issue of the insecure communication due to the inherent openness of the NTN is increasingly being recognized.Consequently,safeguarding com-munication information in the NTN has emerged as a critical challenge.To address this issue,we pro-pose a beamforming and horizontal trajectory joint op-timization method for unmanned aerial vehicle(UAV)covert communications in the NTN.First,we formu-late an optimization problem that considers constraints such as the transmitting power and the distance.More-over,we employ the integrated communication and jamming(ICAJ)signal as Alice’s transmitting signal,further protecting the content of communication in-formation.Next,we construct two subproblems,and we propose an alternate optimization(AO)algorithm based on quadratic transform and penalty term method to solve the proposed two subproblems.Simulation re-sults demonstrate that the proposed method is effective and has better performance than benchmarks. 展开更多
关键词 BEAMFORMING covert communications horizontal trajectory optimization integrated commu-nication and jamming non-terrestrial network.
在线阅读 下载PDF
A Fuzzy Multi-Objective Framework for Energy Optimization and Reliable Routing in Wireless Sensor Networks via Particle Swarm Optimization
13
作者 Medhat A.Tawfeek Ibrahim Alrashdi +1 位作者 Madallah Alruwaili Fatma M.Talaat 《Computers, Materials & Continua》 2025年第5期2773-2792,共20页
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu... Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use. 展开更多
关键词 Wireless sensor networks particle swarm optimization fuzzy multi-objective framework routing stability
在线阅读 下载PDF
LOBO Optimization-Tuned Deep-Convolutional Neural Network for Brain Tumor Classification Approach
14
作者 A.Sahaya Anselin Nisha NARMADHA R. +2 位作者 AMIRTHALAKSHMIT.M. BALAMURUGAN V. VEDANARAYANAN V. 《Journal of Shanghai Jiaotong university(Science)》 2025年第1期107-114,共8页
The categorization of brain tumors is a significant issue for healthcare applications.Perfect and timely identification of brain tumors is important for employing an effective treatment of this disease.Brain tumors po... The categorization of brain tumors is a significant issue for healthcare applications.Perfect and timely identification of brain tumors is important for employing an effective treatment of this disease.Brain tumors possess high changes in terms of size,shape,and amount,and hence the classification process acts as a more difficult research problem.This paper suggests a deep learning model using the magnetic resonance imaging technique that overcomes the limitations associated with the existing classification methods.The effectiveness of the suggested method depends on the coyote optimization algorithm,also known as the LOBO algorithm,which optimizes the weights of the deep-convolutional neural network classifier.The accuracy,sensitivity,and specificity indices,which are obtained to be 92.40%,94.15%,and 91.92%,respectively,are used to validate the effectiveness of the suggested method.The result suggests that the suggested strategy is superior for effectively classifying brain tumors. 展开更多
关键词 brain tumor magnetic resonance imaging deep learning deep-convolutional neural network classifier LOBO optimization
原文传递
Modeling and optimization of aluminum-steel refill friction stir spot welding based on backpropagation neural network
15
作者 Shi-yi Wang Yun-qiang Zhao +3 位作者 Korzhyk Volodymyr Hao-kun Yang Li-kun Li Bei-xian Zhang 《Journal of Iron and Steel Research International》 2025年第7期2104-2115,共12页
Refill friction stir spot welding process is difficultly optimized by accurate modeling because of the high-order functional relationship between welding parameters and joint strength.A database of the welding process... Refill friction stir spot welding process is difficultly optimized by accurate modeling because of the high-order functional relationship between welding parameters and joint strength.A database of the welding process was first established with 6061-T6 aluminum alloy and DP780 galvanized steel as base materials.This dataset was then optimized using a backpropagation neural network.Analyses and mining of the experimental data confirmed the multidimensional mapping relationship between welding parameters and joint strength.Subsequently,intelligent optimization of the welding process and prediction of joint strength were achieved.At the predicted welding parameter(plunging rotation speedω1=1733 r/min,refilling rotation speedω_(2)=1266 r/min,plunging depth p=1.9 mm,and welding speed v=0.5 mm/s),the tensile shear fracture load of the joint reached a maximum value of 10,172 N,while the experimental result was 9980 N,with an error of 1.92%.Furthermore,the correlation of welding parameters-microstructure-joint strength was established. 展开更多
关键词 Refill friction stir spot welding-Neural network Welding parameter optimization MICROSTRUCTURE Joint strength
原文传递
Energy Optimization Strategy for Reconfigurable Distribution Network with High Renewable Penetration Based on Bald Eagle Search Algorithm
16
作者 Jian Wang Hui Qi +2 位作者 Lingyi Ji Zhengya Tang Hui Qian 《Energy Engineering》 2025年第11期4635-4651,共17页
This paper proposes a cost-optimal energy management strategy for reconfigurable distribution networks with high penetration of renewable generation.The proposed strategy accounts for renewable generation costs,mainte... This paper proposes a cost-optimal energy management strategy for reconfigurable distribution networks with high penetration of renewable generation.The proposed strategy accounts for renewable generation costs,maintenance and operating expenses of energy storage systems,diesel generator operational costs,typical daily load profiles,and power balance constraints.A penalty term for power backflow is incorporated into the objective function to discourage undesirable reverse flows.The Bald Eagle Search(BES)meta-heuristic is adopted to solve the resulting constrained optimization problem.Numerical simulations under multiple load scenarios demonstrate that the proposed method effectively reduces operating cost while preventing power backflow and maintaining secure operation of the distribution network. 展开更多
关键词 Reconfigurable distribution networks energy optimization management bald eagle search algorithm
在线阅读 下载PDF
Optimization of convolutional neural networks for predicting water pollutants using spectral data in the middle and lower reaches of the Yangtze River Basin,China
17
作者 ZHANG Guohao LI Song +3 位作者 WANG Cailing WANG Hongwei YU Tao DAI Xiaoxu 《Journal of Mountain Science》 2025年第8期2851-2869,共19页
Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising t... Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control. 展开更多
关键词 Water pollutants Convolutional neural networks Data augmentation optimization algorithms Model evaluation methods Deep Learning
原文传递
Graph Neural Network-Assisted Lion Swarm Optimization for Traffic Congestion Prediction in Intelligent Urban Mobility Systems
18
作者 Meshari D.Alanazi Gehan Elsayed +2 位作者 Turki M.Alanazi Anis Sahbani Amr Yousef 《Computer Modeling in Engineering & Sciences》 2025年第11期2277-2309,共33页
Traffic congestion plays a significant role in intelligent transportation systems(ITS)due to rapid urbanization and increased vehicle concentration.The congestion is dependent on multiple factors,such as limited road ... Traffic congestion plays a significant role in intelligent transportation systems(ITS)due to rapid urbanization and increased vehicle concentration.The congestion is dependent on multiple factors,such as limited road occupancy and vehicle density.Therefore,the transportation system requires an effective prediction model to reduce congestion issues in a dynamic environment.Conventional prediction systems face difficulties in identifying highly congested areas,which leads to reduced prediction accuracy.The problem is addressed by integrating Graph Neural Networks(GNN)with the Lion Swarm Optimization(LSO)framework to tackle the congestion prediction problem.Initially,the traffic information is collected and processed through a normalization process to scale the data and mitigate issues of overfitting and high dimensionality.Then,the traffic flow and temporal characteristic features are extracted to identify the connectivity of the road segment.From the connectivity and node relationship graph,modeling improves the overall prediction accuracy.During the analysis,the lion swarm optimization process utilizes the concepts of exploration and exploitation to understand the complex traffic dependencies,which helps predict high congestion on roads with minimal deviation errors.There are three core optimization phases:roaming,hunting,and migration,which enable the framework to make dynamic adjustments to enhance the predictions.The framework’s efficacy is evaluated using benchmark datasets,where the proposed work achieves 99.2%accuracy and minimizes the prediction deviation value by up to 2.5%compared to other methods.With the new framework,there was a more accurate prediction of realtime congestion,lower computational cost,and improved regulation of traffic flow.This system is easily implemented in intelligent transportation systems,smart cities,and self-driving cars,providing a robust and scalable solution for future traffic management. 展开更多
关键词 Intelligent transportation systems traffic congestion graph neural networks lion swarm optimization traffic dependencies smart cities
在线阅读 下载PDF
Efficient Cooperative Target Node Localization with Optimization Strategy Based on RSS for Wireless Sensor Networks
19
作者 Xinrong Zhang Bo Chang 《Computers, Materials & Continua》 2025年第3期5079-5095,共17页
In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in ... In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness.In the ranging period,the power attenuation factor is obtained through the wireless channel modeling,and the RSSI value is transformed into distance.In the positioning period,the preferred reference nodes are used to calculate coordinates.In the position optimization period,Taylor expansion and least-squared iterative update algorithms are used to further improve the location precision.In the positioning,the notion of cooperative localization is introduced,in which the located node satisfying certain demands will be upgraded to a reference node so that it can participate in the positioning of other nodes,and improve the coverage and positioning precision.The results show that on the same network conditions,the proposed algorithm in this paper is similar to the Taylor series expansion algorithm based on the actual coordinates,but much higher than the basic least square algorithm,and the positioning precision is improved rapidly with the reduce of the range error. 展开更多
关键词 Wireless sensor networks received signal strength(RSS) optimization algorithm cooperative localiza-tion weighted least squares
在线阅读 下载PDF
Trade-off and synergy effects,driving factors,and spatial optimization of ecosystem services in the Wuding River Basin of China:A study based on the Bayesian Belief Network approach
20
作者 FAN Liangwei WANG Ni +3 位作者 WANG Tingting LIU Zheng WAN Yong LI Zhiwei 《Journal of Arid Land》 2025年第12期1669-1693,共25页
The Wuding River Basin,situated in the Loess Plateau of northern China,is an ecologically fragile region facing severe soil erosion and imbalanced ecosystem service(ES)functions.However,the mechanisms driving the spat... The Wuding River Basin,situated in the Loess Plateau of northern China,is an ecologically fragile region facing severe soil erosion and imbalanced ecosystem service(ES)functions.However,the mechanisms driving the spatiotemporal evolution of ES functions,as well as the trade-offs and synergies among these functions,remain poorly understood,constraining effective watershed-scale management.To address this challenge,this study quantified four ES functions,i.e.,water yield(WY),carbon storage(CS),habitat quality(HQ),and soil conservation(SC)in the Wuding River Basin from 1990 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoff(InVEST)model,and proposed an innovative integration of InVEST with a Bayesian Belief Network(BBN)to nonlinearly identify trade-off and synergy relationships among ES functions through probabilistic inference.A trade-off and synergy index(TSI)was developed to assess the spatial interaction intensity among ES functions,while sensitivity and scenario analyses were employed to determine key driving factors,followed by spatial optimization to delineate functional zones.Results revealed distinct spatiotemporal variations:WY increased from 98.69 to 120.52 mm;SC rose to an average of 3.05×10^(4) t/hm^(2);CS remained relatively stable(about 15.50 t/km^(2));and HQ averaged 0.51 with localized declines.The BBN achieved a high accuracy of 81.9%and effectively identified strong synergies between WY and SC,as well as between CS and HQ,while clear trade-offs were observed between WY and SC versus CS and HQ.Sensitivity analysis indicated precipitation(variance reduction of 9.4%),land use(9.8%),and vegetation cover(9.1%)as key driving factors.Spatial optimization further showed that core supply and ecological regulation zones are concentrated in the central-southern and southeastern basin,while ecological strengthening and optimization core zones dominate the central-northern and southeastern margins,highlighting strong spatial heterogeneity.Overall,this study advances ES research by combining process-based quantification with probabilistic modeling,offering a robust framework for studying nonlinear interactions,driving mechanisms,and optimization strategies,and providing a transferable paradigm for watershed-scale ES management and ecological planning in arid and semi-arid areas. 展开更多
关键词 ecosystem service functions trade-offs and synergies Bayesian Belief network spatial pattern optimization Wuding River Basin
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部