Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,n...Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,neural oscillatory dynamics,and brain network reorganization remain unclear.This investigation seeks to systematically evaluate the therapeutic potential of rTMS as a non-invasive neuromodulatory intervention through a multimodal framework integrating clinical assessments,molecular profiling,and neurophysiological monitoring.Methods In this prospective double-blind trial,12 AD patients underwent a 14-day protocol of 20 Hz rTMS,with comprehensive multimodal assessments performed pre-and postintervention.Cognitive functioning was quantified using the mini-mental state examination(MMSE)and Montreal cognitive assessment(MOCA),while daily living capacities and neuropsychiatric profiles were respectively evaluated through the activities of daily living(ADL)scale and combined neuropsychiatric inventory(NPI)-Hamilton depression rating scale(HAMD).Peripheral blood biomarkers,specifically Aβ1-40 and phosphorylated tau(p-tau181),were analyzed to investigate the effects of rTMS on molecular metabolism.Spectral power analysis was employed to investigate rTMS-induced modulations of neural rhythms in AD patients,while brain network analyses incorporating topological properties were conducted to examine stimulus-driven network reorganization.Furthermore,systematic assessment of correlations between cognitive scale scores,blood biomarkers,and network characteristics was performed to elucidate cross-modal therapeutic associations.Results Clinically,MMSE and MOCA scores improved significantly(P<0.05).Biomarker showed that Aβ1-40 level increased(P<0.05),contrasting with p-tau181 reduction.Moreover,the levels of Aβ1-40 were positively correlated with MMSE and MOCA scores.Post-intervention analyses revealed significant modulations in oscillatory power,characterized by pronounced reductions in delta(P<0.05)and theta bands(P<0.05),while concurrent enhancements were observed in alpha,beta,and gamma band activities(all P<0.05).Network analysis revealed frequency-specific reorganization:clustering coefficients were significantly decreased in delta,theta,and alpha bands(P<0.05),while global efficiency improvement was exclusively detected in the delta band(P<0.05).The alpha band demonstrated concurrent increases in average nodal degree(P<0.05)and characteristic path length reduction(P<0.05).Further research findings indicate that the changes in the clinical scale HAMD scores before and after rTMS stimulation are negatively correlated with the changes in the blood biomarkers Aβ1-40 and p-tau181.Additionally,the changes in the clinical scales MMSE and MoCA scores were negatively correlated with the changes in the node degree of the alpha frequency band and negatively correlated with the clustering coefficient of the delta frequency band.However,the changes in MMSE scores are positively correlated with the changes in global efficiency of both the delta and alpha frequency bands.Conclusion 20 Hz rTMS targeting dorsolateral prefrontal cortex(DLPFC)significantly improves cognitive function and enhances the metabolic clearance ofβ-amyloid and tau proteins in AD patients.This neurotherapeutic effect is mechanistically associated with rTMS-mediated frequency-selective neuromodulation,which enhances the connectivity of oscillatory networks through improved neuronal synchronization and optimized topological organization of functional brain networks.These findings not only support the efficacy of rTMS as an adjunctive therapy for AD but also underscore the importance of employing multiple assessment methods—including clinical scales,blood biomarkers,and EEG——in understanding and monitoring the progression of AD.This research provides a significant theoretical foundation and empirical evidence for further exploration of rTMS applications in AD treatment.展开更多
In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the V...In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the Virtual Machines(VMs)cannot be successfully launched due to the server overload.In addition,transferring the data from the AP to the remote DC may cause an undesirable delivery delay.For this end,we propose a promising solution considering the interplay between the cloud DC and edge APs.More specifically,bringing the partial capability of computing in APs close to things can reduce the pressure of DCs while guaranteeing the expected Quality of Service(QoS).In this work,when the cloud DC resource becomes limited,especially for delay sensitive but not computing-dependent IoT applications,we degrade their VMs and migrate them to edge APs instead of the remote DC.To avoid excessive VM degradation and computing offloading,we derive appropriate VM degradation coefficients based on classic microeconomic theory.Simulation results demonstrate that our algorithms improve the service providers'utility with the ratio from 34%to 89%over traditional cloud-centric solutions.展开更多
This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks'unique architecture and routing issues and kernel stacks'inefficiency and development ...This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks'unique architecture and routing issues and kernel stacks'inefficiency and development complexity.Our low Earth orbit satellite scenario emulation verifies the dynamic routing function of the protocol stack.The proposed system uses technologies like Open vSwitch(OVS)and traffic control(TC)to emulate the space network's highly dynamic topology and time-varying link characteristics.The emulation results demonstrate the system's high reliability,and the user-space network stack reduces development complexity and debugging difficulty,providing convenience for the development of space network protocols and network functions.展开更多
Dementias such as Alzheimer disease(AD)and mild cognitive impairment(MCI)lead to problems with memory,language,and daily activities resulting from damage to neurons in the brain.Given the irreversibility of this neuro...Dementias such as Alzheimer disease(AD)and mild cognitive impairment(MCI)lead to problems with memory,language,and daily activities resulting from damage to neurons in the brain.Given the irreversibility of this neuronal damage,it is crucial to find a biomarker to distinguish individuals with these diseases from healthy people.In this study,we construct a brain function network based on electroencephalography data to study changes in AD and MCI patients.Using a graph-theoretical approach,we examine connectivity features and explore their contributions to dementia recognition at edge,node,and network levels.We find that connectivity is reduced in AD and MCI patients compared with healthy controls.We also find that the edge-level features give the best performance when machine learning models are used to recognize dementia.The results of feature selection identify the top 50 ranked edge-level features constituting an optimal subset,which is mainly connected with the frontal nodes.A threshold analysis reveals that the performance of edge-level features is more sensitive to the threshold for the connection strength than that of node-and network-level features.In addition,edge-level features with a threshold of 0 provide the most effective dementia recognition.The K-nearest neighbors(KNN)machine learning model achieves the highest accuracy of 0.978 with the optimal subset when the threshold is 0.Visualization of edge-level features suggests that there are more long connections linking the frontal region with the occipital and parietal regions in AD and MCI patients compared with healthy controls.Our codes are publicly available at https://github.com/Debbie-85/eeg-connectivity.展开更多
Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled pe...Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons.展开更多
This article presents an adaptive fault-tolerant tracking control strategy for unknown affine nonlinear systems subject to actuator faults and external disturbances.To address the hyperparameter initialization challen...This article presents an adaptive fault-tolerant tracking control strategy for unknown affine nonlinear systems subject to actuator faults and external disturbances.To address the hyperparameter initialization challenges inherent in conventional neural network training,an improved self-organizing radial basis function neural network(SRBFNN)with an input-dependent variable structure is developed.Furthermore,a novel selforganizing RBFNN-based observer is introduced to estimate system states across all dimensions.Leveraging the reconstructed states,the proposed adaptive controller effectively compensates for all uncertainties,including estimation errors in the observer,ensuring accurate state tracking with reduced control effort.The uniform ultimate boundedness of all closed-loop signals and tracking errors is rigorously established via Lyapunov stability analysis.Finally,simulations on two different nonlinear systems comprehensively validate the effectiveness and superiority of the proposed control approach.展开更多
This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking...This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking capacity for systems with uncertainties and disturbances. First, SMC discrete equivalent control law is designed on the basis of the nominal model of the system and the adaptive exponential reaching law, and subsequently, stability of the algorithm is analyzed. Second, RBF network is used to f...展开更多
To investigate changes of functional activation areas of the cerebral cortex and the connectivity of motor cortex networks (MCNs) in stroke patients during the recovery, five patients with the infarct in their left ...To investigate changes of functional activation areas of the cerebral cortex and the connectivity of motor cortex networks (MCNs) in stroke patients during the recovery, five patients with the infarct in their left hemispheres are recruited. Functional magnetic resonance imaging (fMRI) is performed in the second, fourth, eighth, and sixteenth weeks after the stroke. Images are analyzed using the professional software SPM5 to obtain the bilateral activation of the motor cortex in left and right handgrip tests. MCN data are extracted from the active areas, and the structural and functional characteristic parameters are computed to indicate the connectivity of the network. Results show that the ipsilesional hemisphere recruits more areas with less active extent during the handgrip test, compared with the contralesional hemisphere. MCN shows a higher overall degree of statistical independence and more statistical dependence among motor areas with the gradual recovery. It can help physicians understand the recovery mechanism.展开更多
Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a n...Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy.展开更多
A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership fu...A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy.展开更多
A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predicti...A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.展开更多
Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor sig...Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine.展开更多
A constructive-pruning hybrid method (CPHM) for radial basis function (RBF) networks is proposed to improve the prediction accuracy of ash fusion temperatures (AFT). The CPHM incorporates the advantages of the c...A constructive-pruning hybrid method (CPHM) for radial basis function (RBF) networks is proposed to improve the prediction accuracy of ash fusion temperatures (AFT). The CPHM incorporates the advantages of the construction algorithm and the pruning algorithm of neural networks, and the training process of the CPHM is divided into two stages: rough tuning and fine tuning. In rough tuning, new hidden units are added to the current network until some performance index is satisfied. In fine tuning, the network structure and the model parameters are further adjusted. And, based on components of coal ash, a model using the CPHM is established to predict the AFT. The results show that the CPHM prediction model is characterized by its high precision, compact network structure, as well as strong generalization ability and robustness.展开更多
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th...This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.展开更多
As an indispensable component of the emerging 6G networks,Space-Air-Ground Inte-grated Networks(SAGINs)are envisioned to provide ubiquitous network connectivity and services by integrating satellite networks,aerial ne...As an indispensable component of the emerging 6G networks,Space-Air-Ground Inte-grated Networks(SAGINs)are envisioned to provide ubiquitous network connectivity and services by integrating satellite networks,aerial networks,and terrestrial networks.In 6G SAGINs,a wide variety of network services with the features of diverse requirements,complex mobility,and multi-dimensional resources will pose great challenges to service provisioning,which urges the develop-ment of service-oriented SAGINs.In this paper,we conduct a comprehensive review of 6G SAGINs from a new perspective of service-oriented network.First,we present the requirements of service-oriented networks,and then propose a service-oriented SAGINs management architec-ture.Two categories of critical technologies are presented and discussed,i.e.,heterogeneous resource orchestration technologies and the cloud-edge synergy technologies,which facilitate the interoperability of different network segments and cooperatively orchestrate heterogeneous resources across different domains,according to the service features and requirements.In addition,the potential future research directions are also presented and discussed.展开更多
Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora...Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.展开更多
Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of s...Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks(FN) using data available in the literature. The performance of FN was compared with support vector machine(SVM) and artificial neural network(ANN) based on statistical parameters like correlation coefficient(R), Nash–Sutcliff coefficient of efficiency(E), absolute average error(AAE), maximum average error(MAE) and root mean square error(RMSE). Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output.展开更多
An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The infl...An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach.展开更多
Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain f...Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. Objective: To offer an overview of the different influences of acupuncture on the brain functional connec- tivity network from studies using resting-state fMRI. Search strategy: The authors performed a systematic search according to PRISMA guidelines, The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Inclusion criteria: Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity", Data extraction and analysis: Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Results: Forty-four resting-state fMRI studies were included in this systematic review according to inclu- sion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro- acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connec- tivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupunc- ture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. Conclusion: It can be presumed that the functional connectivity network is closely related to the mech- anism of acupuncture, and central integration plays a critical role in the acupuncture mechanism.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
文摘Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,neural oscillatory dynamics,and brain network reorganization remain unclear.This investigation seeks to systematically evaluate the therapeutic potential of rTMS as a non-invasive neuromodulatory intervention through a multimodal framework integrating clinical assessments,molecular profiling,and neurophysiological monitoring.Methods In this prospective double-blind trial,12 AD patients underwent a 14-day protocol of 20 Hz rTMS,with comprehensive multimodal assessments performed pre-and postintervention.Cognitive functioning was quantified using the mini-mental state examination(MMSE)and Montreal cognitive assessment(MOCA),while daily living capacities and neuropsychiatric profiles were respectively evaluated through the activities of daily living(ADL)scale and combined neuropsychiatric inventory(NPI)-Hamilton depression rating scale(HAMD).Peripheral blood biomarkers,specifically Aβ1-40 and phosphorylated tau(p-tau181),were analyzed to investigate the effects of rTMS on molecular metabolism.Spectral power analysis was employed to investigate rTMS-induced modulations of neural rhythms in AD patients,while brain network analyses incorporating topological properties were conducted to examine stimulus-driven network reorganization.Furthermore,systematic assessment of correlations between cognitive scale scores,blood biomarkers,and network characteristics was performed to elucidate cross-modal therapeutic associations.Results Clinically,MMSE and MOCA scores improved significantly(P<0.05).Biomarker showed that Aβ1-40 level increased(P<0.05),contrasting with p-tau181 reduction.Moreover,the levels of Aβ1-40 were positively correlated with MMSE and MOCA scores.Post-intervention analyses revealed significant modulations in oscillatory power,characterized by pronounced reductions in delta(P<0.05)and theta bands(P<0.05),while concurrent enhancements were observed in alpha,beta,and gamma band activities(all P<0.05).Network analysis revealed frequency-specific reorganization:clustering coefficients were significantly decreased in delta,theta,and alpha bands(P<0.05),while global efficiency improvement was exclusively detected in the delta band(P<0.05).The alpha band demonstrated concurrent increases in average nodal degree(P<0.05)and characteristic path length reduction(P<0.05).Further research findings indicate that the changes in the clinical scale HAMD scores before and after rTMS stimulation are negatively correlated with the changes in the blood biomarkers Aβ1-40 and p-tau181.Additionally,the changes in the clinical scales MMSE and MoCA scores were negatively correlated with the changes in the node degree of the alpha frequency band and negatively correlated with the clustering coefficient of the delta frequency band.However,the changes in MMSE scores are positively correlated with the changes in global efficiency of both the delta and alpha frequency bands.Conclusion 20 Hz rTMS targeting dorsolateral prefrontal cortex(DLPFC)significantly improves cognitive function and enhances the metabolic clearance ofβ-amyloid and tau proteins in AD patients.This neurotherapeutic effect is mechanistically associated with rTMS-mediated frequency-selective neuromodulation,which enhances the connectivity of oscillatory networks through improved neuronal synchronization and optimized topological organization of functional brain networks.These findings not only support the efficacy of rTMS as an adjunctive therapy for AD but also underscore the importance of employing multiple assessment methods—including clinical scales,blood biomarkers,and EEG——in understanding and monitoring the progression of AD.This research provides a significant theoretical foundation and empirical evidence for further exploration of rTMS applications in AD treatment.
基金supported by the Researchers Supporting Project of King Saud University,Riyadh,Saudi Arabia,under Project RSPD2025R681。
文摘In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the Virtual Machines(VMs)cannot be successfully launched due to the server overload.In addition,transferring the data from the AP to the remote DC may cause an undesirable delivery delay.For this end,we propose a promising solution considering the interplay between the cloud DC and edge APs.More specifically,bringing the partial capability of computing in APs close to things can reduce the pressure of DCs while guaranteeing the expected Quality of Service(QoS).In this work,when the cloud DC resource becomes limited,especially for delay sensitive but not computing-dependent IoT applications,we degrade their VMs and migrate them to edge APs instead of the remote DC.To avoid excessive VM degradation and computing offloading,we derive appropriate VM degradation coefficients based on classic microeconomic theory.Simulation results demonstrate that our algorithms improve the service providers'utility with the ratio from 34%to 89%over traditional cloud-centric solutions.
基金supported by the National Natural Science Foundation of China under Grant No.62131012ZTE Industry-University-Institute Cooperation Funds under Grant No.IA20230712005。
文摘This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks'unique architecture and routing issues and kernel stacks'inefficiency and development complexity.Our low Earth orbit satellite scenario emulation verifies the dynamic routing function of the protocol stack.The proposed system uses technologies like Open vSwitch(OVS)and traffic control(TC)to emulate the space network's highly dynamic topology and time-varying link characteristics.The emulation results demonstrate the system's high reliability,and the user-space network stack reduces development complexity and debugging difficulty,providing convenience for the development of space network protocols and network functions.
基金supported by the National Natural Science Foundation of China(Grant Nos.62071451,62331025,and U21A20447)the National Key Research and Development Project(Grant No.2021YFC3002204)the CAMS Innovation Fund for Medical Sciences(Grant No.2019-I2M-5-019).
文摘Dementias such as Alzheimer disease(AD)and mild cognitive impairment(MCI)lead to problems with memory,language,and daily activities resulting from damage to neurons in the brain.Given the irreversibility of this neuronal damage,it is crucial to find a biomarker to distinguish individuals with these diseases from healthy people.In this study,we construct a brain function network based on electroencephalography data to study changes in AD and MCI patients.Using a graph-theoretical approach,we examine connectivity features and explore their contributions to dementia recognition at edge,node,and network levels.We find that connectivity is reduced in AD and MCI patients compared with healthy controls.We also find that the edge-level features give the best performance when machine learning models are used to recognize dementia.The results of feature selection identify the top 50 ranked edge-level features constituting an optimal subset,which is mainly connected with the frontal nodes.A threshold analysis reveals that the performance of edge-level features is more sensitive to the threshold for the connection strength than that of node-and network-level features.In addition,edge-level features with a threshold of 0 provide the most effective dementia recognition.The K-nearest neighbors(KNN)machine learning model achieves the highest accuracy of 0.978 with the optimal subset when the threshold is 0.Visualization of edge-level features suggests that there are more long connections linking the frontal region with the occipital and parietal regions in AD and MCI patients compared with healthy controls.Our codes are publicly available at https://github.com/Debbie-85/eeg-connectivity.
基金funded by the King Salman Center For Disability Research,through Research Group No.KSRG-2024-468。
文摘Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons.
基金supported in part by the National Natural Science Foundation of China(62033008,62188101,62173343,62073339)the Natural Science Foundation of Shandong Province of China(ZR2024MF072,ZR2022ZD34)the Research Fund for the Taishan Scholar Project of Shandong Province of China.
文摘This article presents an adaptive fault-tolerant tracking control strategy for unknown affine nonlinear systems subject to actuator faults and external disturbances.To address the hyperparameter initialization challenges inherent in conventional neural network training,an improved self-organizing radial basis function neural network(SRBFNN)with an input-dependent variable structure is developed.Furthermore,a novel selforganizing RBFNN-based observer is introduced to estimate system states across all dimensions.Leveraging the reconstructed states,the proposed adaptive controller effectively compensates for all uncertainties,including estimation errors in the observer,ensuring accurate state tracking with reduced control effort.The uniform ultimate boundedness of all closed-loop signals and tracking errors is rigorously established via Lyapunov stability analysis.Finally,simulations on two different nonlinear systems comprehensively validate the effectiveness and superiority of the proposed control approach.
文摘This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking capacity for systems with uncertainties and disturbances. First, SMC discrete equivalent control law is designed on the basis of the nominal model of the system and the adaptive exponential reaching law, and subsequently, stability of the algorithm is analyzed. Second, RBF network is used to f...
基金Supported by the National Natural Science Foundation of China (30670543)~~
文摘To investigate changes of functional activation areas of the cerebral cortex and the connectivity of motor cortex networks (MCNs) in stroke patients during the recovery, five patients with the infarct in their left hemispheres are recruited. Functional magnetic resonance imaging (fMRI) is performed in the second, fourth, eighth, and sixteenth weeks after the stroke. Images are analyzed using the professional software SPM5 to obtain the bilateral activation of the motor cortex in left and right handgrip tests. MCN data are extracted from the active areas, and the structural and functional characteristic parameters are computed to indicate the connectivity of the network. Results show that the ipsilesional hemisphere recruits more areas with less active extent during the handgrip test, compared with the contralesional hemisphere. MCN shows a higher overall degree of statistical independence and more statistical dependence among motor areas with the gradual recovery. It can help physicians understand the recovery mechanism.
文摘Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy.
基金The National Natural Science Foundation of China(No.51106025,51106027,51036002)Specialized Research Fund for the Doctoral Program of Higher Education(No.20130092110061)the Youth Foundation of Nanjing Institute of Technology(No.QKJA201303)
文摘A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy.
基金Supported by the National Nature Science Foundation of China (90716028)~~
文摘A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.
文摘Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine.
基金The National Natural Science Foundation of China(No.60875035)the Natural Science Foundation of Jiangsu Province(No.BK2008294)the National High Technology Research and Development Program of China(863 Program)(No.2006AA05A107)
文摘A constructive-pruning hybrid method (CPHM) for radial basis function (RBF) networks is proposed to improve the prediction accuracy of ash fusion temperatures (AFT). The CPHM incorporates the advantages of the construction algorithm and the pruning algorithm of neural networks, and the training process of the CPHM is divided into two stages: rough tuning and fine tuning. In rough tuning, new hidden units are added to the current network until some performance index is satisfied. In fine tuning, the network structure and the model parameters are further adjusted. And, based on components of coal ash, a model using the CPHM is established to predict the AFT. The results show that the CPHM prediction model is characterized by its high precision, compact network structure, as well as strong generalization ability and robustness.
文摘This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.
基金supported by the National Key Research and Development Program of China(No.2020YFB1807700).
文摘As an indispensable component of the emerging 6G networks,Space-Air-Ground Inte-grated Networks(SAGINs)are envisioned to provide ubiquitous network connectivity and services by integrating satellite networks,aerial networks,and terrestrial networks.In 6G SAGINs,a wide variety of network services with the features of diverse requirements,complex mobility,and multi-dimensional resources will pose great challenges to service provisioning,which urges the develop-ment of service-oriented SAGINs.In this paper,we conduct a comprehensive review of 6G SAGINs from a new perspective of service-oriented network.First,we present the requirements of service-oriented networks,and then propose a service-oriented SAGINs management architec-ture.Two categories of critical technologies are presented and discussed,i.e.,heterogeneous resource orchestration technologies and the cloud-edge synergy technologies,which facilitate the interoperability of different network segments and cooperatively orchestrate heterogeneous resources across different domains,according to the service features and requirements.In addition,the potential future research directions are also presented and discussed.
文摘Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.
文摘Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks(FN) using data available in the literature. The performance of FN was compared with support vector machine(SVM) and artificial neural network(ANN) based on statistical parameters like correlation coefficient(R), Nash–Sutcliff coefficient of efficiency(E), absolute average error(AAE), maximum average error(MAE) and root mean square error(RMSE). Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output.
基金the National Natural Science Foundation of China (90405011).
文摘An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach.
基金supported by the National Natural Science Foundation of China(No.81473784)University Science Research Project of Anhui Province of China(No.KJ2017A298)+1 种基金the Key Project of the Youth Elite Support Plan in Universities of Anhui Province of China(No.gxyq ZD2016134)Construction Project of Scientific Research Innovation Platform of Anhui Province of China(No.2015TD033)
文摘Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. Objective: To offer an overview of the different influences of acupuncture on the brain functional connec- tivity network from studies using resting-state fMRI. Search strategy: The authors performed a systematic search according to PRISMA guidelines, The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Inclusion criteria: Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity", Data extraction and analysis: Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Results: Forty-four resting-state fMRI studies were included in this systematic review according to inclu- sion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro- acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connec- tivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupunc- ture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. Conclusion: It can be presumed that the functional connectivity network is closely related to the mech- anism of acupuncture, and central integration plays a critical role in the acupuncture mechanism.