Path marginal cost (PMC) is the change in totaltravel cost for flow on the network that arises when timedependentpath flow changes by 1 unit. Because it is hardto obtain the marginal cost on all the links, the local...Path marginal cost (PMC) is the change in totaltravel cost for flow on the network that arises when timedependentpath flow changes by 1 unit. Because it is hardto obtain the marginal cost on all the links, the local PMC,considering marginal cost of partial links, is normallycalculated to approximate the global PMC. When analyzingthe marginal cost at a congested diverge intersection, ajump-point phenomenon may occur. It manifests as alikelihood that a vehicle may unsteadily lift up (down) inthe cumulative flow curve of the downstream links. Previously,the jump-point caused delay was ignored whencalculating the local PMC. This article proposes an analyticalmethod to solve this delay which can contribute toobtaining a more accurate local PMC. Next to that, we usea simple case to calculate the previously local PMC and themodified one. The test shows a large gap between them,which means that this delay should not be omitted in thelocal PMC calculation.展开更多
In this paper, we demonstrate that the eco-industrial network equilibrium model of link flow version previously introduced can be reformulated as a transportation network equilibrium problem of path flow version. Then...In this paper, we demonstrate that the eco-industrial network equilibrium model of link flow version previously introduced can be reformulated as a transportation network equilibrium problem of path flow version. Then, some methodological tools mainly applied in the field of transportation science can be used to discuss the eco-industrial chain network problem. What the highlighted contribution lies in is that the paper not only expands theory of supply chain model with reducing path flow but also generalizes the traditional transportation network equilibrium problem by new applications.展开更多
Large-scale and diverse businesses based on the cloud computing platform bring the heavy network traffic to cloud data centers.However,the unbalanced workload of cloud data center network easily leads to the network c...Large-scale and diverse businesses based on the cloud computing platform bring the heavy network traffic to cloud data centers.However,the unbalanced workload of cloud data center network easily leads to the network congestion,the low resource utilization rate,the long delay,the low reliability,and the low throughput.In order to improve the utilization efficiency and the quality of services(QoS)of cloud system,especially to solve the problem of network congestion,we propose MTSS,a multi-path traffic scheduling mechanism based on software defined networking(SDN).MTSS utilizes the data flow scheduling flexibility of SDN and the multi-path feature of the fat-tree structure to improve the traffic balance of the cloud data center network.A heuristic traffic balancing algorithm is presented for MTSS,which periodically monitors the network link and dynamically adjusts the traffic on the heavy link to achieve programmable data forwarding and load balancing.The experimental results show that MTSS outperforms equal-cost multi-path protocol(ECMP),by effectively reducing the packet loss rate and delay.In addition,MTSS improves the utilization efficiency,the reliability and the throughput rate of the cloud data center network.展开更多
This paper presents an algorithm for solving Bi-criteria Minimum Cost Dynamic Flow (BiCMCDF) problem with continuous flow variables. The approach is to transform a bi-criteria problem into a parametric one by building...This paper presents an algorithm for solving Bi-criteria Minimum Cost Dynamic Flow (BiCMCDF) problem with continuous flow variables. The approach is to transform a bi-criteria problem into a parametric one by building a single parametric linear cost out of the two initial cost functions. The algorithm consecutively finds efficient extreme points in the decision space by solving a series of minimum parametric cost flow problems with different objective functions. On each of the iterations, the flow is augmented along a cheapest path from the source node to the sink node in the time-space network avoiding the explicit time expansion of the network.展开更多
Maximum Flow Problem (MFP) discusses the maximum amount of flow that can be sent from the source to sink. Edmonds-Karp algorithm is the modified version of Ford-Fulkerson algorithm to solve the MFP. This paper present...Maximum Flow Problem (MFP) discusses the maximum amount of flow that can be sent from the source to sink. Edmonds-Karp algorithm is the modified version of Ford-Fulkerson algorithm to solve the MFP. This paper presents some modifications of Edmonds-Karp algorithm for solving MFP. Solution of MFP has also been illustrated by using the proposed algorithm to justify the usefulness of proposed method.展开更多
文摘Path marginal cost (PMC) is the change in totaltravel cost for flow on the network that arises when timedependentpath flow changes by 1 unit. Because it is hardto obtain the marginal cost on all the links, the local PMC,considering marginal cost of partial links, is normallycalculated to approximate the global PMC. When analyzingthe marginal cost at a congested diverge intersection, ajump-point phenomenon may occur. It manifests as alikelihood that a vehicle may unsteadily lift up (down) inthe cumulative flow curve of the downstream links. Previously,the jump-point caused delay was ignored whencalculating the local PMC. This article proposes an analyticalmethod to solve this delay which can contribute toobtaining a more accurate local PMC. Next to that, we usea simple case to calculate the previously local PMC and themodified one. The test shows a large gap between them,which means that this delay should not be omitted in thelocal PMC calculation.
基金Sponsored by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.13XNH169)
文摘In this paper, we demonstrate that the eco-industrial network equilibrium model of link flow version previously introduced can be reformulated as a transportation network equilibrium problem of path flow version. Then, some methodological tools mainly applied in the field of transportation science can be used to discuss the eco-industrial chain network problem. What the highlighted contribution lies in is that the paper not only expands theory of supply chain model with reducing path flow but also generalizes the traditional transportation network equilibrium problem by new applications.
基金supported by the National Key Research and Development Program of China(2018YFB1003702)the National Natural Science Foundation of China(61472192)the Scientific and Technological Support Project(Society)of Jiangsu Province(BE2016776)
文摘Large-scale and diverse businesses based on the cloud computing platform bring the heavy network traffic to cloud data centers.However,the unbalanced workload of cloud data center network easily leads to the network congestion,the low resource utilization rate,the long delay,the low reliability,and the low throughput.In order to improve the utilization efficiency and the quality of services(QoS)of cloud system,especially to solve the problem of network congestion,we propose MTSS,a multi-path traffic scheduling mechanism based on software defined networking(SDN).MTSS utilizes the data flow scheduling flexibility of SDN and the multi-path feature of the fat-tree structure to improve the traffic balance of the cloud data center network.A heuristic traffic balancing algorithm is presented for MTSS,which periodically monitors the network link and dynamically adjusts the traffic on the heavy link to achieve programmable data forwarding and load balancing.The experimental results show that MTSS outperforms equal-cost multi-path protocol(ECMP),by effectively reducing the packet loss rate and delay.In addition,MTSS improves the utilization efficiency,the reliability and the throughput rate of the cloud data center network.
文摘This paper presents an algorithm for solving Bi-criteria Minimum Cost Dynamic Flow (BiCMCDF) problem with continuous flow variables. The approach is to transform a bi-criteria problem into a parametric one by building a single parametric linear cost out of the two initial cost functions. The algorithm consecutively finds efficient extreme points in the decision space by solving a series of minimum parametric cost flow problems with different objective functions. On each of the iterations, the flow is augmented along a cheapest path from the source node to the sink node in the time-space network avoiding the explicit time expansion of the network.
文摘Maximum Flow Problem (MFP) discusses the maximum amount of flow that can be sent from the source to sink. Edmonds-Karp algorithm is the modified version of Ford-Fulkerson algorithm to solve the MFP. This paper presents some modifications of Edmonds-Karp algorithm for solving MFP. Solution of MFP has also been illustrated by using the proposed algorithm to justify the usefulness of proposed method.