In district heating(DH) system with gas-fired peak load regulating boiler in the secondary network,by prolonging run time of base load plants under rated condition,the mean energy efficiency could be increased. The fu...In district heating(DH) system with gas-fired peak load regulating boiler in the secondary network,by prolonging run time of base load plants under rated condition,the mean energy efficiency could be increased. The fuels of the system,including coal and gas,would cause different environmental impacts. Meanwhile,the reliability of the heating networks would be changed because the peak load regulating boiler could work as a standby heat source. A model for assessment of heating system was established by value analysis to optimize this kind of system. Energy consumption,greenhouse gas emission,pollution emission and system reliability were selected as functional assessment indexes in the model. Weights of each function were determined by analytical hierarchy process (AHP) and experts consultation. Life cycle cost was used as the cost in the model. A real case as an example was discussed to obtain the optimal base load ratio. The result shows that the optimal base load ratio of the case is 0.77.展开更多
As the greenway construction grows popular,the concept and type of greenway is clarified in this study,research progresses and prospects of greenway planning are summarized.Greenway planning of Shunde District is take...As the greenway construction grows popular,the concept and type of greenway is clarified in this study,research progresses and prospects of greenway planning are summarized.Greenway planning of Shunde District is taken for an example to elaborate properties,types,origination and tasks of greenway,moreover,construction background,ecological,human-centered and characteristic design principles were analyzed,especially the design of its buffer zone,corridor system,width of crawl lane,node system,identification system and service area.Greenway construction of Shunde District is to build a greenway network of multiple types and functions in 3 levels:region,city and community;a recreational landscaping system with regional greenland as the background,greennet and greenway as the framework,to promote a new "ecological,green and low-carbon" lifestyle,and create the new image of Shunde as "a livable riverfront region full of sunshine".展开更多
The present study develops a data-based compact model for the prediction of the fluid temperature evolution in district heating-and-cooling pipeline networks.This model is based on an existing“reduced-order model”by...The present study develops a data-based compact model for the prediction of the fluid temperature evolution in district heating-and-cooling pipeline networks.This model is based on an existing“reduced-order model”by the authors obtained from reduction of the“full-order model”describing the spatio-temporal energy balance for each pipe segment to a semi-analytical input-output relation between the pipe outlet temperature and the pipe inlet and ground temperatures.The proposed model(denoted XROM)expands on the original reduced-order model by incorporating variable mass flux as an additional input and thus greatly increases its practical relevance.The XROM represents variable mass flux by step-wise switching between mass-flux levels and thereby induces a prediction error relative to the true full-order model evolution after each switching.Theoretical analysis rigorously demonstrates that this error always decays and the XROM invariably converges on the full-order model evolution and,consequently,affords the same prediction accuracy.Performance analyses reveal that prediction errors are restricted to short“convergence intervals”after each mass-flux switching and the XROM therefore can handle substantially faster operating schemes than the current ones based on hourly monitoring and control.Convergence intervals of O(minutes)are namely typically sufficient-and thus switching frequencies up to O(minutes 1)permissible during dynamic operation and control actions-for reliable predictions.Quantification of these convergence intervals by an easy-to-use empirical relation furthermore enables a priori determination of the conditions for reliable predictions.Moreover,the XROM can capture the full 3D system dynamics(provided incompressible flow and heat-transfer mechanisms depending linearly on temperature)versus the essentially 1D approximation of current compact pipe models yet at similar computational cost.These attributes advance(parts of)district heating and cooling networks demanding prediction accuracies beyond 1D as its primary application area.This makes the XROM complementary to said pipe models and thereby expands the modelling capabilities for handling the growing complexity of(next-generation)networks.展开更多
The integrated electricity-heat-hydrogen system(IEHHS)facilitates the efficient utilization of multiple energy sources,while the operational flexibility of IEHHS is hindered by the high heat inertia of alkaline electr...The integrated electricity-heat-hydrogen system(IEHHS)facilitates the efficient utilization of multiple energy sources,while the operational flexibility of IEHHS is hindered by the high heat inertia of alkaline electrolyzers(AELs)and the variations of renewable energy.In this paper,we propose a robust scheduling of IEHHS considering the bidirectional heat exchange(BHE)between AELs and district heating networks(DHNs).First,we propose an IEHHS model to coordinate the operations of AELs,active distribution networks(ADNs),and DHNs.In particular,we propose a BHE that not only enables the waste heat recovery for district heating but also accelerates the thermal dynamics in AELs.Then,we formulate a two-stage robust optimization(RO)problem for the IEHHS operation to consider the variability of renewable energy in ADNs.We propose a new solution method,i.e.,multi-affine decision rule(MADR),to solve the two-stage RO problem with less conservatism.The simulation results show that the operational flexibility of IEHHS with BHE is remarkably improved compared with that only with unidirectional heat exchange(UHE).Compared with the traditional affine decision rule(ADR),the MADR effectively reduces the IEHHS operating costs while guaranteeing the reliability of scheduling strategies.展开更多
文摘In district heating(DH) system with gas-fired peak load regulating boiler in the secondary network,by prolonging run time of base load plants under rated condition,the mean energy efficiency could be increased. The fuels of the system,including coal and gas,would cause different environmental impacts. Meanwhile,the reliability of the heating networks would be changed because the peak load regulating boiler could work as a standby heat source. A model for assessment of heating system was established by value analysis to optimize this kind of system. Energy consumption,greenhouse gas emission,pollution emission and system reliability were selected as functional assessment indexes in the model. Weights of each function were determined by analytical hierarchy process (AHP) and experts consultation. Life cycle cost was used as the cost in the model. A real case as an example was discussed to obtain the optimal base load ratio. The result shows that the optimal base load ratio of the case is 0.77.
文摘As the greenway construction grows popular,the concept and type of greenway is clarified in this study,research progresses and prospects of greenway planning are summarized.Greenway planning of Shunde District is taken for an example to elaborate properties,types,origination and tasks of greenway,moreover,construction background,ecological,human-centered and characteristic design principles were analyzed,especially the design of its buffer zone,corridor system,width of crawl lane,node system,identification system and service area.Greenway construction of Shunde District is to build a greenway network of multiple types and functions in 3 levels:region,city and community;a recreational landscaping system with regional greenland as the background,greennet and greenway as the framework,to promote a new "ecological,green and low-carbon" lifestyle,and create the new image of Shunde as "a livable riverfront region full of sunshine".
文摘The present study develops a data-based compact model for the prediction of the fluid temperature evolution in district heating-and-cooling pipeline networks.This model is based on an existing“reduced-order model”by the authors obtained from reduction of the“full-order model”describing the spatio-temporal energy balance for each pipe segment to a semi-analytical input-output relation between the pipe outlet temperature and the pipe inlet and ground temperatures.The proposed model(denoted XROM)expands on the original reduced-order model by incorporating variable mass flux as an additional input and thus greatly increases its practical relevance.The XROM represents variable mass flux by step-wise switching between mass-flux levels and thereby induces a prediction error relative to the true full-order model evolution after each switching.Theoretical analysis rigorously demonstrates that this error always decays and the XROM invariably converges on the full-order model evolution and,consequently,affords the same prediction accuracy.Performance analyses reveal that prediction errors are restricted to short“convergence intervals”after each mass-flux switching and the XROM therefore can handle substantially faster operating schemes than the current ones based on hourly monitoring and control.Convergence intervals of O(minutes)are namely typically sufficient-and thus switching frequencies up to O(minutes 1)permissible during dynamic operation and control actions-for reliable predictions.Quantification of these convergence intervals by an easy-to-use empirical relation furthermore enables a priori determination of the conditions for reliable predictions.Moreover,the XROM can capture the full 3D system dynamics(provided incompressible flow and heat-transfer mechanisms depending linearly on temperature)versus the essentially 1D approximation of current compact pipe models yet at similar computational cost.These attributes advance(parts of)district heating and cooling networks demanding prediction accuracies beyond 1D as its primary application area.This makes the XROM complementary to said pipe models and thereby expands the modelling capabilities for handling the growing complexity of(next-generation)networks.
基金supported by the Science and Technology Project of State Grid“Research and Application of Wide Area Multi energy Storage Collaborative Optimization and Control Technology in Provincial Power Grid”.
文摘The integrated electricity-heat-hydrogen system(IEHHS)facilitates the efficient utilization of multiple energy sources,while the operational flexibility of IEHHS is hindered by the high heat inertia of alkaline electrolyzers(AELs)and the variations of renewable energy.In this paper,we propose a robust scheduling of IEHHS considering the bidirectional heat exchange(BHE)between AELs and district heating networks(DHNs).First,we propose an IEHHS model to coordinate the operations of AELs,active distribution networks(ADNs),and DHNs.In particular,we propose a BHE that not only enables the waste heat recovery for district heating but also accelerates the thermal dynamics in AELs.Then,we formulate a two-stage robust optimization(RO)problem for the IEHHS operation to consider the variability of renewable energy in ADNs.We propose a new solution method,i.e.,multi-affine decision rule(MADR),to solve the two-stage RO problem with less conservatism.The simulation results show that the operational flexibility of IEHHS with BHE is remarkably improved compared with that only with unidirectional heat exchange(UHE).Compared with the traditional affine decision rule(ADR),the MADR effectively reduces the IEHHS operating costs while guaranteeing the reliability of scheduling strategies.