Optical transport networks are now the basic infrastructure of modern communications systems, including the SDH and WDM backbone network of local network operators, in the case of Cameroon. Given the colossal investme...Optical transport networks are now the basic infrastructure of modern communications systems, including the SDH and WDM backbone network of local network operators, in the case of Cameroon. Given the colossal investments required to deploy these networks, particularly related to the cost of equipment (optical fibers, transponders and multiplexers), the optimization of bandwidth and dynamic allocation of resources is essential to control operating costs and ensure continuity of service. Automatic switching technology for optical networks brings intelligence to the control plane to fully facilitate bandwidth utilization, traffic redirection, and automatic configuration of end-to-end services. This paper considers a local network operator’s WDM network without the implementation of the automatic switching technology, develops a network modeling software platform called Graphic Networks and using graph theory integrates a particularity of the automatic switching technology, which is the automatic rerouting of traffic in case of incident in the network. The incidents considered here are those links or route failures and node failures.展开更多
当前Web追踪领域主要使用浏览器指纹对用户进行追踪。针对浏览器指纹追踪技术存在指纹随时间动态变化、不易长期追踪等问题,提出一种关注节点和边缘特征的改进图采样聚合算法(An Improved Graph SAmple and AGgregatE with Both Node an...当前Web追踪领域主要使用浏览器指纹对用户进行追踪。针对浏览器指纹追踪技术存在指纹随时间动态变化、不易长期追踪等问题,提出一种关注节点和边缘特征的改进图采样聚合算法(An Improved Graph SAmple and AGgregatE with Both Node and Edge Features,NE-GraphSAGE)用于浏览器指纹追踪。首先以浏览器指纹为节点、指纹之间特征相似度为边构建图数据。其次对图神经网络中的GraphSAGE算法进行改进使其不仅能关注节点特征,而且能捕获边缘信息并对边缘分类,从而识别指纹。最后将NE-GraphSAGE算法与Eckersley算法、FPStalker算法和LSTM算法进行对比,验证NE-GraphSAGE算法的识别效果。实验结果表明,NE-GraphSAGE算法在准确率和追踪时长上均有不同程度的提升,最大追踪时长可达80天,相比其他3种算法性能更优,验证了NE-GraphSAGE算法对浏览器指纹长期追踪的能力。展开更多
For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be colle...For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.展开更多
Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that...Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that traditional partitioning algorithms are designed for random networks and regular networks, rather than for scale-free networks. Multilevel graph-partitioning algorithms are currently considered to be the state of the art and are used extensively. In this paper, we analyse the reasons why traditional multilevel graph-partitioning algorithms perform poorly and present a new multilevel graph-partitioning paradigm, top down partitioning, which derives its name from the comparison with the traditional bottom-up partitioning. A new multilevel partitioning algorithm, named betweenness-based partitioning algorithm, is also presented as an implementation of top-down partitioning paradigm. An experimental evaluation of seven different real-world scale-free networks shows that the betweenness-based partitioning algorithm significantly outperforms the existing state-of-the-art approaches.展开更多
First,the state space tree method for finding communication network overall re-liability is presented.It directly generates one disjoint tree multilevel polynomial of a networkgraph.Its advantages are smaller computat...First,the state space tree method for finding communication network overall re-liability is presented.It directly generates one disjoint tree multilevel polynomial of a networkgraph.Its advantages are smaller computational effort(its computing time complexity is O(en_l),where e is the number of edges and n_l is the number of leaves)and shorter resulting expression.Second,based on it an exact decomposition algorithm for finding communication network overallreliability is presented by applying the hypergraph theory.If we use it to carry out the m-timedecomposition of a network graph,the communication network scale which can be analyzed by acomputer can be extended to m-fold.展开更多
针对基于知识图谱的推荐方法在教育领域应用主要集中在丰富课程特征表示上,对用户特征提取相对较少问题,提出一种基于堆叠LSTM(stacked long short-term memory)和知识图卷积网络MOOC课程推荐算法。通过课程内容信息和用户行为记录构建...针对基于知识图谱的推荐方法在教育领域应用主要集中在丰富课程特征表示上,对用户特征提取相对较少问题,提出一种基于堆叠LSTM(stacked long short-term memory)和知识图卷积网络MOOC课程推荐算法。通过课程内容信息和用户行为记录构建知识图谱,提供课程间语义关系。利用堆叠LSTM模型动态捕捉用户兴趣变化。堆叠LSTM通过多层隐藏单元对用户历史行为进行建模,提取更复杂的时间依赖特征,生成用户特征向量。这些向量与KGCN模型生成的用户特征向量进行加权融合,增强用户特征表示。结合图卷积网络(GCN)进一步探索课程之间潜在联系,预测用户对课程的评分。实验表明,该算法在AUC(area under curve)和F1指标上分别提高了2.32%和2.48%。该算法准确捕捉用户兴趣的动态变化,提升推荐性能。展开更多
文摘Optical transport networks are now the basic infrastructure of modern communications systems, including the SDH and WDM backbone network of local network operators, in the case of Cameroon. Given the colossal investments required to deploy these networks, particularly related to the cost of equipment (optical fibers, transponders and multiplexers), the optimization of bandwidth and dynamic allocation of resources is essential to control operating costs and ensure continuity of service. Automatic switching technology for optical networks brings intelligence to the control plane to fully facilitate bandwidth utilization, traffic redirection, and automatic configuration of end-to-end services. This paper considers a local network operator’s WDM network without the implementation of the automatic switching technology, develops a network modeling software platform called Graphic Networks and using graph theory integrates a particularity of the automatic switching technology, which is the automatic rerouting of traffic in case of incident in the network. The incidents considered here are those links or route failures and node failures.
文摘当前Web追踪领域主要使用浏览器指纹对用户进行追踪。针对浏览器指纹追踪技术存在指纹随时间动态变化、不易长期追踪等问题,提出一种关注节点和边缘特征的改进图采样聚合算法(An Improved Graph SAmple and AGgregatE with Both Node and Edge Features,NE-GraphSAGE)用于浏览器指纹追踪。首先以浏览器指纹为节点、指纹之间特征相似度为边构建图数据。其次对图神经网络中的GraphSAGE算法进行改进使其不仅能关注节点特征,而且能捕获边缘信息并对边缘分类,从而识别指纹。最后将NE-GraphSAGE算法与Eckersley算法、FPStalker算法和LSTM算法进行对比,验证NE-GraphSAGE算法的识别效果。实验结果表明,NE-GraphSAGE算法在准确率和追踪时长上均有不同程度的提升,最大追踪时长可达80天,相比其他3种算法性能更优,验证了NE-GraphSAGE算法对浏览器指纹长期追踪的能力。
基金Sponsored by the National Natural Science Foundation of China(Grant No.61101122)the National High Technology Research and Development Program of China(Grant No.2012AA120802)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2012ZX03004-003)
文摘For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(Grant Nos.61003082 and 60903059)the National Natural Science Foundation of China(Grant No.60873014)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.60921062)
文摘Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that traditional partitioning algorithms are designed for random networks and regular networks, rather than for scale-free networks. Multilevel graph-partitioning algorithms are currently considered to be the state of the art and are used extensively. In this paper, we analyse the reasons why traditional multilevel graph-partitioning algorithms perform poorly and present a new multilevel graph-partitioning paradigm, top down partitioning, which derives its name from the comparison with the traditional bottom-up partitioning. A new multilevel partitioning algorithm, named betweenness-based partitioning algorithm, is also presented as an implementation of top-down partitioning paradigm. An experimental evaluation of seven different real-world scale-free networks shows that the betweenness-based partitioning algorithm significantly outperforms the existing state-of-the-art approaches.
文摘First,the state space tree method for finding communication network overall re-liability is presented.It directly generates one disjoint tree multilevel polynomial of a networkgraph.Its advantages are smaller computational effort(its computing time complexity is O(en_l),where e is the number of edges and n_l is the number of leaves)and shorter resulting expression.Second,based on it an exact decomposition algorithm for finding communication network overallreliability is presented by applying the hypergraph theory.If we use it to carry out the m-timedecomposition of a network graph,the communication network scale which can be analyzed by acomputer can be extended to m-fold.
文摘针对基于知识图谱的推荐方法在教育领域应用主要集中在丰富课程特征表示上,对用户特征提取相对较少问题,提出一种基于堆叠LSTM(stacked long short-term memory)和知识图卷积网络MOOC课程推荐算法。通过课程内容信息和用户行为记录构建知识图谱,提供课程间语义关系。利用堆叠LSTM模型动态捕捉用户兴趣变化。堆叠LSTM通过多层隐藏单元对用户历史行为进行建模,提取更复杂的时间依赖特征,生成用户特征向量。这些向量与KGCN模型生成的用户特征向量进行加权融合,增强用户特征表示。结合图卷积网络(GCN)进一步探索课程之间潜在联系,预测用户对课程的评分。实验表明,该算法在AUC(area under curve)和F1指标上分别提高了2.32%和2.48%。该算法准确捕捉用户兴趣的动态变化,提升推荐性能。