Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P...Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
As Internet ofThings(IoT)technologies continue to evolve at an unprecedented pace,intelligent big data control and information systems have become critical enablers for organizational digital transformation,facilitati...As Internet ofThings(IoT)technologies continue to evolve at an unprecedented pace,intelligent big data control and information systems have become critical enablers for organizational digital transformation,facilitating data-driven decision making,fostering innovation ecosystems,and maintaining operational stability.In this study,we propose an advanced deployment algorithm for Service Function Chaining(SFC)that leverages an enhanced Practical Byzantine Fault Tolerance(PBFT)mechanism.The main goal is to tackle the issues of security and resource efficiency in SFC implementation across diverse network settings.By integrating blockchain technology and Deep Reinforcement Learning(DRL),our algorithm not only optimizes resource utilization and quality of service but also ensures robust security during SFC deployment.Specifically,the enhanced PBFT consensus mechanism(VRPBFT)significantly reduces consensus latency and improves Byzantine node detection through the introduction of a Verifiable Random Function(VRF)and a node reputation grading model.Experimental results demonstrate that compared to traditional PBFT,the proposed VRPBFT algorithm reduces consensus latency by approximately 30%and decreases the proportion of Byzantine nodes by 40%after 100 rounds of consensus.Furthermore,the DRL-based SFC deployment algorithm(SDRL)exhibits rapid convergence during training,with improvements in long-term average revenue,request acceptance rate,and revenue/cost ratio of 17%,14.49%,and 20.35%,respectively,over existing algorithms.Additionally,the CPU resource utilization of the SDRL algorithmreaches up to 42%,which is 27.96%higher than other algorithms.These findings indicate that the proposed algorithm substantially enhances resource utilization efficiency,service quality,and security in SFC deployment.展开更多
Exploiting mobile elements (MEs) to accomplish data collection in wireless sensor networks (WSNs) can improve the energy efficiency of sensor nodes, and prolong network lifetime. However, it will lead to large dat...Exploiting mobile elements (MEs) to accomplish data collection in wireless sensor networks (WSNs) can improve the energy efficiency of sensor nodes, and prolong network lifetime. However, it will lead to large data collection latency for the network, which is unacceptable for data-critical applications. In this paper, we address this problem by minimizing the traveling length of MEs. Our methods mainly consist of two steps: we first construct a virtual grid network and select the minimal stop point set (SPS) from it; then, we make optimal scheduling for the MEs based on the SPS in order to minimize their traveling length. Different implementations of genetic algorithm (GA) are used to solve the problem. Our methods are evaluated by extensive simulations. The results show that these methods can greatly reduce the traveling length of MEs, and decrease the data collection latency.展开更多
Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input...Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose “confidence” and “support” is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose “confidence and support” is lower than requirement, are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e., as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing.展开更多
Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a n...Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy.展开更多
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi...Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.展开更多
Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures...Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy.展开更多
The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approa...The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future.展开更多
HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The se...HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The sensors can send the information about the events that they monitor to the Hash area and the mobile sinks need only to query that area instead of flooding among the whole network,and thus much energy can be saved. In addition,the location of the Hash area changes over time so as to balance the energy consumption in the whole network. Theoretical analysis shows that the proposed protocol can be energy-efficient and simulation studies further show that when there are 5 sources and 5 sinks in the network,it can save at least 50% energy compared with the existing two-tier data dissemination(TTDD) protocol,especially in large-scale wireless sensor networks.展开更多
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s...The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.展开更多
Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking p...Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking production. However, these MIQ parameters are difficult to be directly measured online, and large-time delay exists in off-line analysis through laboratory sampling. Focusing on the practical challenge, a data-driven modeling method was presented for the prediction of MIQ using the improved muhivariable incremental random vector functional-link net- works (M-I-RVFLNs). Compared with the conventional random vector functional-link networks (RVFLNs) and the online sequential RVFLNs, the M-I-RVFLNs have solved the problem of deciding the optimal number of hidden nodes and overcome the overfitting problems. Moreover, the proposed M I RVFLNs model has exhibited the potential for multivariable prediction of the MIQ and improved the terminal condition for the multiple-input multiple-out- put (MIMO) dynamic system, which is suitable for the BF ironmaking process in practice. Ultimately, industrial experiments and contrastive researches have been conducted on the BF No. 2 in Liuzhou Iron and Steel Group Co. Ltd. of China using the proposed method, and the results demonstrate that the established model produces better estima ting accuracy than other MIQ modeling methods.展开更多
Fuzzy clustering theory is widely used in data mining of full-face tunnel boring machine.However,the traditional fuzzy clustering algorithm based on objective function is difficult to effectively cluster functional da...Fuzzy clustering theory is widely used in data mining of full-face tunnel boring machine.However,the traditional fuzzy clustering algorithm based on objective function is difficult to effectively cluster functional data.We propose a new Fuzzy clustering algorithm,namely FCM-ANN algorithm.The algorithm replaces the clustering prototype of the FCM algorithm with the predicted value of the artificial neural network.This makes the algorithm not only satisfy the clustering based on the traditional similarity criterion,but also can effectively cluster the functional data.In this paper,we first use the t-test as an evaluation index and apply the FCM-ANN algorithm to the synthetic datasets for validity testing.Then the algorithm is applied to TBM operation data and combined with the crossvalidation method to predict the tunneling speed.The predicted results are evaluated by RMSE and R^(2).According to the experimental results on the synthetic datasets,we obtain the relationship among the membership threshold,the number of samples,the number of attributes and the noise.Accordingly,the datasets can be effectively adjusted.Applying the FCM-ANN algorithm to the TBM operation data can accurately predict the tunneling speed.The FCM-ANN algorithm has improved the traditional fuzzy clustering algorithm,which can be used not only for the prediction of tunneling speed of TBM but also for clustering or prediction of other functional data.展开更多
The heterogeneity of applications and their divergent resource requirements lead to uneven traffic distribution and imbalanced resource utilization across data center networks(DCNs).We propose a fine-grained baseband ...The heterogeneity of applications and their divergent resource requirements lead to uneven traffic distribution and imbalanced resource utilization across data center networks(DCNs).We propose a fine-grained baseband function reallocation scheme in heterogeneous optical switching-based DCNs.A deep reinforcement learning-based functional split and resource mapping approach(DRL-BFM)is proposed to maximize throughput in high-load server racks by implementing load balancing in DCNs.The results demonstrate that DRL-BFM improves the throughput by 20.8%,22.8%,and 29.8%on average compared to existing algorithms under different computational capacities,bandwidth constraints,and latency conditions,respectively.展开更多
In order to extend the application scope of NDN and realize the transmission of different NDNs across IP networks,a method for interconnecting NDN networks distributed in different areas with IP networks is proposed.F...In order to extend the application scope of NDN and realize the transmission of different NDNs across IP networks,a method for interconnecting NDN networks distributed in different areas with IP networks is proposed.Firstly,the NDN data resource is located by means of the DNS mechanism,and the gateway IP address of the NDN network where the data resource is located is found.Then,the transmission between different NDNs across the IP network is implemented based on the tunnel technology.In addition,in order to achieve efficient and fast NDN data forwarding,we have added a small number of NDN service nodes in the IP network,and proposed an adaptive probabilistic forwarding strategy and a link cost function-based forwarding strategy to make NDN data obtaining the cache service provided by the NDN service node as much as possible.The results of analysis and simulation experiments show that,the interconnectionmethod of NDN across IP network proposed is generally effective and feasible,and the link cost function forwarding strategy is better than the adaptive probability forwarding strategy.展开更多
Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource exper...Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced.展开更多
The target of this paper is the performance-based diagnostics of a gas turbine for the automated early detection of components malfunctions. The paper proposes a new combination of multiple methodologies for the perfo...The target of this paper is the performance-based diagnostics of a gas turbine for the automated early detection of components malfunctions. The paper proposes a new combination of multiple methodologies for the performance-based diagnostics of single and multiple failures on a two-spool engine. The aim of this technique is to combine the strength of each methodology and provide a high success rate for single and multiple failures with the presence of measurement malfunctions. A combination of KF(Kalman Filter), ANN(Artificial Neural Network) and FL(Fuzzy Logic) is used in this research in order to improve the success rate, to increase the flexibility and the number of failures detected and to combine the strength of multiple methods to have a more robust solution. The Kalman filter has in his strength the measurement noise treatment, the artificial neural network the simulation and prediction of reference and deteriorated performance profile and the fuzzy logic the categorization flexibility, which is used to quantify and classify the failures. In the area of GT(Gas Turbine) diagnostics, the multiple failures in combination with measurement issues and the utilization of multiple methods for a 2-spool industrial gas turbine engine has not been investigated extensively.This paper reports the key contribution of each component of the methodology and brief the results in the quantification and classification success rate. The methodology is tested for constant deterioration and increasing noise and for random deterioration. For the random deterioration and nominal noise of 0.4%, in particular, the quantification success rate is above 92.0%, while the classification success rate is above 95.1%. Moreover, the speed of the data processing(1.7 s/sample)proves the suitability of this methodology for online diagnostics.展开更多
Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the cir- cumstances of dynamic production. A Bayesian network and...Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the cir- cumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian net- work of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly pro- portionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The inte- gration ofbigdata analytics and BN method offers a whole new perspective in manufacturing quality control.展开更多
Ship collision on bridge is a dynamic process featured by high nonlinearity and instantaneity. Calculating ship-bridge collision force typically involves either the use of design-specification-stipulated equivalent st...Ship collision on bridge is a dynamic process featured by high nonlinearity and instantaneity. Calculating ship-bridge collision force typically involves either the use of design-specification-stipulated equivalent static load, or the use of finite element method (FEM) which is more time-consuming and requires supercomputing resources. In this paper, we proposed an alternative approach that combines FEM with artificial neural network (ANN). The radial basis function neural network (RBFNN) employed for calculating the impact force in consideration of ship-bridge collision mechanics. With ship velocity and mass as the input vectors and ship collision force as the output vector, the neural networks for different network parameters are trained by the learning samples obtained from finite element simulation results. The error analyses of the learning and testing samples show that the proposed RBFNN is accurate enough to calculate ship-bridge collision force. The input-output relationship obtained by the RBFNN is essentially consistent with the typical empirical formulae. Finally, a special toolbox is developed for calculation efficiency in application using MATLAB software.展开更多
Monitoring,understanding and predicting Origin-destination(OD)flows in a city is an important problem for city planning and human activity.Taxi-GPS traces,acted as one kind of typical crowd sensed data,it can be used ...Monitoring,understanding and predicting Origin-destination(OD)flows in a city is an important problem for city planning and human activity.Taxi-GPS traces,acted as one kind of typical crowd sensed data,it can be used to mine the semantics of OD flows.In this paper,we firstly construct and analyze a complex network of OD flows based on large-scale GPS taxi traces of a city in China.The spatiotemporal analysis for the OD flows complex network showed that there were distinctive patterns in OD flows.Then based on a novel complex network model,a semantics mining method of OD flows is proposed through compounding Points of Interests(POI)network and public transport network to the OD flows network.The propose method would offer a novel way to predict the location characteristic and future traffic conditions accurately.展开更多
基金supported by Natural Science Foundation of China(Nos.62303126,62362008,author Z.Z,https://www.nsfc.gov.cn/,accessed on 20 December 2024)Major Scientific and Technological Special Project of Guizhou Province([2024]014)+2 种基金Guizhou Provincial Science and Technology Projects(No.ZK[2022]General149) ,author Z.Z,https://kjt.guizhou.gov.cn/,accessed on 20 December 2024)The Open Project of the Key Laboratory of Computing Power Network and Information Security,Ministry of Education under Grant 2023ZD037,author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024)Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2024B25),author Z.Z,https://www.gzu.edu.cn/,accessed on 20 December 2024).
文摘Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金supported by the National Natural Science Foundation of China under Grant 62471493 and 62402257partially supported by the Natural Science Foundation of Shandong Province under Grant ZR2023LZH017,ZR2024MF066 and 2023QF025+2 种基金partially supported by the Open Research Subject of State Key Laboratory of Intelligent Game(No.ZBKF-24-12)partially supported by the Foundation of Key Laboratory of Education Informatization for Nationalities(Yunnan Normal University),the Ministry of Education(No.EIN2024C006)partially supported by the Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE(No.202306).
文摘As Internet ofThings(IoT)technologies continue to evolve at an unprecedented pace,intelligent big data control and information systems have become critical enablers for organizational digital transformation,facilitating data-driven decision making,fostering innovation ecosystems,and maintaining operational stability.In this study,we propose an advanced deployment algorithm for Service Function Chaining(SFC)that leverages an enhanced Practical Byzantine Fault Tolerance(PBFT)mechanism.The main goal is to tackle the issues of security and resource efficiency in SFC implementation across diverse network settings.By integrating blockchain technology and Deep Reinforcement Learning(DRL),our algorithm not only optimizes resource utilization and quality of service but also ensures robust security during SFC deployment.Specifically,the enhanced PBFT consensus mechanism(VRPBFT)significantly reduces consensus latency and improves Byzantine node detection through the introduction of a Verifiable Random Function(VRF)and a node reputation grading model.Experimental results demonstrate that compared to traditional PBFT,the proposed VRPBFT algorithm reduces consensus latency by approximately 30%and decreases the proportion of Byzantine nodes by 40%after 100 rounds of consensus.Furthermore,the DRL-based SFC deployment algorithm(SDRL)exhibits rapid convergence during training,with improvements in long-term average revenue,request acceptance rate,and revenue/cost ratio of 17%,14.49%,and 20.35%,respectively,over existing algorithms.Additionally,the CPU resource utilization of the SDRL algorithmreaches up to 42%,which is 27.96%higher than other algorithms.These findings indicate that the proposed algorithm substantially enhances resource utilization efficiency,service quality,and security in SFC deployment.
基金supported by Tianjin Municipal Information Industry Office (No. 082044012)
文摘Exploiting mobile elements (MEs) to accomplish data collection in wireless sensor networks (WSNs) can improve the energy efficiency of sensor nodes, and prolong network lifetime. However, it will lead to large data collection latency for the network, which is unacceptable for data-critical applications. In this paper, we address this problem by minimizing the traveling length of MEs. Our methods mainly consist of two steps: we first construct a virtual grid network and select the minimal stop point set (SPS) from it; then, we make optimal scheduling for the MEs based on the SPS in order to minimize their traveling length. Different implementations of genetic algorithm (GA) are used to solve the problem. Our methods are evaluated by extensive simulations. The results show that these methods can greatly reduce the traveling length of MEs, and decrease the data collection latency.
基金the National Natural Science Foundation of China (Grant No. 50128706).
文摘Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose “confidence” and “support” is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose “confidence and support” is lower than requirement, are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e., as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing.
文摘Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification.
基金financially supported by the Natural Science Foundation of Hunan Province(2021JJ30679)。
文摘Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy.
文摘The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future.
基金Project(07JJ1010) supported by Hunan Provincial Natural Science Foundation of ChinaProjects(2006AA01Z202, 2006AA01Z199) supported by the National High-Tech Research and Development Program of China+2 种基金Project(7002102) supported by the City University of Hong Kong, Strategic Research Grant (SRG)Project(IRT-0661) supported by the Program for Changjiang Scholars and Innovative Research Team in UniversityProject(NCET-06-0686) supported by the Program for New Century Excellent Talents in University
文摘HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The sensors can send the information about the events that they monitor to the Hash area and the mobile sinks need only to query that area instead of flooding among the whole network,and thus much energy can be saved. In addition,the location of the Hash area changes over time so as to balance the energy consumption in the whole network. Theoretical analysis shows that the proposed protocol can be energy-efficient and simulation studies further show that when there are 5 sources and 5 sinks in the network,it can save at least 50% energy compared with the existing two-tier data dissemination(TTDD) protocol,especially in large-scale wireless sensor networks.
基金supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029+1 种基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2021R1A2B5B02087169)supported under the framework of international cooperation program managed by the National Research Foundation of Korea(2022K2A9A1A01098051)。
文摘The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.
基金Item Sponsored by National Natural Science Foundation of China(61290323,61333007,61473064)Fundamental Research Funds for Central Universities of China(N130108001)+1 种基金National High Technology Research and Development Program of China(2015AA043802)General Project on Scientific Research for Education Department of Liaoning Province of China(L20150186)
文摘Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking production. However, these MIQ parameters are difficult to be directly measured online, and large-time delay exists in off-line analysis through laboratory sampling. Focusing on the practical challenge, a data-driven modeling method was presented for the prediction of MIQ using the improved muhivariable incremental random vector functional-link net- works (M-I-RVFLNs). Compared with the conventional random vector functional-link networks (RVFLNs) and the online sequential RVFLNs, the M-I-RVFLNs have solved the problem of deciding the optimal number of hidden nodes and overcome the overfitting problems. Moreover, the proposed M I RVFLNs model has exhibited the potential for multivariable prediction of the MIQ and improved the terminal condition for the multiple-input multiple-out- put (MIMO) dynamic system, which is suitable for the BF ironmaking process in practice. Ultimately, industrial experiments and contrastive researches have been conducted on the BF No. 2 in Liuzhou Iron and Steel Group Co. Ltd. of China using the proposed method, and the results demonstrate that the established model produces better estima ting accuracy than other MIQ modeling methods.
基金supported by the National Key R&D Program of China(Grant Nos.2018YFB1700704 and 2018YFB1702502)the Study on the Key Management and Privacy Preservation in VANET,The Innovation Foundation of Science and Technology of Dalian(2018J12GX045).
文摘Fuzzy clustering theory is widely used in data mining of full-face tunnel boring machine.However,the traditional fuzzy clustering algorithm based on objective function is difficult to effectively cluster functional data.We propose a new Fuzzy clustering algorithm,namely FCM-ANN algorithm.The algorithm replaces the clustering prototype of the FCM algorithm with the predicted value of the artificial neural network.This makes the algorithm not only satisfy the clustering based on the traditional similarity criterion,but also can effectively cluster the functional data.In this paper,we first use the t-test as an evaluation index and apply the FCM-ANN algorithm to the synthetic datasets for validity testing.Then the algorithm is applied to TBM operation data and combined with the crossvalidation method to predict the tunneling speed.The predicted results are evaluated by RMSE and R^(2).According to the experimental results on the synthetic datasets,we obtain the relationship among the membership threshold,the number of samples,the number of attributes and the noise.Accordingly,the datasets can be effectively adjusted.Applying the FCM-ANN algorithm to the TBM operation data can accurately predict the tunneling speed.The FCM-ANN algorithm has improved the traditional fuzzy clustering algorithm,which can be used not only for the prediction of tunneling speed of TBM but also for clustering or prediction of other functional data.
基金supported by the National Key R&D Program of China(Nos.2023YFB2905500 and 2023YFB2805302)the National Natural Science Foundation of China(No.62205026)the Beijing Institute of Technology Research Fund Program for Young Scholars,and the Open Fund of IPOC(BUPT)。
文摘The heterogeneity of applications and their divergent resource requirements lead to uneven traffic distribution and imbalanced resource utilization across data center networks(DCNs).We propose a fine-grained baseband function reallocation scheme in heterogeneous optical switching-based DCNs.A deep reinforcement learning-based functional split and resource mapping approach(DRL-BFM)is proposed to maximize throughput in high-load server racks by implementing load balancing in DCNs.The results demonstrate that DRL-BFM improves the throughput by 20.8%,22.8%,and 29.8%on average compared to existing algorithms under different computational capacities,bandwidth constraints,and latency conditions,respectively.
基金supported by Beijing Advanced Innovation Center for Materials Genome Engineering,Beijing Information Science and Technology University。
文摘In order to extend the application scope of NDN and realize the transmission of different NDNs across IP networks,a method for interconnecting NDN networks distributed in different areas with IP networks is proposed.Firstly,the NDN data resource is located by means of the DNS mechanism,and the gateway IP address of the NDN network where the data resource is located is found.Then,the transmission between different NDNs across the IP network is implemented based on the tunnel technology.In addition,in order to achieve efficient and fast NDN data forwarding,we have added a small number of NDN service nodes in the IP network,and proposed an adaptive probabilistic forwarding strategy and a link cost function-based forwarding strategy to make NDN data obtaining the cache service provided by the NDN service node as much as possible.The results of analysis and simulation experiments show that,the interconnectionmethod of NDN across IP network proposed is generally effective and feasible,and the link cost function forwarding strategy is better than the adaptive probability forwarding strategy.
基金the National Natural Science Foundation of China (No.40671145)the Natural Science Foundation of Guangdong Province (Nos.04300504 and 05006623)and the Science and Technology Plan Foundation of Guangdong Province (Nos.2005B20701008,2005B10101028,and 2004B20701006).
文摘Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced.
文摘The target of this paper is the performance-based diagnostics of a gas turbine for the automated early detection of components malfunctions. The paper proposes a new combination of multiple methodologies for the performance-based diagnostics of single and multiple failures on a two-spool engine. The aim of this technique is to combine the strength of each methodology and provide a high success rate for single and multiple failures with the presence of measurement malfunctions. A combination of KF(Kalman Filter), ANN(Artificial Neural Network) and FL(Fuzzy Logic) is used in this research in order to improve the success rate, to increase the flexibility and the number of failures detected and to combine the strength of multiple methods to have a more robust solution. The Kalman filter has in his strength the measurement noise treatment, the artificial neural network the simulation and prediction of reference and deteriorated performance profile and the fuzzy logic the categorization flexibility, which is used to quantify and classify the failures. In the area of GT(Gas Turbine) diagnostics, the multiple failures in combination with measurement issues and the utilization of multiple methods for a 2-spool industrial gas turbine engine has not been investigated extensively.This paper reports the key contribution of each component of the methodology and brief the results in the quantification and classification success rate. The methodology is tested for constant deterioration and increasing noise and for random deterioration. For the random deterioration and nominal noise of 0.4%, in particular, the quantification success rate is above 92.0%, while the classification success rate is above 95.1%. Moreover, the speed of the data processing(1.7 s/sample)proves the suitability of this methodology for online diagnostics.
基金Supported by 2015 Special Funds for Intelligent Manufacturing of China MIIT(Grant No.2015-415)National Natural Science Foundation of China(Grant No.71632008)
文摘Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the cir- cumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian net- work of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly pro- portionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The inte- gration ofbigdata analytics and BN method offers a whole new perspective in manufacturing quality control.
基金the National Natural Science Foundation of China (No. 50778131)the National key Technology R&D Pro-gram, Ministry of Science and Technology (No. 2006BAG04B01), China
文摘Ship collision on bridge is a dynamic process featured by high nonlinearity and instantaneity. Calculating ship-bridge collision force typically involves either the use of design-specification-stipulated equivalent static load, or the use of finite element method (FEM) which is more time-consuming and requires supercomputing resources. In this paper, we proposed an alternative approach that combines FEM with artificial neural network (ANN). The radial basis function neural network (RBFNN) employed for calculating the impact force in consideration of ship-bridge collision mechanics. With ship velocity and mass as the input vectors and ship collision force as the output vector, the neural networks for different network parameters are trained by the learning samples obtained from finite element simulation results. The error analyses of the learning and testing samples show that the proposed RBFNN is accurate enough to calculate ship-bridge collision force. The input-output relationship obtained by the RBFNN is essentially consistent with the typical empirical formulae. Finally, a special toolbox is developed for calculation efficiency in application using MATLAB software.
基金This work is supported by Shandong Provincial Natural Science Foundation,China under Grant No.ZR2017MG011This work is also supported by Key Research and Development Program in Shandong Provincial(2017GGX90103).
文摘Monitoring,understanding and predicting Origin-destination(OD)flows in a city is an important problem for city planning and human activity.Taxi-GPS traces,acted as one kind of typical crowd sensed data,it can be used to mine the semantics of OD flows.In this paper,we firstly construct and analyze a complex network of OD flows based on large-scale GPS taxi traces of a city in China.The spatiotemporal analysis for the OD flows complex network showed that there were distinctive patterns in OD flows.Then based on a novel complex network model,a semantics mining method of OD flows is proposed through compounding Points of Interests(POI)network and public transport network to the OD flows network.The propose method would offer a novel way to predict the location characteristic and future traffic conditions accurately.